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ABSTRACT
This paper studies the bifurcations in dynamics of a family of semi-triangular
maps S ={S,(X) =a xsin(x):a € IR}. We will prove that this family has a series of

Saddle-node bifurcations and a period doubling bifurcation. Also, we show that for
some value of the parameter the functions S_will be chaotic.
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1. Introduction

The term "bifurcation” refers to significant changes in the set of fixed or periodic
points or other sets of dynamics interest. In fact, in dynamical systems, the object of
bifurcation theorem is to study the changes that maps undergo as parameters changes.
There are several types of bifurcations like saddle — node bifurcation ,period doubling
bifurcation pitch fork bifurcation, and others.

Our goal in this paper ,is to study how and when the periodic points of the
family of maps S ={S,(x) = @ xsin(X) : & € IR}change, i.e. the bifurcation that this
family undergoes.

We will prove that our family has a series of saddle node bifurcations which is
route to chaos. Also, we will show that this family has a period doubling bifurcation
when the parameter meets the value a ~1.327295.

Finally, we show that this family has a chaotic behavior on IR when the
parameter is a > 2.

2. Definitions

Let f be any function .Then,
1. A point x is called fixed point of the function f if f(x)=x,[1].

2. A pointx is called periodic point if dn e IN such that f"(x) = x .And we say that x
of period n.Note that the fixed point is a periodic point of period 1,[1] .
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3. A point x is called critical point if f (x)=0 .The critical point X is called
degenerate if f''(x)=0.And X is called non-degenerate if f''(x)=0,[1].
4. A periodic point x is called hyperbolic if |f'(x)|1,and the number |f'(x)| is the
multiplier.
The periodic point x is called the attracting fixed point (sink) If |f'(x)| <1. And X
is called repelling (source) if |f'(x)|>1,[1] .
5 . Saddle-node bifurcation
Let {fa ‘e IR} be a family of mappings we say that f has saddle-node
bifurcation if for some « € IR, say, a = «,,the following satisfied :
1. For a < a, ,then f_ has no fixed point.
2.For a=a, , then f_has one fixed point.

3. For a>a, , then f_, has two fixed points; one of them attracting and the other is
repelling,[1] .

6. Period doubling bifurcation
We say that the family { f_:a e IR} has a period doubling bifurcation if this
bifurcation involves a change from an attracting (or repelling ) to repelling (or
attracting) periodic points of period two when ¢ passes through «,,[1] .

7. Let J be an interval ,and suppose that f:J —>J .Then, f has sensitive

dependence on initial conditions at x, or just sensitive dependence at x if there is
an & >0 such that for each 6 >0 , thereisa y in J and a positive integer n such

that

Fr(x)-f"(x)>¢
If f has sensitive dependence on initial condition at each x in J ,we say that f
has sensitive dependence on initial conditions on J, or that f has sensitive

dependence on J ,[2] .
8. Let J be a bounded interval, and f :J — J continuously differentiable on J .Fix

x in J,and let A(x) be defined by

Ax) = 1 In‘(f [”])'(x)(
n
provided that the limit exists .In this case, /I(X) is the Lyapunov exponent of f at
x. If A(x) is independent of x wherever A(x) is defined, then the common value
of A(x) is denoted by A, and is the Lyapunov exponent of f ,[2] .
9. A function f is chaotic if it satisfies, at least, one of the following :

I. f has a positive Lyapunov exponent at each point in its domain that is not

eventually periodic.
Or
ii. f has a sensitive dependence on initial conditions on its domain , [2] .

x—y|<S and

3. Properties and the fixed points of the family S, :

Let S={S,(X)=axsin(x):«a e IR}.First, we study the properties of
S,,aclR.
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3.1: Critical Points of S :

Taking the derivative of S, with respect to x ,we get
S, (x)= af(sin(x)+ xcos(x))
S, (x)=0, then sin(x)+ xcos(x)=0
This implies that sin(x)+ xcos(x) = 0.Therefore, the critical points of S, are
X, =0, X, =2.208 which is a maximum for S, and x, =4.913which is a minimum for
S, and all of them lie in the interval [0, 2] .

The following proposition gives the fixed points of the function in the family
S={S,(X) =axsin(x):a € IR}.

