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ABSTRACT
In this paper, we have investigated a new algorithm which employs an
Augmented Lagrangian Method (ALM). It overcomes many of the difficulties
associated with the Penalty function method. The new incorporate algorithm has been
proved very effective with an efficient convergence criterion.
Keywords: Lagrange Multiplier Method, Non-Linear Programming.
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1. Introduction

The class of the general constrained optimization problems seeks the solution
by replacing the original constrained problem with a sequence of unconstrained sub-
problems in which the objective function is formed by the original objective function of
the constrained optimization plus additional ’penalty’ terms. The ’penalty’ terms are
made up of constraint functions multiplied by a positive coefficient. By making this
coefficient larger and larger along the optimization of the sequential unconstrained sub-
problems, we force the Minimization of the objective function closer and closer to the
feasible region of the original constrained problem.

However, as the penalty coefficient grows to be too large, the objective function
of the unconstrained optimization sub-problem may become ill conditioned, thus,
making the optimization of the sub-problem dilute. This issue is avoided, after the proof
of convergence, by the so-called > Augmented Lagrangian Method’ (ALM) in which an
explicit estimate of the Lagrange multipliers is included in the objective function.
Hence, the objective function becomes optimality condition in the above method in
order to improve its sufficiency and Reliability. The above technique is based on solid
theoretical considerations, and the methods commonly recommended for the initial
choice of Lagrange multipliers [3]. It has the following attractive features:

1. It's acceleration is achieved by updating the Lagrange multipliers.
2. It's starting point may be either feasible or infeasible.
3. At the optimum, it's value will automatically identify the active constraint set[1].
2. Quasi-Newton Methods
We use a quasi-Newton updating scheme to define the matricesH, in our

quadratic model The quadratic function:
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f(x):%xT Gx+x'b +a, (1)

where a is a scalar, b is constant vector and G is a positive definite symmetric matrix .
Quasi-Newton methods use the curvature information from the current iteration, and
possibly the matrix H, to define H, ,. A true quasi-Newton method will choose H, ,

so that

G — Ok :Hk+1(xk+1_xk) .(2)
In this way H,,, (X,,; — X, ) is a finite difference approximation to the derivative

of g, in the direction of (x,,, —X,) . For a practical quasi-Newton method, computing

H,,,should be considerably less expensive than computing V?f(x). Popular quasi-

Newton methods choose H,,, =H, + E, where E is a matrix of low rank, usually one

or two. By using a rank-two update, we may also arrange that H, is always a positive

definite, symmetric matrix. Many rank-two formulas may be used, but probably the
most famous is the BFGS update,

H,,=H, _{Hkykva"‘kasz}_'{l_i_ yng"ka }[yl;yl } ..(3)
Vie Y YieVie L Yk

where

Yi :g(XKJrl)_g(Xk)’

Vi =X — Xy - ...(4)

It is well known (see, for instance, Fletcher [4]) that if H, is positive definite

and v, y, >0 andH,,, is chosen using the BFGS update, then H,, is also positive
definite. We note that for any update satisfying the quasi-Newton condition (2), the
matrix H,,, cannot be positive definite if v,y <O, because vy, =v,H, V.

Typically, quasi-Newton methods that use the BFGS update employ a line search to
locate a point for which v, y, > 0. In their simplest form, these methods will generate a
search direction d, for which g,'d, <0 and then search for a positive k that satisfies
the well-known strong Wolfe conditions, where d, is descent direction and 4, is a
parameter satisfies

f(x, +4d,)< f(Xk)-i-O'lﬂ,kg;dk ...(5)
and
9(X + A dy) =07, d, ...(6)

Where 0< o, <o, <1. Usually, one also requires that o, <1/2 so that the Wolfe

condition (5) is met by the exact minimizer of a quadratic function, and then takes
X = X, +4,d, . We observe that 4,,d, and v, are related by the rule

Xip — X =V, = A4, d,. ..(7)
If x,,, satisfies the Wolfe condition on the gradient (6), then
(s — 9i) " Vi 2_(1_0'2)91ka , ...(8)

therefore v, y, >0. Thus, when paired with the BFGS update, a line search using the
Wolfe conditions will produce a positive-definite sequence of matrices H,, and the
quadratic terms may be dropped.
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When the Wolfe conditions are not used to define x,,, the BFGS update may
still be used to define H,,, when v, y, >0. Suggest simply setting H, , = H, when
v, ¥y, <0. Obviously, their method will not satisfy the quasi-Newton condition (4) at
each iteration, but it will keep H, positive definite [2].

