On fuzzy i-open sets and fuzzy $i\alpha$ -open sets lumination lumination in lumination in lumination in lumination lumination lumination in lumination luminat

Fadhil Hussein Abbas Haman/ University of telafer/ Basic Education College (Nineveh-Telafer)

Abstract

In this paper, we introduce a new class of fuzzy open sets in fuzzy topological spaces; fuzzy i-open set and fuzzy i α -open set and some of their properties are obtained.

KeywordsFuzzy i-open set, fuzzy iα-open sets, fuzzy i-continuity, fuzzy iα-continuity, fuzzy i-irresolute, fuzzy iα-irresolute, fuzzy i-contra-continuous, fuzzy iα-contra-continuous.

الملخص

في هذا البحث, قدمنا انواعا جديدة من المجاميع الضبابية المفتوحة في الفضاء التبولوجي الضبابي وهي المجموعات الضبابية المفتوحة من النوع-i. وبعض الخصائص التي تم الحصول عليها.

1. Introduction

The fundamental concept of a fuzzy set was introduced in Zadeh [1]. Subsequently, Chang [2] defined the notion of fuzzy topology. An alternative definition of fuzzy topology was given by Lowen [3]. Bin Shahana [10], Singal [9], Azad [6], Singal [9], Ma Bao [7], Parimala ana Devi [12] and Erdal [8] introduced fuzzy semi-open set, fuzzy α -open set, fuzzy semi-continuous, fuzzy α -continuous, fuzzy-irresolute function, fuzzy α -irresolute function, fuzzy semi-contra-continuous, fuzzy α -contra-continuous. In this paper, we define fuzzy i-open set and fuzzy i α -open set via fuzzy topology. Moreover, we define fuzzy i-continuous, fuzzy i α -continuous, fuzzy i α -contra-continuous, fuzzy i α -contra-continuous, fuzzy i α -contra-continuous.

2. Preliminaries

Definition.2.1.[1] Let X be a non-empty set a fuzzy set A in X is characterized by its membership function $\mu_A: X \to [0, 1]$ and $\mu_A(x)$ is interpreted as the degree of membership of element x in fuzzy set A, for each $x \in X$. It is clear that A is completely determined by the set of topples $A = \{(x, \mu_A(x)): x \in X\}.$

Definition.2.2.[1] Let $A = \{ (x, \mu_A(x)) : x \in X \}$ and $B = \{ (x, \mu_B(x)) : x \in X \}$ be two fuzzy sets in X. Then their union $A \vee B$, intersection $A \wedge B$ and complement A^c are also fuzzy sets with the membership functions defined as follows:

- i) $\mu_{(A \vee B)}(x) = \max \{ \mu_A(x), \mu_B(x) \}, \forall x \in X,$
- ii) $\mu_{(A \wedge B)}(x) = \min \{ \mu_A(x), \mu_B(x) \}, \forall x \in X,$
- **iii**) $\mu_A^c(x) = 1 \mu_A(x), \ \forall \ x \in X.$

Definition.2.3.[1] The symbol I will denote the unit interval [0,1]. Let X be a non-empty set. Now, for the sake of simplicity of notation we will not differentiate between A and μ_A . That is a fuzzy set A in X is a function with domain X and values in I, i.e. an element of I^X . The basic fuzzy sets are the empty set, the whole set the class of all fuzzy sets of X which will be denoted by 0_X , 1_X and I^X , respectively.

Definition.2.4.[2] A family $\tau \subseteq I^X$ of fuzzy sets is called a fuzzy topology for X if it satisfies the following three axioms:

- i) 0_X , $1_X \in \tau$,
- ii) $\forall A, B \in \tau \Rightarrow A \land B \in \tau$,
- **iii**) $\forall (Aj)_{j \in I} \Rightarrow \vee_j \in_J A_j \in \tau$.

The pair (X, τ) is called a fuzzy topological space or fts, for short. The elements of τ are called fuzzy open sets. The fuzzy closure, the fuzzy interior and the fuzzy complement of any set in A in (X, τ) are denoted by $1_X - A$, Int(A) and Cl(A).

Definition.2.5.[11] A fuzzy set which is a fuzzy point with support $x \in X$ and the value $\lambda \in (0, 1]$ will be denoted by x_{λ} . The value of a fuzzy set A for some $x \in X$ will be denoted by A(x). Also, for a fuzzy point x_{λ} and a fuzzy set A we shall write $x_{\lambda} \in A$ to mean that $\lambda \leq A(x)$.

