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ABSTRACT 

In this paper, we have investigated a new algorithm which employs an  
Augmented Lagrangian Method (ALM). It overcomes many of the difficulties 

associated with the Penalty function method.  The new incorporate algorithm has been 

proved very effective with an efficient  convergence criterion. 
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 طريقة مطورة لمضروب لاكرانج للبرمجة غير الخطية
ايمان طارق حامد                 عباس يونس البياتي                           

، جامعة الموصل كلية علوم الحاسوب والرياضيات  

 24/06/2009تاريخ قبول البحث:             24/02/2009تاريخ استلام البحث: 
 الملخص

. ثم تم (ALM)ضخمة رانج المكلافي مجال مضروب خوارزمية جديدة في هذا البحث تم استحداث 
 ريقة نظريا مع الحصول على نتائج نظرية مشجعة.استحداث مقياس تقارب الط

 ير خطية. غمضروب لاكرانج، برمجة الكلمات المفتاحية: 
1. Introduction 

The class of the  general constrained optimization problems seeks the solution 

by replacing the original constrained problem with a sequence of unconstrained sub-

problems in which the objective function is formed by the original objective function of 

the constrained optimization plus additional ’penalty’ terms. The ’penalty’ terms are 

made up of constraint functions multiplied by a positive coefficient. By making this 

coefficient larger and larger along the optimization of the sequential unconstrained sub-

problems, we force the Minimization of the objective function closer and closer to the 

feasible region of the original constrained problem. 

However, as the penalty coefficient grows to be too large, the objective function 

of the unconstrained optimization sub-problem may become ill conditioned, thus, 

making the optimization of the sub-problem dilute. This issue is avoided, after the proof 

of convergence, by the so-called ’ Augmented Lagrangian Method’ (ALM) in which an 

explicit estimate of the Lagrange multipliers is included in the objective function. 

Hence, the objective function becomes optimality condition in the above method  in 

order to  improve its sufficiency and Reliability. The above technique is based on solid 

theoretical considerations, and the  methods commonly recommended for the initial 

choice of Lagrange multipliers [3]. It has the following attractive features: 

1. It's acceleration is achieved by updating the Lagrange multipliers. 

2. It's starting point may be either feasible or infeasible. 

3. At the optimum, it's value  will automatically identify the active constraint set[1]. 

2. Quasi-Newton Methods 

We use a quasi-Newton updating scheme to define the matrices kH  in our 

quadratic model The quadratic function: 
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,                                                     …(1) 

where a is a scalar, b
~

 is constant vector and G  is a positive definite symmetric matrix . 

Quasi-Newton methods use the curvature information from the current iteration, and 

possibly the matrix kH  to define 1+kH . A true quasi-Newton method will choose 1+kH  

so that 

)( 111 kkkkk xxHgg −=− +++                                 …(2) 

In this way )( 11 kkk xxH −++ is a finite difference approximation to the derivative 

of  kg  in the direction of )( 1 kk xx −+ . For a practical quasi-Newton  method, computing 

1+kH should be considerably less expensive than computing )(2 xf . Popular quasi-

Newton methods choose EHH kk +=+1 , where E  is a matrix of low rank, usually one 

or two. By using a rank-two update, we may also arrange that kH  is always a positive 

definite, symmetric matrix. Many rank-two formulas may be used, but probably the 

most famous is the BFGS update, 
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 where 

),()( 1 kKk xgxgy −= +  

.xx kkk −= +1           …(4) 

  It is well known (see, for instance, Fletcher [4]) that if kH  is positive definite 

and 0k

T

k yv  and 1+kH  is chosen using the BFGS update, then 1+kH  is also positive 

definite. We note that for any update satisfying the quasi-Newton condition (2), the 

matrix 1+kH  cannot be positive definite if 0k

T

k yv , because vHvyv k

T

kk

T

k 1+= . 