3.2: Proposition
Let S, (x)=axsin(x),a >0,x>0,then the fixed points for this family of
functions are x=0 ,x =sin*(1/a),and x =n—sin*(l/a) , Va >0,x €[0,27]

Proof
Let x, be a fixed point for this family, thus

axpsin(xp): X, and OtXpSin(Xp)—Xp =0, then

xp(asin(xp)—l)=0.Therefore, either x, =0 , Va >0 or asin(xp)—lzo and this
implies that x, =sin"(1/ &) is fixed point Vo >1

Since sin(xp)zsin (n—x,)=1/a thenz —x, =sin™(l/ )

Therefore, x, =n—sin*(1/«) isafixed point Ve >1

Hence, the fixed points ofS,in [0,27] arex, =0 Va>0 , x, =sin*(l/a) ,
X, =n—sin*(l/a) Va>1 .

3.3: Remark

The fixed point x = 0is attracting fixed point Va > 0.
Proof
Taking the derivative of the function'S, (x)= axsin(x)with respect to x.Then,

S, (x) = a(sin(x)+ xcos(x)).
Put x=0
S,,(0) =]a*(sin(0)+ 0*cos(0))
=|a*(0+0)
=[0/ <1.
Thus, the fixed point x = Qis attracting fixed point Vo >0
The following theorem gives the number of fixed points and their natures of S .

3.4: Theorem
Let S, (x)=a xsin(x), Then :
1. If @ <1,then S_(x) has only the attracting fixed point x=0 ,Va > 0.
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2. If a =1, then S_(x) has infinite number of fixed points and all of them are not
hyperbolic .(one fixed point in each interval (2n, (2n+1)n) ,n=0123, ...)

3. If a >1,then the number of fixed points in 2. are doubled

4. The general forms of the fixed points for S, are

X, =sin 1/ a)+2nm n=0123
X, =@2n+Y)n-sin*(@/a) n=0123..........
on the interval [2n7z,2(n+1)z] for n=0123,........

5. The fixed points x,, are attracting in the interval (—2/ a*cos(sin‘l(ll a)),o)and
repelling out of this interval .The fixed points x,, are attracting in the interval

0,2/ *cos(sin*(1/ )))and repelling out of this interval .

Proof

1. From proposition (3.1) , (S,, )has the fixed points
x=0, x=sin"(l/a) and x =n-sin(L/a). Now x =0 is attracting fixed point
(remark 3.2)
Moreover ,a <1 implies 1/a>1.This means that x=sin"(l/a) and
X =n—sin‘1(1/a) are not defined, thus x =0is the unique fixed point for a <1,
(see Figure 1), below:

15

Figure 1: The graph of S_(x)=axsin(x) ,a <1
2. Let =1
Then, x =sin*(1) =n—sin (1)
Thus, x=n/2+2nt ,n=0123,.....
Hence, the function has infinite number of fixed points.

To study the types of these points :

Taking the derivative of S_(x), we get S, (x)=a(sin(x)+ xcos(x)).

Now

1S, ((rI2)+ 2nm)[=]sin ((r/2)+2n7)+((x/2)+ 2n ) *sin ((x/2)+ 2n )|
=[1+((/ 2) + 2n ) * 0|
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=[1+0|

=[]

=1
Thus, the fixed points x =(n/2)+2nt ,n=0123,,........
are not hyperbolic fixed points , (see Figure 2).

\\/,

94

Figure 2:The graph of S_(x)= axsin(x) ,a =1
3. Let & >1,thus(l/ &) <1 Therefore x=sin*(l/a)< 7/2.
Assume that x =n/2-¢ is a fixed point ,then
S, (z12)-¢)=a(( (z/2)-& )sin((z/2)-¢))=((z12)-¢)
Thus, asin((z/2)-&)=1.
Since sin(n/2-6)=sin((n/2+0) for each O<xz/2then asin((z/2)+&)=1,then
a((z12)+s&)sin(z/2)+&)=( (z/2)+s ).
Thus, S, ((7/2)+&)=(z/2)+s,
Then (z/2)+ ¢ is fixed point ,
Therefore, (7/2)+ ¢ is fixed point iff (7/2)—¢ is fixed point , hence the number of
fixed points is doubled (see Figure3).