Definition.2.6.[4] Let (X, τ) fuzzy topological space and A, B two fuzzy sets then $A \le B$ if and only if $A(x) \le B(x)$ for all $x \in X$, and A is said to be quasi-coincident with a fuzzy set B, denoted by AqB, if there exists $x \in X$ such that A(x) + B(x) > 1.

Definition.2.7.[4] A fuzzy set V in (X, τ) is called a q-neighborhood (q-nbd, for short) of a fuzzy point x_{λ} if and only if there exists a fuzzy open set U such that x_{λ} qU \leq V. We will denote the set of all q-nbd of x_{λ} in (X, τ) by $Nq(x_{\lambda})$.

Definition.2.8.[10] A fuzzy subset A of a fuzzy topological space (X, τ) is said to be

- i) fuzzy semi-open set, if $A \le Cl(Int(A))$ [10],
- ii) fuzzy α -open set, if $A \leq Int(Cl(Int(A)))$ [9].

The family of all fuzzy semi-open (resp. fuzzy α -open) sets of an fuzzy topological space is denoted by FSO(X)(resp. F α O(X)). The complement of fuzzy semi-open (resp. fuzzy α -open) sets of a fuzzy topological space (X, τ) is called fuzzy semi-closed (resp. fuzzy α -closed) sets.

Definition.2.9. Let X and Y be a fuzzy topological spaces, a function f: $X \rightarrow Y$ is said to be

- i) fuzzy semi-continuous if the inverse image of every fuzzy open subset of Y is a fuzzy semi-open subset in X [6],
- ii) fuzzy α -continuous if the inverse image of every fuzzy open subset of Y is a fuzzy α -open subset in X [9],
- iii) fuzzy-irresolute if the inverse image of every fuzzy semi-open subset of Y is a fuzzy semi-open subset in X [7],
- iv) fuzzy α -irresolute if the inverse image of every fuzzy α -open subset of Y is a fuzzy α -open subset

in X [9],

- v) fuzzy-contra-continuous if the inverse image of every fuzzy open subset of Y is a fuzzy closed subset in X [8],
- vi) fuzzy semi-contra-continuous if the inverse image of every fuzzy open subset of Y is a fuzzy semi-closed subset in X [8],
- vii) fuzzy α -contra-continuous if the inverse image of every fuzzy open subset of Y is a fuzzy α -closed subset in X [12].

3. Fuzzy i-open sets and fuzzy iα-open sets

Definition.3.1. A fuzzy subset A of a fuzzy topological space (X, τ) is said to be fuzzy i-open set if there exists a non-empty fuzzy open subset U of X such that $A \le Cl(A \wedge U)$. The complement of the fuzzy i-open set is called fuzzy i-closed. We denote the family of all fuzzy i-open sets of a fuzzy topological space (X, τ) by FiO(X).

Example.3.1. Let $X=\{a, b\}$ and A, B be a fuzzy sets of X defined as follows:

A(a)=0.1 A(b)=0.9 B(a)=0.5 B(b)=0.8

We put $\tau = \{0_X, 1_X, A\}$. Then B is a fuzzy i-open set.

Theorem.3.1. In a fuzzy topological space (X, τ) the following statements hold:

- i) Every fuzzy open set is fuzzy i-open set,
- ii) Every fuzzy semi-open set is fuzzy i-open set,
- iii) Every fuzzy α -open set is fuzzy i-open set.

Proof. i) It is easy and therefore omitted.

- ii) Let A be a fuzzy semi-open set, then we have $A \le Cl(Int(A)) = Cl(Int(A) \land A)$, since Int(A) a fuzzy open set and U any fuzzy open set, we choose Int(A)=U, then $A \le Cl(A \land U)$ (U \in \tau). Therefore, A is fuzzy i-open set.
- iii) Let A be a fuzzy α -open set, then we have $A \leq Int(Cl(Int(A))) \leq Cl(Int(A)) \leq Cl(A \wedge U)$, wher U=Int(A). Therefore, A is fuzzy i-open set.

Remark.3.1. The converse of Theorem 3.1. is not true as show by the following examples.