Typically, quasi-Newton methods that use the BFGS update employ a line search to 

locate a point for which 0k

T

k yv . In their simplest form, these methods will generate a 

search direction kd  for which 0k

T

k dg  and then search for a positive k  that satisfies 

the well-known strong Wolfe conditions, where kd  is descent direction and k  is a 

parameter satisfies 

k

T

kkkkk dgxfdxf
k

 1)()( ++                        …(5) 

and 

k

T

kKKK dgdxg  + )(                                                     …(6) 

Where 10 21   . Usually, one also requires that 2/11   so that the Wolfe 

condition (5) is met by the exact minimizer of a quadratic function, and then takes 

kkkk dxx +=+1 . We observe that kk d,  and kv  are related by the rule  

kkkkk dvxx ==−+1 .                    …(7) 

 If 1+kx  satisfies the Wolfe condition on the gradient (6), then    

k

T

k

T

kk vgvgg
kk

)1()( 21 −−−+  ,                                                …(8) 

therefore 0k

T

k yv . Thus, when paired with the BFGS update, a line search using the 

Wolfe conditions will produce a positive-definite sequence of matrices kH , and the 

quadratic terms may be dropped. 
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When the Wolfe conditions are not used to define 1+kx , the BFGS update  may 

still be used to define 1+kH  when 0k

T

k yv . Suggest simply setting kk HH =+1  when 

0k

T

k yv . Obviously, their method will not satisfy the quasi-Newton condition (4) at 

each iteration, but it will keep kH  positive definite [2]. 

3.     Karush-Kuhn-Tucker Multipliers 

3.1   Inequality Constraints 

We first consider the inequality constrained minimization problem: 

n

ii

ii

R x            

G, i ,b (x)c

L, i ,b (x)c
 t. s.

f(x), min






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
                                       …(9) 

where x  is an n-dimensional vector and ( )xc  is an m-vector of non-linear constraint 

functions with ith component ( ) 1...mi   , =xci , and L and G are nonintersecting index 

sets. It is assumed throughout that f and c are twice-continuously differetiable and 

usually as-summed to possess continuous second partial derivatives. The constraints in 

eq.(9) are referred to as functional constraints. The classical method of solving this 

problem is due to Lagrange. The method removes the inequality constraints by 

considering the function and reduces the problem to the unconstrained case:   

( )( ) −+= ii bxcxfxL  )(),(  ,                                                …(10) 

where 

GiLi ii        ,0      and        ,0  , 

where    T

1  ,... mi  =  denotes the set of Lagrange multipliers for this problem. 

Outlines of the Augmented Lagrangian Multiplier Method (Interior Penalty) 

Consider the Augmented Lagrangian Multiplier Method by minimization the 

Augmented Lagrangian Function as a pseudo-objective function with interior Penalty 

function .i.e.            

 ++=  )(),,( iiixfxALM                   …(11) 

with 
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Step 1: Set    ,x0 (initial point, scalar termination), start with an arbitrary but small 

i (or take alternatively 00,1 = f(x)(x)c and   (x)  if c iii , 0=i  

otherwise. Then it start with a right direction ) 

Step 2: Call BFGS to minimize ),,( kxA  output: ix .  

Step 3: Update ]
2

),(max[1

k

i
i

k

i

k

i xc 



 −+=+ and kk  =+1  and iterates until it 

convergence[6]. 
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3.2 Equality Constraints 

We consider the equality constrained minimization problem: 

minimize ( )xf  

subject to ( ) 1...Lm  i          0         xhi +==                       …(13)  

where x  is an n-dimensional vector. ( ) l1,...,mi    xhi +== ,0  are continuous and 

usually as-summed to possess continuous second partial derivatives. The constraints in 

eq.(13) are referred to as functional constraints. In order to obtain a new update. Thus, 

the new problem can be converted into an unconstrained minimization problem by 

constructing a function of the form         
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ii bxhxfxL
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)(),(                                                         …(14) 

where   T

1  ,... li  = denotes the set of Lagrange multipliers for this problem[4], 

where   is an m*1  vector of Lagrange multipliers, one for each constraint. In general, 

we can set the partial derivatives to zero to find the minimum:,  
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Outlines  of the Augmented Lagrangian Multiplier Method (Exterior penalty): 

This methods is represented in the following form: 

minimize the Augmented Lagrangian Function as a pseudo-objective function with 

Exterior Penalty Function Method 

( )( ) ( )( )
2

)(),,(  −+−+= iii bxhbxhxfxALM  .                     …(15) 

One method is to treat i 's as design variables. This increases unknown design 

variables. The other method is normally taken as described below: 
 

Step 1: Set    ,x0 (initial point, scalar termination), start with 1,...Li   i == ,0  and 

arbitrary but small i (or take alternatively 0,1 = f(x)(x)h if  ω ii , 

,1−=iω  0 f(x)(x)hif i then it start with a right direction). 

