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ABSTRACT
In this paper, we apply He's variational iteration method (VIM) and the
Adomian decomposition method (ADM) to approximate the solution of Duffing-Van
Der Pol equation (DVP). In VIM, a correction functional is constructed by a general
Lagrange multiplier which can be identified via a variational theory. The VIM yields an
approximate solution in the form of a quickly convergent series. Comparisons of the
two series solutions with the classical Runge-Kutta order four RK45 method show that
the VIM is a powerful method for the solution of nonlinear equations. The convergent
of He's variational iteration method to this equation is also considered.
Keywords: He's variational iteration method, Adomian decomposition method,
Duffing-Van Der Pol equation, Runge-Kutta order four, approximate solution.
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1. Introduction

Chaotic systems have received a flurry of research effort in the past few decades.
Such systems which are nonlinear by nature, can occur in various natural and manmade
systems, and are characterized by a great sensitivity to initial conditions [16].

The Duffing .Van der Pol equation provides an important mathematical model
for dynamic systems having a single unstable fixed point, along with a single stable
limit cycle and is governed by the non-linear differential equation

u"—u(l—u?u'+u+pu* =0, t>0 (D)
with the initial conditions
u(@) =1, u'(0)=0 ...(2)
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where, the over dot represents the derivative with respect to time, x and g which are

positive coefficients.

It generates the limit cycle for small values of x, developing into relaxation oscillations
when u becomes large which can be evaluated through the Lindsted’s perturbation
method [6]. Examples of such phenomena arise in all of the natural and engineering
sciences [17,18], in many physical problems, as well [8,11]. Most scientific problems in
solid mechanic are inherently non-linear. Except a limited number of these problems,
most of them do not have analytical solution. Some of them are solved by using
numerical techniques and some are done so the analytical perturbation method [19].
Recently introduced variational iteration method by He [7,12-15] which gives rapidly
convergent successive approximations of the exact solution if such a solution exists, has
proved successful in deriving analytical and approximate solutions of linear and
nonlinear differential equations. This method is preferable over numerical methods as it
is free from rounding off errors and neither requires large computer power/memory.

He [13,14,22] has applied this method for solving analytical solutions of autonomous
ordinary differential equation, non-linear partial differential equations with variable
coefficients and integro - differential equations. The variational iteration method was
successfully applied to Burger’s and coupled Burger’s equations [1], to Schruodinger-
KdV, generalized KdV and shallow water equations [2], to linear Helmholtz partial
differential equation [9], to seventh order Sawada - Kotera equation [10], to Van der
Pol-Duffing Oscillators [21], Linear and nonlinear wave equations, KdV, K(2,2),
Burgers, and cubic Boussinesq equations have been solved by Wazwaz [23,24] by using
the variational iteration method.

In the present paper we employ VIM method for solving Duffing VVan der Pol equation.
Further, we compare the result with the given solutions by using Adomian
Decomposition Method [3,4, 20] and we prove the convergence of the method.

2. Adomian Decomposition Method for Solving Duffing — Van der Pol Equation

To solve eqg. (1), ADM is employed. We rewrite it in the following form

Au(t) =0 ..(3)
in a real Hilbert space H, where A=H — H s either a linear or a nonlinear operator.

The principle of the ADM is based on the decomposition of the non-linear operator A in
the following form: A=L+ R+ N with

Lu(t) =u”

Ru(t)=u— '

Nu(t) = mu®u’ + pu®

Where, L+R is linear, N non-linear, L invertible with L as inverse defined by

Lu(t) = ﬁu(z)dzds

O C——_—) O ey

L™Ru(t) (u(z) — u'(z))dzds

L™ Nu(t) = | | [ru?(2)u'(z) + pu(z)]dzds

Ct—n O

154



An Application of He's Variational Iteration Method for ...