\
\/
b

Figure(3):The graph of S_(x)=axsin(x) ,a >1
4. Let x be a fixed point for S, .Then
x=sin"(l/a) , and
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sin(x)=1/a , then
sin(x+2nn ) =1/« ,n=0123,...
Thus, x+2nn=sin"*(1/c). Hence
X, =sin*(l/a)+2nn (1)
But, x =sin"(1/ ) is also implies that
sin( t—x )=1/a ( since sin(n-0)=sin(®) )
Then, sin( 2nm+n—x )=1/a. Hence,
sin((2n+1)z - x)=1/«, thus
(2n +1)n—x =sin*(1/ &), therefore
X,, =(2n +1)m—sin*(1/ c) ..(2)
Hence,(1)and (2) give the general form of the fixed point of S, .
5. Now to study the nature of the fixed points of S,
Let x be attracting fixed points .This implies that
S;(x)' <1,
~1<a sin(x)+ax cos(x) <1,
~1<1+axcos(x)<1,
~2<a xcos(x)<0,
—2/a < xcos(x)<0.

Now we have two cases :
Case 1: If the fixed point of the form x,, is

x=sin"(/a)+2nn
Hence, — 2/ acos(sin *(1/a))< x <0 .
Then, all the fixed points that have the form x,, will be attracting on the interval
(—2/acos(sin’l(1/a)),0) , and repelling out of this interval .
Case 2: If xis of the form x,,.Then,
0< X <—2/(-acos(sin {1/ a)).
Thus, all fixed points which have the form x,, will be attracting on the interval
(0,2/acos(sin’1(1/a))) and repelling out of this interval.
From (Casel) and (Case2), we conclude that if the fixed point of the form x,, is
attracting ,then the fixed point of the form x,, is surely repelling and vise versa .

4. Bifurcation Analysis and Chaotic Behavior for the Semi-Triangular Family S

4.1:Theorem
If S={S,(x)=axsin(x), «>0, x>0 } then, this family has a saddle node
bifurcation at o =1.

Proof
According to the theorem 3.3 S_ has no fixed point when o <1,and S, has one

fixed point when « =1 .
By the same theorem for « >1 ,two fixed points were born at each interval ,one

is attracting and the other is repelling ;this is exactly a saddle-node bifurcation .

68



A Series of Saddle - Node Bifurcation and Chaotic Behavior of a Family of ...

4.2: Theorem

period doubling bifurcation at a ~1.327295.

Proof

point of period 2 in the interval [0,27] (see Figure 4).

If a~1.327295 ,Then the family has not hyperbolic fixed point and has one periodic

point of period 2 in the interval [0,27] (see Figure 5).

If «>1.327295,then the family has a repelling fixed point and has two attracting
periodic points of period 2 in the interval [0,2x] (see Figure 6).Thus, a ~1.327295 is a

period doubling bifurcation value for the functionsin S .

A: S, has not hyperbolic fixed point in the
interval (0,277), & ~1.327295

1

S, has only one attracting fixed point in
the interval (0,27), a <1.327295

z 22 24 25 Iz

1

12 14 18 1z

2 2 24 28 Iz

Figure 4

Figure 5
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The following theorem studies the period doubling bifurcation of the family S :

Let S, (x)=axsin(x),a >0,x>0 be a family of maps ,then this family has

Our earlier experiments showed that the value o ~1.327295 is a bifurcation
value. If a <1.327295, then the family has attracting fixed point and has one periodic

1

12 14 18 1=

2 22 24 8 IE

B: S, has a periodic point of period 2 in the

interval (0,277), <1.327295

o

1

12 14 16 1=

z 22 24 I8 Iz

B: S, has one periodic point of period 2 in

the interval (0,277 ), & ~1.327295
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A:S_ has repelling fixed point in the B: S, has two attracting periodic point of

interval (0,277), o >1.327295 period 2 in the

interval (O,27z), a >1.327295
Figure 6
4.3:Theorem

Functions of the family S are sensitive dependence on initial condition in the
interval {x:x > 0} forall a >1.

