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Abstract 
  In this paper we will apply the Tanh-method and first integral method to find the exact 

solution of traveling wave nonlinear partial differential equations (PDEs.), These methods are 

powerful techniques to use symbolically compute traveling waves equations of nonlinear wave 

and evolution partial differential equations which a rising in a variety scientific fields , the 

methods provide a straightforward algorithm, two illustrating equations  namely Fitzhugh-

Nagumo and Burgers-Huxley are considered by each method in this study. 
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 الخلاصة
وطشيمت انتكايم الاحادي  لإيجاد انحم انتاو نًعادلاث تفاضهيت   انظم انضائذي –في هزا انبحث سىف َطبًك طشيمت         

جضئيت غيش خطيت لاَتمال انًىجت . هزِ انطشق راث تمُيت لىيت في إستخذاو انحساباث انشيضيت نًعادلاث انًىجت يٍ يعادلاث 

ذييت ، يعادنتيٍ تىضيحيتيٍ تفاضهيت جضئيت غيش خطيت وانتي تظهش في يختهف انحمىل انعهًيت . انطشق يضوًدة بخىاسصييت تم

 تى حههًا بكم طشيمت في هزِ انذساست. Burgers-Huxley و   Fitzhugh-Nagumoتسًَياٌ 
 

 

 
1- Introduction 

In recent years, directly searching for exact solutions of nonlinear partial differential equations 

(NPDEs.) has become more and more attractive partly due to the availability of computer symbolic 

systems like Mathematica which help us to find the solutions of system of nonlinear algebraic 

equations calculation on a computer, from the most effectively straightforward methods are Tanh 

method and the first integral method . The analytical method however are in most cases difficult to 

handle and require a thorough knowledge of its properties and possibilities before one is able to 

apply them to the problem . to solve nonlinear evolution and wave equations, one first starts to look 

for traveling waves solution, in particular, these waves can be found easily, because the PDE under 

consideration can immediately be transformed into ODE. In conservative systems, solutions are 

found by direct integration, suitable transformation or substitution or other techniques. These large 

class of wave phenomena plays a major role in science which frequently appear in different 

scientific domains and engineering fields, such as fluid dynamics [1], plasma physics, optical fibers 

[2], chemical kinetics involving reaction [3], mathematical biology (population dynamics) [4], solid 

state physics (lattice vibration) [5] , etc.. 
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          In this paper we present an adaptation of the Tanh method and first integral method to solve 

nonlinear PDEs. And to give an overview of possibilities these methods offers with some 

illustration examples, more details of basics can be found back in [6], for the sake of completeness 

we should mention that this technique is restricted to the search for stationary waves and we thus 

essentially deal with shock and/or solitary type of solutions. The useful Tanh-method is widely used 

by different authors such as [7,8,9,10,11,12,13,14,15,16,17,18,19,20,21] the method introduces a 

uniting method that one can find exact as well as approximate solutions in a straightforward and 

systematic way, the standard Tanh method depend on the balance method, where the linear terms of 

highest order are balanced with the highest order nonlinear terms of the reduced equations , the 

exact analytical solution for these nonlinear algebraic equation including the soliton solutions. We 

will introduce more details of Tanh method in section 2. 

            Authors in [22, 23, 24, 25, 26, 27, 28] introduced the first integral method for a reliable 

treatment of the NPDEs. We describe this method for finding the exact travelling wave solutions of 

nonlinear evolution equations in section 3 .The first integral method can be applied to models of 

various types of nonlinearity.  

2- Outline of the Tanh Method 

            To avoid algebraic complexity, we introduced Tanh as a new variable, since all derivatives 

of a Tanh are represented by a Tanh it self .The main properties of the Tanh method will be 

explained, briefly discuss and then applied to particular, well-chosen examples, we refer to [11], 

[13], [22], [23] for more details. The nonlinear wave and  

evolution equation (in principal one dimension) are commonly written as 

ut= G(u,ux ,uxx ,…) or utt= G(u,ux ,uxx ,…) …(2.1) 

We like to know if these equations admit exact traveling wave solutions of (2.1) and how to 

compute them. The first step is to unite the independent variables x and t into a new variable 

through the definition )( vtxk  which define the traveling frame of reference. Here (k >0) 

represents the wave number and v  is the velocity of the traveling wave. Both are unknown 

parameters, we recall that the wave number k is inversely proportional to the width of the wave 

depending on the problem under study. This quantity will be determined or will remain a free and 

arbitrary parameter. 