3. Karush-Kuhn-Tucker Multipliers
3.1 Inequality Constraints
We first consider the inequality constrained minimization problem:
min f(x),
: {ci(x) <h,Viel,
c,(x) >b,VieG,
xeR"
where x is an n-dimensional vector and c(x) is an m-vector of non-linear constraint
functions with ith component ¢,(x), i=1..m, and L and G are nonintersecting index

sets. It is assumed throughout that f and c are twice-continuously differetiable and
usually as-summed to possess continuous second partial derivatives. The constraints in
eq.(9) are referred to as functional constraints. The classical method of solving this
problem is due to Lagrange. The method removes the inequality constraints by
considering the function and reduces the problem to the unconstrained case:

L(x, &) = f(x)+ > 8(c(x)-b) , ...(10)
where
4 <0, VieL and & 2>0, VieG,

where 4 = [81,...9m] T denotes the set of Lagrange multipliers for this problem.

..(9)

Outlines of the Augmented Lagrangian Multiplier Method (Interior Penalty)

Consider the Augmented Lagrangian Multiplier Method by minimization the
Augmented Lagrangian Function as a pseudo-objective function with interior Penalty
function .i.e.

ALM (X, 9, 1) = £ (X)+ D I, + D1, (1)
with
9
v, = max[c, (x),———]. ...(12)
24,

Step 1: Set X, , €(initial point, scalar termination), start with an arbitrary but small
u; (or take alternatively & =1, ifc,(x) <0 and Vc,(x)-VIi(x)<0, & =0
otherwise. Then it start with a right direction )

Step 2: Call BFGS to minimize A(x,$, 4, ) output: X; .

Step 3: Update 9'=g" +max[ci(x),—2i]and L., =y, and iterates until it

Hy
convergence[6].
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3.2 Equality Constraints
We consider the equality constrained minimization problem:
minimize f (x)
subject to h,(x)=0 i=m+1.L ..(13)
where x is an n-dimensional vector. h(x)=0, i=m+1,.,I are continuous and

usually as-summed to possess continuous second partial derivatives. The constraints in
eq.(13) are referred to as functional constraints. In order to obtain a new update. Thus,
the new problem can be converted into an unconstrained minimization problem by
constructing a function of the form

L(x @) = 100+ a,((x)-b) (14)

where @, :[a)l,...a),]Tdenotes the set of Lagrange multipliers for this problem[4],

where @ is an 1*m vector of Lagrange multipliers, one for each constraint. In general,
we can set the partial derivatives to zero to find the minimum:,

oL

~Z = -0
0 X,
and

{ﬁzo } P—1.k
ow,

Outlines of the Augmented Lagrangian Multiplier Method (Exterior penalty):

i=m+1..L

This methods is represented in the following form:
minimize the Augmented Lagrangian Function as a pseudo-objective function with
Exterior Penalty Function Method

ALM (x, @, 1) = T(x) + Y @ (h(x) =)+ > a(h(x) b, ). ...(15)
One method is to treat w,'s as design variables. This increases unknown design
variables. The other method is normally taken as described below:

Step 1: Set X, , e(initial point, scalar termination), start with o, =0, i=1,.L and
arbitrary but small g (or take alternatively o, =1, if Vh,(x)-Vf(x) <0,
w, =-1, if Vh(x)- Vf(x) > Othen it start with a right direction).

Step 2: Call BFGS to minimize A(X, @, &, ) output: X; .

Step 3: Update /" =w! +2u.h(x, ), k=1..1 and g, =y, and iterates until the
convergence is obtained.

4. Features of Augmented Lagrangian Multiplier Methods:

The Augmented Lagrangian Multiplier Method with proper o, =@ gives
solution with finite x; as opposed to which requires infinite ;. With appropriate o,,
i.e. if one knows ; (real solution as Lagrangian multipliers), with o, = @, only one

unconstrained minimization is required. There is a good possibility to reach the optimal
solution with @, =@ where as satisfies the constraints only in the limit as g,

approaches infinity. (As it approaches the solution, h approaches zero). In practice, one
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starts with an arbitrary o, (as an initial guess) and iterations are thus required. (Note

*

that @, is not known a prior) Usually, @, is taken to be zero or one [6].

5. General Introduction to Nonlinear Constrained:

The general constrained minimization problem
minimize f (x)

¢, (x)<b i =1.m
h(x)="b i:m+1...l}
where x is an n-dimensional vector and the functions f(x), c(x),i=1.m and
h(x)=0,i=m+1,..,] are continuous and usually as-summed to possess continuous

second partial derivatives. The constraints in eq.(8) are referred to as functional
constraints [2].