Example.3.2. Let $X = \{a, b, c\}$ and A, B be a fuzzy sets of X defined as follows:

A(a)=0.2 A(b)=0.7 A(c)=0.4 B(a)=0.7 B(b)=0.9 B(c)=0.1

We put $\tau = \{0_X, 1_X, A\}$. Then B is a fuzzy i-open set, but B is not fuzzy open set.

Example.3.3. Let $X = \{a, b, c\}$ and A, B be a fuzzy sets of X defined as follows:

A(a)=0.2 A(b)=0.7 A(c)=0.4 B(a)=0.7 B(b)=0.9 B(c)=0.5

We put $\tau = \{0_X, 1_X, A\}$. Then B is a fuzzy i-open set, but B is not fuzzy semi-open set and fuzzy α -open set.

Remark.3.2. The intersection of a fuzzy i-open set is not necessary to be a fuzzy i-open set.

Example.3.4. Let $X = \{a, b, c\}$ and A, B, C be a fuzzy sets of X defined as follows:

A(a)=0.6 A(b)=0.3 A(c)=0.4 B(a)=0.5 B(b)=0.9 B(c)=0.6 C(a)=0.5 C(b)=0.1 C(c)=0.7

We put $\tau = \{0_X, 1_X, A, C\}$. Then A and B is a fuzzy i-open set, but AAB is not fuzzy i-open set. Because;

if take C $\in \tau$ then, A \leq Cl(A \wedge C), B \leq Cl(B \wedge C), but A \wedge B \geq Cl((A \wedge B) \wedge C).

Remark.3.3. The union of a fuzzy i-open set is not necessary to be a fuzzy i-open set.

Example.3.5. Let $X = \{a, b, c\}$ and A, B, C be a fuzzy sets of X defined as follows:

A(a)=0.6 A(b)=0.3 A(c)=0.7 B(a)=0.5 B(b)=0.9 B(c)=0.6 C(a)=0.5 C(b)=0.9 C(c)=0.7

We put $\tau = \{0_X, 1_X, A, C, A \land C, A \lor C\}$. Then A and B is a fuzzy i-open set, but AV B is not fuzzy i-open set. Because; if take $C \in \tau$ then, $A \le Cl(A \land C)$, $B \le Cl(B \land C)$, but AV $B \ge Cl((A \lor B) \land C)$.

Definition.3.2. A fuzzy subset A of a fuzzy topological space (X, τ) is said to be fuzzy i α -open set if there exists a non-empty subset U of X, U is a fuzzy α -open set, such that $A \leq Cl(A \wedge U)$. The complement of the fuzzy i α -open set is called fuzzy i α -closed. We denote the family of all fuzzy i α -open sets of a fuzzy topological space (X, τ) by Fi α O(X).

Example.3.6. in the Example.3.2. B is fuzzy iα-open set.

Theorem.3.2. Every fuzzy i-open set in any fuzzy topological space (X, τ) is a fuzzy i α -open set.

Proof. Let (X, τ) be any fuzzy topological space and $A \leq X$ be any fuzzy i-open set. Therefore, $A \leq Cl(A_\Lambda U)$, where $\exists \ U \in \tau$. Since, every fuzzy open is a fuzzy α -open, then $\exists \ U$, fuzzy α -open set. We obtain $A \leq Cl(A_\Lambda U)$, where $\exists \ U$, fuzzy α -open set. Thus, A is a fuzzy i α -open set.

Remark.3.4. The following example shows that fuzzy iα-open set need not be fuzzy i-open set.

Example.3.7. Let $X = \{a, b\}$ and A, B, C be a fuzzy sets of X defined as follows:

A(a)=0.2 A(b)=0.8 B(a)=0.5 B(b)=0.6

We put $\tau = \{0_X, 1_X\}$. Then A is a fuzzy ia-open set, but not fuzzy i-open set.

Remark.3.5. The inter section of fuzzy $i\alpha$ -open set is not necessary to be a fuzzy $i\alpha$ -open set as shown in the example.3.4.

Remark.3.6. The union of fuzzy $i\alpha$ -open set is not necessary to be a fuzzy $i\alpha$ -open set as shown in the example.3.5.

4. On decomposition of fuzzy i-continuity and fuzzy iα-continuity

Definition.4.1. Let X and Y be fuzzy topological spaces, a function $f: X \rightarrow Y$ is said to be fuzzy i-continuous (resp. fuzzy i α -continuous) if the inverse image of every fuzzy open subset of Y is a fuzzy i-open (resp. fuzzy i α -open) subset in X.