As usual in ADM the solutions of Eg. (3) can be considered to be as the sum of the
following infinite series

u(t) => u, (), (4
From Eqg. (1), we have:

u(t) = L'Lu(t) — L'Ru(t) — L"Nu(t) ...(5)
where,

L™ Lu(t) =u(0) +tu’(0)

sou(t) =u(0) +tu’(0) — L 'Ru(t) — L*Nu(t) ...(6)

From which we define the following scheme
Uy (t) =u(0)+tu’(0) =1,

Ups (1) =—L"Ru(t) - LA,

ts ts
= [[La,(2) —u,(2)]dzds - [ [ A (2)dzds  n=012... (7
00 00
Where A, are called Adomian Polynomials [3,4,5].

2.1 Algorithm (Computing Adomian Polynomials)

Input: The Equation
F=F(u,u’,u"

Set n=N,m=M , k=K ; the input of Adomian Polynomials is needed .
Output: Aj; the Adomian Polynomials
Step 1: set j=1
Step 2: while j<n do steps (3) and (4)
Step 3: F(4)=F(u;(1))
Step4: F=F(1)
Step 5: s =expansion of F(4) w.rt. A

ft=s(1)
Step 6: while j<k and while j<m

0
A == (11)©) = D(1t,)(©)

Step 7: output Aj (the Adomian Polynomials)
Step 8: end.

2.2 Computing Adomian Polynomials for Equation (1)

Computing Adomian Polynomial by Algorithm (2.1) yields to
Ao(uo) =N (uo) =p

A (Ug, ) =—/~t(1+ﬂ)t—gﬂ(1+ﬂ)t2

AUy, ) =% L+ B2+ +2 AL+ AT+
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A (Uy,up,u,,Uy) = —%y2(1+ B’ —%ﬂ(l-f' B)(61+2223 +16548°)t° —

1
= 4 47 8%t (8
240,3(1+ﬂ)((61+20 B +1476°)t ( )

Now, substituting (8) in (7) yields :
Up(t) =1

0, (1) =—%(1+ﬂ)t2
_1 3 ...(9)
1) = @+ AL+ 3

us(t) = —%ﬂ(l-i- p)°t —%(1+ L)L+ 248 + 27 p)t°

1
40320

u, (t) = gloﬂ(“ B)11+348 +238°)t7 + 1+ B)(L+ 2078 + 6395° + 4413°)t°

and soon ...

The five terms of the approximations to the solutions are considered as

u(t) =u, + U+ u, +u, +u,

for the convergence of the method, we refer the reader to [5] in which the problem of
convergence has been discussed briefly .

3. He's Variational Iteration Method for Solving Duffing — Van der Pol Equation

To explain the basic idea of He's variational iteration method (VIM), we consider a
general nonlinear oscillator with specified initial conditions (2) as follows (more general
form can be considered without the loss of generality)

F(u,u’,u”)=u"+ f(uu'+g(u,u’,u)u=0

and for the Eq.(1) we have

F(u,u’,u”):=u"—g(1—u?)u'+ 1+ fu*u=0 ...(10)
where, f andare continuous nonlinear operators with respect to their arguments, ¢
and u(t)is an unknown variable. We first consider Eq. (10) as

Lu®]+N[u(t)]=0 (1)
and for Eq.(1) we have:
L[u(®)]=u"+wu and N[u(t)]=—x@-u®)u’+ 1+ Lu®)u—wu ...(12)

= f(u)u'+g(u,u’,u"u—w?u
Where, L with the property Lf =0 when f =0 denotes the linear operator with respect

to u and N is a non-linear operator with respect to u.We then construct a correction
functional for Eq.(11) as [12]

u,,(t)=u,(t)+ j‘ﬂ’(t,s) (u”+wu, (s)+NI[U, (s)])ds ...(13)

where, U, (t) is the initial guess and the subscript n denotes the n-th iteration, 4, #0

denote the Lagrange multiplier, which can be identified efficiently via the variational
theory, and U, is considered as a restricted variation i.e. &0, =0
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Taking the variation with respect to the independent variable u, =0, we notice that
ou,(0) =0. Afterward, we make the correction functional stationary, and we obtain