Step 2: Call BFGS to minimize ),,( kxA  output: ix .  
Step 3: Update l,... k)h(xμ ωω kk

k

i

k

i 1,21 =+=+  and kk  =+1  and iterates until the 

convergence is obtained. 

4. Features of Augmented Lagrangian Multiplier Methods: 

The Augmented Lagrangian Multiplier Method with proper = ii   gives 

solution with finite i  as opposed to which requires infinite i . With appropriate i , 

i.e. if one knows 

i  (real solution as Lagrangian multipliers), with = ii  , only one 

unconstrained minimization is required. There is a good possibility to reach the optimal 

solution with = ii   where as satisfies the constraints only in the limit as i  

approaches infinity. (As it approaches the solution, h  approaches zero). In practice, one 
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starts with an arbitrary i  (as an initial guess) and iterations are thus required. (Note 

that 

i  is not known a prior) Usually, i  is taken to be zero or one [6]. 

5. General Introduction to Nonlinear Constrained: 

The general constrained minimization problem 

minimize ( )xf  

Subject to 
( )

( )
       

...lm  i          b         xh

...m  i          b         xc

i

i





+==

=

1

1
                    …(16) 

where x  is an n-dimensional vector and the functions ( ),xf  ( ) ...m, ixci 1=  and 

( ) ,...,lm, ixhi 10 +==  are continuous and usually as-summed to possess continuous 

second partial derivatives. The constraints in eq.(8) are referred to as functional 

constraints [2]. 

There exits an important class of methods to solve the general constrained 

optimization. This class of methods seeks the solution by replacing the original 

constrained problem with a sequence of unconstrained sub problems in which the 

objective function is formed by the original objective of the constrained optimization 

plus additional 'penalty' terms. The 'penalty' terms are made up of constraint functions 

multiplied by a positive coefficient. By making this coefficient larger and larger along 

the optimization of the sequential unconstrained sub problems, we force the minimizer 

of the objective function closer and closer to the feasible region of the original 

constrained problem. However, as the penalty coefficient grows to be too large, the 

objective function of the unconstrained optimization sub problem may become ill 

conditioned, thus, making the optimization of the sub problem difficult. This issue is 

avoided, after the proof of convergence, by the so called 'Augmented Lagrange method' 

in which an explicit estimate of the Lagrange multipliers  ,  is included in the 

objective. Hence, the objective function becomes[7]. 
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5.1 Outlines of the general Augmented Lagrangian Multiplier Method: 

         The general optimization problem in eq.(8) is transformed as Minimize: 
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with 
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ii bxc



 −−=                   …(20) 

Now follow these steps: 

Step 1: Set        , 0 x (initial point, scalar termination), start with an arbitrary but small 

i (or take alternatively ,0,1 = f(x)(x)hif ω ii 0,1 −= f(x)(x)h ifω ii , 

00,1 = f(x)(x)c and   (x)if c iii ,  otherwisei 0= . Then it start with a 

right direction ) 
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Step 2: Call BFGS to minimize ),,,,( hcxA  with output: ix .  

Step 3: Update m,,...ixc 
k
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and kk  =+1 and iterate until it converges. 

Step 4: Convergence for ALM  ,10 ,...mifor(x)cif i =  00 = (x)  for cif ii , 
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ikii }bxhμbxh{ω}ΥμΨ{f(x)  . If all side 

constrains are satisfies if ni =  ( =i iteration counter =n  number of variables) 

then converged, stop, otherwise continue. 

Step 5: Stopping Criteria: let  11, −− −=−= iiii xxxfff   

               ffif T   Stop (function not changing) 

              Else xx  if T : Stop (design not changing) 

              Else n   if    i = : Stop (maximum iterations reached) 

Step 6: Continue  
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, = xxi , Go to Step 2 

6. New Incorporate Augmented Lagrangian Multiplier Method 

Infeasible sub-optimums. i.e. infeasible sub-optimums  is not practical to solve 

problem because the objective function is not defined outside region, and discontinuous 

on the boundary, so that feasible sub-optimums is continuous everywhere. Prasad 

presented a formulation which offers a general class of penalty functions and avoids the 

occurrence of extremely large numerical values for the penalty associated with large 

constraint violations. Let’s include the optimality condition into the algorithm in order 

to improve its efficiency and reliability. Because the way how this penalty is imposed 

often leads to a numerically ill-conditioned problem, a method is devised whereby only 

a moderate penalty is provided in the initial stages and this penalty is increased as the 

optimization progresses. The New Incorporate Augmented Lagrangian Multiplier 

Method based on the system defined in (16)-(18) may be modified further as: 
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where the parameter   in (18) is equal to ))((ln ii bxc −=   . 