Theorem.4.1. Let X and Y be fuzzy topological spaces and function f: $X \rightarrow Y$ the following statement hold:

- i) Every fuzzy -continuous is a fuzzy i-continuous,
- ii) Every fuzzy semi-continuous is a fuzzy i-continuous,
- iii) Every fuzzy α -continuous is a fuzzy i-continuous.

Proof. This follows from Theorem.3.1. and Definition.4.1.

Theorem.4.2. Every fuzzy i-continuous is a fuzzy iα-continuous.

Proof. The proof is obvious from Theorem.3.2. and Definition.4.1.

Remark.4.1. The converses of Theorem.4.1. and Theorem.4.1. need not true as shown in the follow in examples.

Example.4.1. Let $X=\{a, b, c\}$, $Y=\{0.1, 0.3, 0.7\}$ and A, B be fuzzy subset defined as follows:

Let $\tau = \{0_X, 1_X, A\}, \phi = \{0_Y, 1_Y, B\}$. Then the function f: $X \rightarrow Y$ defined by

$$f(a) = 0.1$$
, $f(b) = 0.7$, $f(c) = 0.3$

is a fuzzy i-continuous but not fuzzy -continuous, fuzzy semi-continuous and fuzzy α -continuous.

Example.4.2. Let $X=\{a, b, c\}$, $Y=\{0.3, 0.1, 0.9\}$ and A, B be fuzzy subset defined as follows:

Let $\tau = \{0_X, 1_X\}, \phi = \{0_Y, 1_Y, B\}$. Then the function $f: X \rightarrow Y$ defined by

$$f(a) = 0.7$$
, $f(b) = 0.5$, $f(c) = 0.3$

is a fuzzy iα-continuous but not fuzzy i-continuous.

Definition.4.2. Let X and Y be fuzzy topological spaces, a function $f: X \rightarrow Y$ is said to be fuzzy i-irresolute (resp. fuzzy $i\alpha$ - irresolute) if the inverse image of every fuzzy i-open(resp. fuzzy $i\alpha$ -open) subset of Y is a fuzzy i-open (resp. fuzzy $i\alpha$ -open) subset in X.

Theorem.4.3. Let X and Y be fuzzy topological spaces and function $f: X \rightarrow Y$ the following statement hold:

- i) Every fuzzy -irresolute is a fuzzy i-irresolute,
- ii) Every fuzzy α -irresolute is a fuzzy i-irresolute.

Proof. The proof is obvious from, Theorem.3.1. and Definition.4.2.

Theorem.4.4. Every fuzzy i-irresolute is a fuzzy $i\alpha$ -irresolute.

Proof. The following from Theorem.3.2. and Definition.4.2.

Remark.4.2. The converses of Theorem.4.3. and Theorem.4.4. need not true as shown in the following in examples.

Example.4.3. In Example.4.1. f is a fuzzy i-irresolute but not fuzzy-irresolute.

Example.4.4. In Example.4.2. f is a fuzzy i-irresolute but not fuzzy α -irresolute.

Theorem.4.5. Every fuzzy i-irresolute is a fuzzy i-continuous.

Proof. The following from Theorem.3.1., Definition.4.1. and Definition.4.2.

Theorem.4.6. Every fuzzy iα-irresolute is a fuzzy iα-continuous.

Proof. The following from Theorem.3.2., Definition.4.1. and Definition.4.2.

Remark.4.3. The converses of Theorem.4.5. and Theorem.4.6. need not true as shown in the following in examples.

Example.4.5. Let $X=\{a, b, c\}$, $Y=\{0.1, 0.5, 0.7\}$ and A, B be fuzzy subset defined as follows:

Let $\tau = \{0_X, 1_X, A\}, \phi = \{0_Y, 1_Y\}$. Then the function $f \colon X \to Y$ defined by

$$f(a) = 0.1$$
, $f(b) = 0.5$, $f(c) = 0.7$

is a fuzzy i-continuous and fuzzy i α -continuous but not fuzzy i- irresolute and fuzzy i α - irresolute.

Definition.4.3. Let X and Y be fuzzy topological spaces, a function $f: X \rightarrow Y$ is said to be fuzzy i-contra-continuous (resp. fuzzy i α -contra-continuous) if the inverse image of every fuzzy open subset of Y is a fuzzy i-closed (resp. fuzzy i α -closed) in X.