Proof

First: In the interval (0%}

Let 6 >0, the theorem can be divided into two parts:

1. Let xe [O,ZJ
2

Choose y = x+ # such that £ is small positive number and £ <4, f<x
Now [x—y|=|8|<&S

Notice that sin(x + 8) > sin x

Then (x+ g)sin(x+ ) > (x+ B)sin x

And by multiplying both sides by « the following is obtained

a(x+ p)sin(x+ B)>axsinx+a B sinx

Therefore

a(x+ B)sin(x+ B)—axsinx>a f sinx
>a fsinp
>0

By taking the absolute value of both sides the following is obtained

lee(x+ B)sin(x+ B)—axsinX >a Bsin B

Then |S,(y)—S,(X)|>aBsinp

Now choose ¢ =« gsin #, n=1, and that proves S is sensitive dependence on initial

condition in the interval (O%) )

2. Let x:z
2

Choose y=x— £ suchthat g issmall positive numberand <9, f<y
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Now x—y|= g <5
Notice that sin x > sin (x — )

Then (x— B)sinx > (x— B)sin(x - 3)
Multiplying both sides by « the following is obtained

a(x— B)sin x> a(x— B)sin(x - B)
axsinx—a B sinx>a(x-B)sin(x-A)
Therefore
axsinx—a(x—B)sin(x—B)>a f sinx

>apsing
>0
By taking the absolute value of both sides the following is obtained

lax sinx—a(x— B)sin(x—B) > a B sin B
Then [S,(y)—S,(X)|>aBsing
Now choose ¢ =« gsin #, n=1, and that proves S is sensitive dependence on initial

condition in the interval x = z

From (1) and (2) it can be obtained the function S, is sensitive dependence on initial

condition in the interval (O%}

Second: In the interval ‘:72’377[:|

Let 6 >0, the theorem can be divided into two parts:

1. Let xe [71'3?”)

Choose y = x+ f such that g is small positive numberand <6, f<x—-7x
Now |x—y|=|8|<&

Notice that sin x > sin(x + /)

Then (x+ B)sinx > (x+ g)sin(x + 3)

Multiplying both sides by « the following is obtained

axsinx+a g sinx>a(x+ g)sin(x+ )

Therefore

axsinx—a(x+ B)sin(x+ f)>—a B sinx
>afsing
>0

By taking the absolute value of both sides the following is obtained
lax sinx—a(x+ B)sin(x+ B) > a B sin B

Then |S,(y)-S,(X)|>aBsing
Now choose & =« Ssin #, n=1, and that proves S, is sensitive dependence on initial

condition in the interval [7[3772-)
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2. Let x:3—7z
2

Choose y=x— £ suchthat g is small positive numberand <6, f<X—7x
Now |x—y|=|8|<&S

Notice that sin(x— 3)> sin x

Then (x— B)sin(x— 8)> (x— g)sinx

Multiplying both sides by « the following is obtained
a(x—pg)sin(x—B)>axsinx—a B sinx

Therefore

a(x—B)sin(x—B)—axsinx>—a B sin
>apsing
>0

By taking the absolute value of both sides the following is obtained

le(x— B)sin(x— B)—ax sinx| > a B sin B

Then |S,(y)—S,(X)|>aBsinp

Now choose ¢ =« gsin #, n=1, and that proves S is sensitive dependence on initial

condition in the interval x = 377[ .
From (1) and (2) it can be obtained the function S, is sensitive dependence on initial
condition in the interval [n%ﬂ}

From first and second it can be obtained the function S, is sensitive dependence on
initial condition in any subinterval, in which the function S, is positive and increasing
or negative and decreasing, of the interval (0,27x).

The intervals within the function S, is positive and increasing or negative and
decreasing are increasing for all & >1, n>1 by increasing n.

For example if n=2 and « =2, the function S? is positive and increasing in the
following intervals:
[0, 1.2], [2.44, 2.78], [3.15, 3.45], [4.04, 4.32], [5.1, 5.46], [6.02, 6.12].

Also, it is negative and decreasing in the following intervals:
[1.57, 2.05], [3.59, 3.85], [4.71, 4.92], [5.7, 5.85], (see Figure 8).
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a e -1

S';» X0

6

0 1 2 3 4 5 & - 4
X

Figure 7: The Graph of Function S, in the Interval (0,27)

N
3

15 | -

SFl oo

1 a 1 2 2 X
Q 1 2 = 4 5 B 7
X

Figure 8: The Graph of Function S!? in the Interval (0, 27)

But if n=3 and « =2, the function S is positive and increasing in the following

intervals:

[0,0.8], [1.28, 1.4], [1.57, 1.75], [2.157, 2.293], [2.44, 2.575], [2.86, 2.95], [3.14, 3.31],
[3.5, 3.54], [3.595, 3.635], [3.715, 3.755], [3.865, 3.915], [3.995, 4.01], [4.035, 4.13],
[4.2, 4.235], [4.345, 4.41], [4.517, 4.545], [4.64, 4.663], [4.71, 4.775], [5, 5.05], [5.11,
5.155], [5.236, 5.265], [5.348, 5.386], [5.485, 5.535],[5.607, 5.623], [5.67, 5.68], [5.7,
5.719], [5.767, 5.79], [5.87, 5.909], [5.978, 5.992], [6.022, 6.0525], [6.155, 6.19].