 Typically for nonlinear waves, both velocity v  as well as amplitude will be function of this 

parameter k .  Accordingly, the dependent variable  ),( txu  is replaced by )(U . Equations like eq. 

(2.1) are then transformed into 
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Hence, in the follows we deal with ODEs. rather than with PDEs. 

to find the exact solutions for the ODEs. In tanh form, we introduce a new independent variable 

tanhY  into ODE.  Where )()( YFU   this latter then depends solely on Y because 
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,  etc…, therefore it make sense to attempt to find solutions we 

are looking for will be written as a finite power series in Y. 
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which incorporates solitary –wave and shock-wave profiles. Depending on the fact whether 

boundary conditions are involved or not. To determine N (highest order of Y) a balancing procedure 

is used , at most two terms proportional to Y
N 

must appear after substitution of eq.(2.2) into the 

equation under study . As a result of this analysis, we definitely require  01 Na  and 0Na  for a 

particular N, in turns out that N =1 or 2 in most cases. This balance is obtained by comparing the 

behavior of Y
N
 in the highest derivative with the nonlinear term(s), (this is the most difficult step of 

the method in analyzing and solving the nonlinear algebraic system) with the help of Mathematica 

Package, as soon as N is determined in this way, we get after substitution of (2.3) into (2.2), 

(transformed to the Y variable). Algebraic equation for an (n=0, 1, 2…N). Depending on the 

problem under study. The wave number k will remain fixed or undetermined, as already mentioned, 

the velocity v of the travelling wave is always a function of k. If one is able to find nontrivial values 

for an(n = 0, 1, 2,…,N) in terms of known quantities a solution is ultimately obtained. 
 

3-Outline of the First Integral – Method 
Consider the general form of NPDE in the form      P (u ,ut, ux ,uxx ,utt …) = 0       … (3.1) 

Using the wave variable )( vtxk   ,so that  )(),( Utxu   eq.(3.1) transform into ODE of the 

form            0),,,(  UUUUQ  ... (3.2) 

Where the prime denotes the derivative with respect to   eq. (3.2) is then integrated as long as 

in all terms containing derivatives, the integration constants considered to be zeros, suppose that the 

solution of ODE (3.2) can be written as    )(),( ftxu  ,we introduce a new independent variables 

)(f)Y(   ,    )()(   fX    

which leads to the system of nonlinear ODEs.  

))(),(F()(Y   ,    )()(   YXYX        … (3.3) 

According to the qualitative theory of ODEs.if we can find the integrals to eq.(3.3) then the 

general  solutions   of   eq. (3.3) can  be  found directly . However , it is  generally  difficult to 

find even one of the first integrals. Because there is not any systematic way to tell us how to 

find these integrals. So, we will use the division theorem to obtain one first integral of eq.(3.3) 

which reduces eq.(3.2) to first order integrable ODE. An exact solution to eq. (3.1) is then obtained 

by solving this equation. Now we come to recall the division theorem for two variables in the 

complex domain C. 

Division Theorem: 
Suppose that ),( zwP  and ),( zwQ  are polynomials in ],[ zwC  , and ),( zwP   is irreducible in 

],[ zwC  . If ),( zwQ  vanishes at all zero points of ),( zwP  , then there exists a polynomial ),( zwG  in 

],[ zwC  such that   .),(),(),( zwGzwPzwQ   
4- Exact Solutions of Equations by Using    the Tanh Method: 
Example 1: Consider the following Fitzhugh- 

                   Nagumo equation : 

(4.1) ))(1(
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waww
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w
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





          

We make the transformation w(x, t) = W ( )  , )( vtxk  , eq.(4.1) becomes the ODE : 

            (4.2) 0)1( 322  WWaaWWkWkv  
We postulate the following Tanh series, and the transformation given, then eq.(4.2) reduces to : 
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Balancing the power of linear term  W   and the 

nonlinear term )(  3243 mm YYYW   gives m+2=3m, and thus, m=1. The resulting ODE is then 

solved by a finite series of Tanh functions of the form 

(4.4) 0  ,)( 1

1

0
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
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i
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Where Y = Tanh( )  . Substituting eq. (4.4) in eq.(4.3) ,then equating the coefficient of   