A, (t) =0; therefore , we have

a'ln+1 (t) = a'ln (t) + 5.t[ ﬂ’(t,s) (U”(S) + W2l"In (S) +N [Un (S)])ds
= &, (t) + AU ()], — aj ), +j(—+w 2)8u, (s)ds

- (1_—)& ()|, +Adu; ()|, + j (gf +W2A)dU, (s)ds=0

As a result, we have the following stationary conditions:

ﬁ“(t,s) ot = 0

O

0s

=1

s=t

2
/1(t s)

os®

The Lagrange multiplier can be readily identified as
04

.. )

0S

+WA

09:0

oA,
=1 = % =cosw(s—t)|_,
S .

s=t

1.
L Aesy = Wsm(s—t)
Moreover, we have the following variational iteration formula:

Up, (8) = U, (1) +jﬂ~(t,s>F(Un (), 5 (8),uz(s))ds

—u(l-u ) +(1+,8u )u,]ds

Accordingly, the successive approximations un(t), n >0 of VIM will be readily

obtained by choosing all the above parameters as follows
Uy (t) =1

U, (t) = Uy 1) +jisin W(s —t)(1+ f)ds
—1——(1+/;’)[1 cos wt]
; n_ 2 % 2
u2(t)=u1(t)+.([wsmw(s—t)[? u(l—u?) ~ +(L+ pu?)u,]ds
=1—%(1+ﬂ)[l—coswt]—[—(1+ﬁ)coswt+
+y[1—(1—%(1+ﬁ)(l—cosm))z]%(1+,8)sinwt+

F Bl (4 AL cosWOR)(L— — (L+ )L coswt)][— — = coswt]]
W W W W
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and so on...
4. Numerical Results

The numerical approach for (9) and (20) is computed by using Matlab. We

consider the following four cases

Case l: u=2,p=2,w=0.75, and the initial conditions u(0) =u,(t) =1
Case 2: u=5,=2,w=0.75, and the initial conditions u(0) =u,(t) =1
Case 3: x4 =10, =2,w=0.75, and the initial conditions u(0) =u,(t) =1
Case 4: u =10, =0.5w=0.75, and the initial conditions u(0) =u,(t) =1
? T T T T T T T
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Fig. (1) Comparison of the Solution of Eq. (1) U at time t for case 1 using classical

Fig. (2) Comparison of the Solution of Eq. (1) u at time t for case 2 using

ADM, VIM and RK45.
g T

- ADM - RK45 - HVIM |,
!

classical ADM, VIM and RK45.
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Fig. (3) Comparison of the Solution of Eq. (1) U at time t for case 3 using classical
ADM, VIM and RK45.
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Fig. (4) Comparison of the Solution of Eq. (1) U at time t for case 4 using classical
ADM, VIM and RK45.

5. Convergence Analysis:

The He's variational iteration formula makes a recurrence sequence {u, (t)}.

Obviously, the limit of the sequence will be the solution of eq.(10) if the sequence is
convergent. In this section, we give a new proof of convergence of He's variational
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iteration method in details by introducing a new iterative formulation of this procedure.
Here C"[0, T] denotes the class of all real valued functions defined on [0,T], which have
continuous nth order derivatives.