Also, it is negative and decreasing in the following intervals:

[0.96, 1.12], [1.9, 2.03], [2.67, 2.77], [3.38, 3.44], [3.655, 3.69], [3.81, 3.837], [3.948,
3.97], [4.071, 4.092], [4.15, 4.174], [4.296, 4.318], [4.452, 4.485], [4.577, 4.604], [4.83,
4.91], [5.178, 5.211], [5.29, 5.32], [5.444, 5.465], [5.567, 5.587], [5.64, 5.653], [5.731,
5.749], [5.83, 5.849], [5.937, 5.955], [6.081, 6.115], (see Figure 9).
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°G 1 > 3 a 5 6 7
X
Figure 9: The Graph of Function S in the Interval (0, 27)
So the intervals within the function S, is sensitive dependence on initial condition for

all @ >1, n>1 by increasing n.
If chosen n is large enough then the interval (0,27) is covered completely.

In general, for all the interval [2n7z,2(n +1)7r) for n=1,2,..., it can be obtained that the
function S is sensitive dependence on initial condition in {x:x > 0}.

4.4:Theorem
Let S, :IR — IR be defined by S_(x)=axsin(x),a >0 , then the function
S, ischaoticon IR.

Proof
From theorem 4.3 S is sensitive dependence on initial conditions on IR then,

by definition 8 S_ is chaotic on IR.

Now we try to answer the following question : how the family
S, (x)=axsin(x),a >0 becomes chaotic .

We will show that the maping S, route to chaos by a series of saddle-node bifurcations
JIn fact, this is a typical route to chaos . We will show that S? has the same " behavior
" inside certain box .We conclude that S’ has a saddle node bifurcation in this box .

Experimentally ,we choose the interval (4.5,5.9).Consider the Figures 10,11,12 and 13.

1 2 3 s 5 s s
* 2 #
S,,a<a S, a<a

Figure 10 : The functions S, and S? have no fixed point
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5 /
"
¥ 5 B

<

o 1 2z 3

* 2 #
S,,a=a S, ,a~a

Figure 11: The functions S, and Sj have only one fixed point

4 /_,-’"

. A

\

S,,a>a SZ,a>a’
Figure 12: The functions S, and Sj have two fixed points one of them attracting and another
repelling

LA

S, a=2 Sj,a=l.5

Figure 13: The functions S and Sj have two repelling fixed points

The graphs of S, and S’ have the same patterns around the parameter value

o =1and a" ~1.4158182 respectively. In fact, we have the following cases:
1.When a < then S?2 has no fixed point . in the interval (4.5,5.9).

2.When « ~ a* then S2 has only one fixed point . in the interval (4.5,5.9).
3.When a > a*, for example a =1.416,two fixed points for S? are born; one of them is

attracting and the other is repelling .
4.Morever, for « = 2 ,the two fixed points in (3) will be repelling , and

75



Salma M. Faris & Ammar A.M. Jameel

SZ has the same critical points {4.913, 5.6172}in the box (4.5,5.9) for each « in
cases 1,2,3and 4 .

The above observations show that the behavior of S? in the interval (4.5,5.9) is similar
to that of S, in (0,27] .The remarks 1, 2 and 3 above show that S? has a saddle node

bifurcation in the interval (4.5,5.9) at a =a".

Continuing this process, we have a series of saddle-node bifurcation for S as «
increases .

Therefore, the bifurcation diagram for S, must be as in Figure 14 .

The above discussion shows ,experimentally ,that this family encountered with chaotic
dynamics for certain values of « namelya =2 .This is called a saddle node bifurcation
route to chaos.

Figure 14: The bifurcation diagram of S_,S2,« € IR
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