3,2,1,0, iY i   leads to the following nonlinear system of algebraic equations : 
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Solving the system of eq.(4.5) by by the help of Mathematica package    gives: 
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(4.11)  
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Substituting the solutions set eqs. (4.6) - (4.17) and the corresponding solutions of eq. (4.4), we 

have the solutions of eq.(4.1) as follows : 
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)22.4())(tanh(
22225 vtxW aaa                                 

 

)23.4())(tanh(
22226 vtxW aaa                                  

 

)24.4())(tanh(
22227 vtxW aaa                                 
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)25.4())(tanh(
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Figure (4.1) represents the solitary ),(12 txw  in Eq. (4.29) with .5.0v  

 

 
 

Figure (4.1): The Solitary Solution of Eq. (4.29) for .1010,1010  xt

 

Example 2: Consider the following Burgers – 

                   Huxley equation: 

(4.30)  0,)1)((  auuauuuuu xxxt
         

We make the transformation w(x, t) =W ( )  , )( vtxk  , eq.(4.30) becomes the ODE : 

)31.4(0)1()( 322  uuaauuvukuk               

We postulate the following Tanh series, and the transformation, then eq. (4.31) reduces to : 
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Balancing the linear term  U   and the nonlinear term 3U  gives m+2=3m, and thus, m=1. The 

resulting ODE is then solved by a finite series of Tanh functions of the form  

)33.4(0 ,  )(
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i

i

i aYaaYaW  Where Y = Tanh ( )  . Substituting eq. (4.33) in 

eq.(4.31) ,then equating the coefficient of    

 

3,2,1,0, iY i   Leads to the following nonlinear system of algebraic equations: 
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Solving the system of eq.(4.34) by the help of Mathematica package  gives: 
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Substituting the solutions set eqs. (4.35)-(4.46) and the corresponding solutions of eq.(4.33 ) , we 

have the solutions of eq.(4.30) as follows : 
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Figure (4.2) represents the solitary ),(1 txw  in Eq.(4.47) with .5.0v  

 

 
 

 

Figure (4.2): The Solitary Solution of Eq.(4.47) for .1010,1010  xt

 

5- Exact Solutions Using the First Integral Method: 
Example 1: Consider the following Fitzhugh- Nagumo equation: 
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We make the transformation w(x,t)=W( )  , )( vtxk  , eq.(5.1) becomes the ODE : 

)2.5(0)1( 322  WWaaWWkWkv  

Where the prime denote the derivation with respect to    .Using eq. (5.2) we obtain  

)3.5(     )()(  YX                                                 

)4.5(])1([)( 321
2 kvYXXaaXY

k
  According to the first integral method, we suppose that  

)()(  YandX  are nontrivial solutions of eq. (5.3) and eq.(5.4), and 



m

i

i

i YXaYXQ
0

)(),(        is 

irreducible polynomial in complex domain  such that   

         
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i
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i YXaYXQ
0

)5.5(0)())(())(),((  Where ),...,1,0(),( miXai  are polynomials of

0)( XaandX m
. Eq. (5.5) is called first integral to eq. (5.3) and eq. (5.4) .According to the 

division theorem, there exists a polynomial  YXhXg )()(   in complex domain  ],[ YXC  such that  

 

















Y

Y

Q

Y

Q

X

Q

d

dQ
  




m

i

i

i YXaYXhXg
0

)6.5()(])()([      

In this example, we assume that m=1 in eq.(5.5). Suppose that m=1, by equating the coefficients of 

)2,1,0( iY i  on both sides of eq. (5.6), we have  

(5.7)    )()()( 11 XhXaXa  )8.5()()()()()()( 0110 XhXaXaXgXaXa
k
v 

)9.5(])1([
)(

)()( 32

2

1
0 XXaaX

k

Xa
XaXg  Since )1,0()( iXai

 are polynomials, then from eq.(5.5) 

we deduce that )(1 Xa  is constant and  0)( Xh . For simplicity, take  
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1)(1 Xa . Balancing the degrees of )()( 0 XaandXg , we conclude that 1))(deg( Xg  only. 

Suppose that  )10.5(       )( BAXXg   Then we find ),(0 Xa  

)11.5()()( 2

20 CXBXXa
k
vA   

Where  C  is arbitrary integration constant. 