Lemma(l)

If for any n,u, e C?[0,T], then the He's variational iteration formula Eq.(19) is
equivalent to the following iterative relation

L[u,., (€) —u, ()] = —[u" — p@—u*)u’ + L+ pu)u] ..(21)
Where L is as noted in (12).
Proof

2
SupposeU, and U, satisfy the variational iteration formula (19). Applying % to

both sides of (19) results in
2

:—;[un+1(t) -u,(®]= i%(%sin w(s—t)[u”— x(L—u?)u'+ @1+ pu?)ulds +
+g(£sinw(s -t) o U" — (@ —u?)u’+ L+ BuP)u] +
ot w

+%(%sin w(s—t))[u” = z(L—u®)u’+ 1+ Lu?)u] ...(22)
. y o 1. _
Now ,using the conditions (15)-(17) and E(WSIH(S — )]s =—1 we will get

d 2 " ’
gz LUna O = U, O]+ WUy (1) = U, (0] = —{u" - @ —u)u’+ L+ pu®)u]
From the definition (12) of L, we obtain

L[u,, () —u, ()]=—[u"— p(1—u®)u’'+ 1+ fu®)u] ...(23)
Conversely, suppose u, and u,, satisfy (21). In view of the definition L and

isin w(s—t) = 0. Multiplying eg. (21) by lsin w(s—t) and then integrating from both
w w

sides of the resulted term from 0 to t yields
t

L sin (s 7, (6) ~uz (s + [ (- sinw(s - O)[U,.,(8) -, ()]s =-
OW 0 w

t
- _[(%sin w(s—t))[u” — x(@—u®)u’+ L+ Bu?)u]ds ..(24)
0
Using integration by part, the expression (24) becomes

L ginw(s -1, w0 -0, O] - (L sinw(s - )], U () —u, O] +
W oS W

+'t[ [8—22 (isin w(s—1)) +w? isin w(s —t)][u,.,(s) —u, (s)lds
5 OS° W w

= -'f(%sin w(s —t))[u” — (@—u®)u’+ L+ Bu?)u]ds ...(25)

Which exactly results in (19) upon the conditions (15)-(17),i.e.
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u,.,t)=u,(t) +j‘(%sin w(s—t))[u” — z(@—u®)u’+ (L+ Bu?)u]ds ...(26)

and this ends the proof.

Theorem (1):

If the sequence u(t) =5Ln30un(t) converges, where U, (t) is produced by the variational
iteration formula of Eq. (19), then it must be the solution of the equation (10)

Proof:
If the sequence u , (t) converges, we can write

v(t) =limu, (t) ...(27)
and it holds

v(t) =limu,,(t) ...(28)
Using the expressions (27) and (28) and the definition of L in (12), we can easily gain
lim L[u,,(t) - u, (®)] = Llim[u,, (t) ~u,(®)] =0 .(29)
From (29) and according to the lemma (1), we obtain

L Iim[un+1(t) _un(t)] = _Ilm[ur:’ _/u(l_unz)urq + (1+ﬂ‘jn2)un] =0 (30)
Which gives us

lim[u” — z(l—u *)u’ + @+ pu,*)u ]=0 ...31)
From Eq.(31) and continuity of f and g operators, it holds

lim[u! — z2(L—u,*)u! + @+ Au,”)u,] = lim[u! + f (u,)u’, +g(u,,u’,uMu,] ...(32)

=(limu, )"+ f (limu )(limu,) + g(limu,_, (limu,)’, (limu_)") limu,

=V"+ f(V)V'+g(v,V,v)v

From the equations (31) and (32), we have

vV'i+ f(V)V'+g(v,v,v)v=0,t >0 ...(33)
On the other hand, using the specified initial conditions and the definition of the initial

guess, we have
v(0) =limu,(0) =1, since u,(0)=14,n>0 ...(34)

V/(0) = limu’ (0) =0, since u, (0)=0,n>0 ..(35)

Therefore according to the above three expressions (33),(34) and (35), v(t) must be the
solution of the Eq.(10).This ends the proof.

6. Conclusions

In this work, we have given a new proof of convergence of He's Variational
Iteration Method by presenting a new formulation of He's method. We have compared
this method with ADM and RK45, and we can conclude that the main property of this
method is in its flexibility and ability to solve Duffing —VVan Der Pol accurately and
conveniently without decomposing the non-linear terms, which are very complex. This
technique gives an accurate and easy computable solution by means of a truncated
series whose convergence is fast.
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