6.1 Outlines of the New Proposed Algorithm: 

Step 1: Set    ,x0 (initial point, scalar termination), start with and arbitrary but small 

i (or take alternatively ,0,1 = f(x)(x)hif ω ii 0,1 −= f(x)(x)hif ω ii , 

          00,1 = f(x)(x)c and   (x)if c iii ,  otherwisei 0= , then it start with a 

right direction). 
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Step 2: Call BFGS to minimize ),,,,( hcxA  output: ix . 

Step 3: Update m,...i
i

bx
i

c k

i

k

i 1),)((ln1 =−+=+  ,   

            l,...mi b)h(xμ ωω ikk

k

i

k

i 1),()/1(21 +=−+=+
 and kk  =+1  and 

kk  /1 =+  iterates until the convergence. 

Step 4: convergence for ALM 
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variables) then converged, stop, otherwise continue. 

Step 5: Stopping Criteria:  11, −− −=−= iiii xxxfff   

               ffif T   Stop (function not changing) 

              Else xx  if T : Stop (design not changing) 

              Else n   if    i = : Stop (maximum iterations reached). 

Step 6: Contiue  
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6.2 Convergence Analysis of the New Proposed Algorithm:  

The convergence analysis of augmented Lagrangian method is similar to that of 

the quadratic penalty method, but significantly more complicated because there are two 

parameters  ,  instead of just one. As a straightforward generalization of the previous 

method, we can define: 
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and solve for ),( +x , ),( +x  regarding  ,  and   as parameters. First of all, 
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for all 0 . Moreover, the Jacobean of F (with respect to the variables ++  ,,x ) is 
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Assuming x is a nonsingular point of the NLP, and using the sufficient condition the 

matrix 
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as 0→ . Therefore, there exists 0ˆ   such that ):::,,( **** xj is nonsingular 

for all   ˆ,0 . The implicit function theorem then implies that there exists a 

neighborhood N  of *   such that there exist function ++     x,, andx , defined on 

 ̂,0N such that: 

* 

+

 ==  ):(,):( xx  for all   ˆ,0  
* 

+

 ==  ):(,):( xx for all   ˆ,0  

* For all   ˆ,0,, N , 0)::):(::):(),:,(( =++ xF  

Then the functions ++  ,,x satisfy 

0):()):(():()):(())::(( =
+

−
+

−  xhxgxf                    …(27) 

0):/):( =




 −

+
− )(μ)g(x                         …(28a) 

0):5):( =−
+

− )(μ((.)h(x                 …(28b) 

Solving (18) ):( +  and ):( + yields: 

)):((ln):(  xc+=+ : 

)):((
2

):( 


 xh+=+ . 

Substituting this into (17) then produces 

0)):((
2

)):((
)):((

)):(()):,(( =







−−








−− 







 xhxh

xc
xgxf     …(29) 

Rearranging the last equation shows that 

0)):,(( = xL                                                              …(30) 

In other words, ):( x for each  )::(( xL a stationary point of  ):( x  ,
  ˆ,0 and each  N , N  
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Since 

+= ++ ):();:();::(()::);::(( 22  xlxL  
)()(

2

)(

)()(
2

xhxh
xg

xgxg
+




       …(31) 

 →→  ):(,):( xx  →→  ):(,):( xx as → → , 
it is straightforward to show that 

0)::);::((2 = xL  

is positive definite for  :  sufficiently close to   :   and for   sufficiently small. 

We have therefore proved the following theorem. 

Theorem 6.3: 

Suppose RRf n →:  and mn RRc →:  are twice continuously differentiable and 
*x  is a local minimizes of the NLP 

Subject to ( )

( ) 







+==

=

...lm  i          b         xh

...m  i          b         xc

 f(x)                         Minimize

i

i

1

1                               …(32)  

if  *x  is a nonsingular point and 
*  is the corresponding Lagrange multiplier, then there 

exists 0ˆ  , 0 and a function )(BN  ,]ˆ,0[: * =→ nRNx , with the following 

properties:  

1-  x  is continuously differentiable. 

2- ** ):( xx =  and ** ):( xx = for all ]ˆ,0[   . 

3- ):( * x  and ):( * x is the unique local minimize of )::(.; L  in N . 