Substituting  )()(0 XgandXa  into eq.(5.9) and setting all the coefficients of power  X  to be zero, 

then we obtain a system of nonlinear algebraic equations, and using  Mathematica solving them, we 

obtain 
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Using eq. (5.12) into eq. (5.11) and eq. (5.5), we obtain  
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2
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k

a
kk

XaXY         

Combining eq. (5.18) with eq. (5.3), we obtain the exact solution of eq.(5.2) and then the exact 

solution of  Fitzhugh-Nagumo equation (5.1) can be written as   

                                 )19.5(
1

1
)(

)(

1
2

1

2

1



















k

a

k

a

e

ea
w               

Where    is an arbitrary constant. Thus the travelling wave solution of  Fitzhugh-Nagumo equation 

(5.1) can be written as 
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Similarly, for the case of eqs . (5.13)- (5.17), the exact travelling wave solutions are:  
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The following Figure (5.1) represents the solitary ),( txw  in Eq.(5.23) with 

.5.0,0,5.0  av   
 

 
 

Figure (5.1): The Solitary Solution of Eq.(5.23) for .1010,1010  xt

 
Example 2: Consider the following Burgers-   Huxley equation : 

)26.5(0,)1)((  auuauuuuu xxxt
   

We make the transformation w(x, t) =W ( )  , )( vtxk  , eq.(5.26) becomes the ODE : 

)27.5(0)1()( 322  uuaauuvukuk Where the prime denote the derivation with respect to . 

Using eq. (5.27) we obtain  
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polynomial in complex domain ],[ YXC  such that    

    )30.5(,0)())(())(),((
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i YXaYXQ   Where ),...,1,0(,)( miXai   are polynomials of  

0)( XaandX m
. 

Eq. (5.30) is called first integral to eq.(5.28) and eq.(5.29) .According to the division theorem, there 

exists a polynomial  YXhXg )()(   in complex domain  ],[ YXC  such that  
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)31.5()(])()([  In this example, we assume that 

m=1 in eq.(5.30). Suppose that m=1, by equating the coefficients of )2,1,0( iY i  on both sides of 

eq.(5.31), we have  
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)1,0()( iXai
 are polynomials, then from eq.(5.30) we deduce that )(1 Xa  is constant and  

0)( Xh . For simplicity, take 1)(1 Xa . Balancing the degrees of )()( 0 XaandXg , we 

conclude that 1))(deg( Xg  only. Suppose that  
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v  Where  C  is arbitrary integration constant, substituting  

)()(0 XgandXa  into eq.(5.34) and setting all the coefficients of power  X  to be zero, then we 

obtain a system of nonlinear algebraic equations, and using  Mathematica solving them, we obtain 
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Using eq.(5.37) into eq.(5.36) and eq.(5.30) , we obtain  
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              …  (5.43) 

Combining eq.(5.43) with eq.(5.28), we obtain the exact solution of eq.(5.27) and then the exact 

solution of  Burgers-Huxley eq. (5.26) can be written as   
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Where    is an arbitrary constant. Thus the travelling wave solution of Burgers-Huxley eq. (5.26) 

can be written as  
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Similarly, for the case of eqs.(5.39)-(5.42), the exact travelling wave solutions are  
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The following Figure (5.2) represents the solitary ),( txw  in Eq.(5.49) with .0,5.0  v  

 
 

Fig.(5.2): The Solitary Solution of Eq.(5.49) for .1010,1010  xt  
 

 

6- Comparison of two Methods of  Tanh  and First Integral Method 
          In this section, we compare two methods of Tanh and first integral. We can use Tanh method 

to solve the nonlinear equations with any degree of derivative but when we can use the first integral 

method that the nonlinear equation is a second-order nonlinear differential equation or it can 

become to a second-order nonlinear differential equation, by using the first integral method we can 

obtain more solution of equation because with every step, we can put different m  and find many 

solutions of the equation .But we obtain limited solutions of equation in Tanh method. 

        In both methods, because the calculations are done with aim of Mathematica, so we have no 

problem of difficulty in the calculations or time-consuming calculations for any of the two methods. 

 

7-Conclusion 
           We presented two methods (Tanh  method and First integral  method) to compute special 

solution of nonlinear (PDEs.) without using explicit integration, it is shown with the aid of some 

examples that the methods in its present form is a powerful technique for investigating nonlinear 

wave equation, in particular those where diffusion is involved this technique is depend on the 

hypothesis of the travelling wave equations that expressed in terms of  a Tanh . 
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