There exits an important class of methods to solve the general constrained
optimization. This class of methods seeks the solution by replacing the original
constrained problem with a sequence of unconstrained sub problems in which the
objective function is formed by the original objective of the constrained optimization
plus additional 'penalty’ terms. The ‘penalty’ terms are made up of constraint functions
multiplied by a positive coefficient. By making this coefficient larger and larger along
the optimization of the sequential unconstrained sub problems, we force the minimizer
of the objective function closer and closer to the feasible region of the original
constrained problem. However, as the penalty coefficient grows to be too large, the
objective function of the unconstrained optimization sub problem may become ill
conditioned, thus, making the optimization of the sub problem difficult. This issue is
avoided, after the proof of convergence, by the so called 'Augmented Lagrange method'
in which an explicit estimate of the Lagrange multipliers ®,9 is included in the

objective. Hence, the objective function becomes[7].

ALM (x, @, 1) = f(x)+i{9i¥1 + i Do ((x)-b) + i ((x)-b )} ...(17)

i=m+1

Subject to ...(16)

with

= max(c, ()b,

] ...(18)

Hy
5.1 Outlines of the general Augmented Lagrangian Multiplier Method:
The general optimization problem in eq.(8) is transformed as Minimize:

ALM (X, @, 8, g1y, 42) = T (X) +i{9&1 e Yo (x)-b), + i (x)-b, 3 ..(19)

i=m+1
with

v, = max[c, (x) - b,—zi] ...(20)

C

Now follow these steps:
Step 1: Set x,, € (initial point, scalar termination), start with an arbitrary but small

u; (or take alternatively o, =1,if Vh,(x) - Vf(x) <0, o, = -1, if Vh,(x)- Vf(x) >0,
4 =1ifc,(x) <0 and Vc,(x)-VI(x) <0, $ =0 otherwise . Then it start with a
right direction )
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Step 2: Call BFGS to minimize A(X,%,@, ., 1,) with output: x; .

Step 3: Update ¢/ = 3 +max(c, (X),—Zi],i =1,..m,, and
Hy

ot =of +2uh(x, ), i=m+1..land g, ., =y, and iterate until it converges.
Step 4: Convergence for ALM if ¢,(x) >0 fori=1,..m, if & >0 forc,(x) =0,
if h() =0 fori=m+1,..l

00+ 20, + Y23+ Yo (h00-b) + 1, (W) -0 P y=0. 1f all side

i=m+1
constrains are satisfies if i=n (i= iteration counter n= number of variables)
then converged, stop, otherwise continue.
Step 5: Stopping Criteria: let Af = f, — f_, AX=Xx —X,;

if AfTAf <e Stop (function not changing)

Else if Ax" Ax <e: Stop (design not changing)
Else if i=n :Stop (maximum iterations reached)

Step 6: Continue

i=i+1, § =g +max[ci(x),—i i=1,..m,
21,

Cz)ik+l = COik +2,Ukh(xk) i=m+1..l, X = X", Goto Step 2

6. New Incorporate Augmented Lagrangian Multiplier Method

Infeasible sub-optimums. i.e. infeasible sub-optimums is not practical to solve
problem because the objective function is not defined outside region, and discontinuous
on the boundary, so that feasible sub-optimums is continuous everywhere. Prasad
presented a formulation which offers a general class of penalty functions and avoids the
occurrence of extremely large numerical values for the penalty associated with large
constraint violations. Let’s include the optimality condition into the algorithm in order
to improve its efficiency and reliability. Because the way how this penalty is imposed
often leads to a numerically ill-conditioned problem, a method is devised whereby only
a moderate penalty is provided in the initial stages and this penalty is increased as the
optimization progresses. The New Incorporate Augmented Lagrangian Multiplier
Method based on the system defined in (16)-(18) may be modified further as:

m
ALM (6,0, 8,1, 1) = F0 = 3 5600 by) + s Incy (9 -5y -
| =
I
X (@ (00-b) +u (B (0-b )% -2D)
i=m+1
where the parameter y in (18) is equal to y = u(Inc,(x) -b;) .

6.1 Outlines of the New Proposed Algorithm:

Step 1: Set X, , < (initial point, scalar termination), start with and arbitrary but small
u; (or take alternatively o, =1,if Vh,(x) - Vf(x) <0, o, =-1,if Vh,(x) - V(x) > 0,
4 =1ifc;(x) <0 and Vc,(x) - V(x) <0, $ =0 otherwise, then it start with a
right direction).