Theorem.4.7. Let X and Y be fuzzy topological spaces and function f: $X \rightarrow Y$ the following statement hold:

- i) Every fuzzy -contra-continuous is a fuzzy i-contra-continuous,
- ii) Every fuzzy semi-contra-continuous is a fuzzy i-contra-continuous,
- iii) Every fuzzy α -contra-continuous is a fuzzy i-contra-continuous.

proof. i) Let $f: X \to Y$ be a fuzzy-contra-continuous and V any fuzzy open set in Y. Since f is fuzzy-contra-continuous, then $f^{-1}(V)$ is fuzzy closed sets in X. Since, every fuzzy closed set is a fuzzy i-closed set, then $f^{-1}(V)$ is a fuzzy i-closed set in X. Therefore, f is a fuzzy i-contra-continuous.

- ii) Since every fuzzy semi-open set is a fuzzy i-open set.
- iii) Since every fuzzy α -open set is a fuzzy i-open set.

Theorem.4.8. Every fuzzy i-contra-continuous is a fuzzy iα-contra-continuous.

proof. Let $f: X \to Y$ be a fuzzy i-contra-continuous and V and set in Y. Since, f is a fuzzy i-contra-continuous, then $f^1(V)$ is a fuzzy i-closed set in X. Since, every fuzzy i-closed set is a fuzzy ia-closed, then $f^1(V)$ is a fuzzy ia-closed set in X. Therefore, f is a fuzzy ia-contra-continuous.

Remark.4.4. The converses of Theorem.4.7. and Theorem.4.8. need not true as shown in the following in examples.

Example.4.6. Let $X=\{a, b, c\}$, $Y=\{0.1, 0.5, 0.7\}$ and A, B be fuzzy subset defined as follows:

Let $\,\tau = \! \{0_X,\, 1_X\,,\, A\},\, \varphi \! = \! \{0_Y, 1_Y,\, B\}.$ Then the function $f\colon X \! \to \! Y$ defined by

$$f(a) = 0.1$$
, $f(b) = 0.5$, $f(c) = 0.7$

is a fuzzy i-contra-continuous, but not fuzzy contra-continuous, fuzzy semi-contra-continuous and fuzzy α -contra-continuous.

Example.4.7. Let $X=\{a,b\}$, $Y=\{0.3,0.7\}$ and A, B be fuzzy subset defined as follows:

Let $\tau = \{0_X, 1_X, A\}$, $\phi = \{0_Y, 1_Y, B\}$. Then the function $f: X \rightarrow Y$ defined by

$$f(a) = 0.7, f(b) = 0.3$$

is a fuzzy iα-contra-continuous, but not fuzzy i-contra-continuous.

References

- [1] Zadeh L. A., Fuzzy sets, In form control. 8(1965), 53-338.
- [2] Chang C. L., Fuzzy topological spaces, J. Math. Anal. Appl. 24(1968), 90-182.
- [3] Lomen R., Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl. 56(1976), 621-633.
- [4] Chankraborty M. K., Ahsanullah T. M. G., Fuzzy topology on fuzzy sets and tolerance topology, fuzzy sets and systems. 45(1991), 97-189.
- [5] Pu P. M., Lin, Fuzzy topology II product and quotient spacea, J. Math. Anal. Appl.77(1980), 20-37.
- [6] Azad K. K., On fuzzy semi-continuous, fuzzy almost-continuous and fuzzy weakly-continuous, J. Math. Anal. Apple. 82(1981), 14-32.
- [7] Malakar S., On fuzzy semi-irresolute and strongly irresolute function, Fuzzy sets and systems. 45(1992), 239-244.
- [8] Erdal E., Etienne E. On fuzzy-contra-continuous, Advanced in fuzzy Math. 1(2006), 35-44.
- [9] Singal M. K., Niti R. Fuzzy alpha-sets and alpha-continuous maps, J. Fuzzy sets and systems. 48(1992), 383-390.
- [10] Din A. S., On fuzzy strong semi-continuity and pre-continuity, Fuzzy sets and systems. 44(1991), 3544.
- [11] Wong C. K., Fuzzy points and local properties of fuzzy topology, Fuzzy sets and systems. 2(1987), 409-423.
- [12] Parimala M., Devi R., On fuzzy contra α -irresolute maps, Fuzzy sets and systems. 5908(2009), 241-246.