        According to the previous theorem, if   is sufficiently small and 
→→  ,* , then ** ):( xx →  and ** ):( xx → . However, since 

*  is 

unknown, the condition ** ,  →→  cannot be enforced directly. Instead, the 

augmented Lagrangian method updates   using the results of the unconstrained 

minimization: ):(),:(  ++  and . It is necessary to prove, then, that 

updating  ,  in this manner produces a sequence of Lagrange multiplier estimates 

converging to ** , .  Since ++  ,  is a continuously differentiable function of  ,  

and **** ):(,):(  == ++ , I can write  

dtt T  )());(():( **

1

0

**  −−++=  ++  

dtt T  )());(():( **

1

0

**  −−++=  ++  

Using the triangle inequality for integrals, it follows that  

**T*** C(μ(μ dt );μ;t(((  −−−+−  ++

1

0

): ,                …(33) 

**T*** C(μ(μ dt );μ;t(((  −−−+−  ++

1

0

):  
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where )(C   is an upper bound T)(.;+  and )(E  is an upper bound T)(.;+  

Similarly,  dt txxx T )());(():( **

1

0

**  −−++=   

and so  **

1

0

*** )());(():(  −−−+−   Ddt  txxx T , 

where )(D   is an upper bound for T)(.;x  .  

The function ++  ,,x are defined by the equations  

0):()):(():()):(()):,(( =−− ++  xhxcxf               …(34) 

( )

0)):((5.)):((

0)):(()):((
5.

=−−

=−−

+

+





xh

xc
                                                 …(35) 

Differentiating these equations with respect to  ,  and simplifying the results yields: 
Txxl ):,()):(:):(:):,((2   ++  

0):()):(():()):(( =+− ++  xhxc  

0)):((5.)):((

0)):(/())):(()):(( 2

=+−

=−−−−

+

++

Ixh

Ixc




 

or 

















−

−−=























+

+

+++

I

I

x

xJ

T

T

T











 2)):(/(

0

);(

);(

);,(

);,);;(),;().;((        …(36) 

Since );;,(););(;);;().;;(( ***  xJxJ →++  as 
* →  and 

* → , it follows that: 
1);,);;().;().;,(( −

++ xJ  is bounded above for all  ,  sufficiently 

close to ** , . Therefore, from 

















−

−−=























+

−

++

+

+

I

IxJ

x

T

T

T

21 )):(/(

0

);,);;().;().;,((

);(

);(

);,(









,    …(37) 

I can deduce that there exist 0 and 0M  such that, for all ),0(  , 

MMMx TTT   ++ );(   ,);(   ,);,( .                         …(38) 

Using M in place of )(C  and )(D  above,  I obtain 

*- M  − +

*);( ,                                                                     …(39)  

*- M  − +

*);( ,                                                                    …(40)  

( )*** -- );,(  Mxx −                                                                     …(41) 

For all ),0(   .  
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7. Numerical Results  

 In order to assess the performance of the new algorithm is tested over (10) non-

linear functions with 41  n  and 9)(1  xci  and 2)(1  xhi . All the results are 

obtained using Pentium 4. All programs are written in FORTRAN language and all 

cases the stopping criterion taken to be  

− −1ii xx                                 510−=  

All the algorithm in this paper use the same ELS strategy which is the quadratic 

interpolation technique. 

 The comparative performance for all of these algorithms are evaluated by 

considering NOF, NOI and NOC, where NOF is the number of function evaluations, 

NOI is the number of iteration and NOC is the number of constrained evaluations where 

especially NOF is the best measure of actual work done, it is depended on the linear 

search and accuracy required. 

Table (6.1) Comparison of Standard Algorithm with New Method 

NO. 
NEW-Method 

NOF(NOG)NOI(NOC) 

ALM-Method 

NOF(NOG)NOI(NOC) 

1 70(10)3(1) 270(24)3(1) 

2 105(25)3(1) 909(151)7(1) 

3 382(22)4(2) 386(27)4(1) 

4 195(13)2(1) 260(35)2(2) 

5 290(26)3(1) 547(47)4(2) 

6 1755(128)10(9) 1775(500)3(1) 

7 558(61)2(1) 319(49)7(1) 

8 290(29)3(1) 536(40)2(1) 

9 332(15)2(1) 245(26)2(1) 

10 264(22)2(1) 571(23)2(1) 

Total 4241(351)34(19) 5818(922)36(12) 
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