18



A Modified Augmented Lagrange Multiplier Method for Non-Linear Programming

Step 2: Call BFGS to minimize A(x,%,@, 1., ,) output: X, .
Step 3: Update 9" = ¢ +u(ing; () —by), i=1..m,
ot = +21/ ), (hx,)-b ), i=m+1..1 and g, =y and

., =yl iterates until the convergence.
Step 4: convergence for ALM

if c,x)>0 for i=1..m
if ¢ >0 for c,x)=0
if h,x)=0 for i=m+1,..l

f(x)_igl‘gi((Ci(X)_bi)J’”k(lnCi(X)_bi))_i r'zn+l(wi(hi(x)—bi) -2/ (0 (x)-b )*}=0
If all side constraints are satisfied if i=n (i= iteration counter, n= number of
variables) then converged, stop, otherwise continue.
Step 5: Stopping Criteria: Af = f. — f_,, AX=X% — X,
if Af TAf <e Stop (function not changing)
Else if Ax" Ax <e: Stop (design not changing)
Else if i=n :Stop (maximum iterations reached).
Step 6: Contiue
i=i+1, 3" =9 +u(inc;(\)-b,) i=1..m,

W =0} +20/1)(NK)=b,) T=m+1..l1, X =X".GotoStep2

6.2 Convergence Analysis of the New Proposed Algorithm:

The convergence analysis of augmented Lagrangian method is similar to that of
the quadratic penalty method, but significantly more complicated because there are two
parameters A, instead of just one. As a straightforward generalization of the previous

method, we can define:
VI (x )+ Ve(x)d+Vh(x o,
F(X, & :9: 0, ou)=| -cX) —(u/(3 -9) ...(22)
-h(x) - 5u(e, - o))
and solve for (x,94,),(X,@,) regarding %, @ and px as parameters. First of all,
assuming as usual that x”, 9", ", Lagrange multiplier pair,

VI () -Ve() 8" - vhix )™ |
FOC, 0 8 0 ) = -C(X*)—(,u / (9*-9)) -0 (23)
0
| -h(x™) - 5u(0” - o)

for all x> 0. Moreover, the Jacobean of F (with respect to the variables x, %, ,®, ) is

VZI(X,19+,a)+) Vo(x) Vh¥)
j(x,l9+,a)+:l9:a;:y): ve(x)' (ull8-39,) 0 ...(24)
Vhx)' 0 |
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Assuming x"is a nonsingular point of the NLP, and using the sufficient condition the
matrix

VX, 9, o) Ve ) Vhx')
j(x, 9,0 F o )= Ve ) 0 0 ...(25)
0 0 |
is nonsingular and
B 2 * * * ]
VA, 9 ,0) VoK) vhix )
(9@ 9w u) =| Ve ) Cull(9-9) 0 |-
Vhx )’ 0 1
_2 * * * * *_
VA9 @) Ve(x ) Vhx )
ve(x ) 0 0 ...(26)
0 0 1

as u — 0. Therefore, there exists 2 >0 such that j(x,9 ,0 :9 :@ : u)is nonsingular
for all ,ue[O,,&]. The implicit function theorem then implies that there exists a
neighborhood N of »"9" such that there exist function x,.$, and X, m,, defined on
N x [0, 4] such that:

* X ) =X, 9.(9 :p) =9 forall uel0,i]

* X" u)=X" 0, (0 u) =" forall uel0,i]

*Forall w,9eN,ucl0,i], FX(9,0: 12),8.(3: 11): 9: 0, (w: p1):: ) =0

Then the functions x, w, , 9, satisfy

VIE(X(9:@: 1)) -Vg(x(9: y))SJr (9:u)-Vh(x(w: u))a)Jr (w:p)=0 ..(27)
g(x(g:y))—(ﬂ/19+(19:ﬂ)—g*)j=o ...(283)
h(X(a):y))—.5,u((a)+(a):,u)—a)*): 0 ...(28D)

Solving (18) &, (9: u) and o, (@ : u) yields:
G, (A pu)=9+ulnc(x($: u)):

2
o, (A:py)= a)+;h(x(a) ).
Substituting this into (17) then produces

Vi (X($, @ 1)) — Vg (X(I: y))(g - J— Vh(x(w: ,u))(a) —flh(x(a) : y))j =0 -.-(29)

M
c(x(: 1))
Rearranging the last equation shows that

VL(X($,@: 1)) =0 ...(30)

In other words, x(9: u)foreach L(x($:: w)astationary point of x(w: u) ,
uelo, ir]andeach weN,9eN
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Since
VIL(X(S: @: 1), 30 1) =VAX(G: @ 1); 8, (9 1) 0, (w0 11) +
L YOOVIW) | 2o auniy 31
9(x) H
X(: 1) > X3 1) > F X(w:yu) > X oo u) >w'as 3> o> o,
it is straightforward to show that
VAL(X(G:@: 1) 8w 1) =0
is positive definite for 9: w sufficiently close to 4" : ®* and for x sufficiently small.
We have therefore proved the following theorem.

Theorem 6.3:

Suppose f:R" — R and c:R" — R™ are twice continuously differentiable and
x" is a local minimizes of the NLP

Minimize f(x)
Subject to ¢,(x)<b i =1.m ...(32)
h(x)=b i=m+21.l

if x” is anonsingular point and A" is the corresponding Lagrange multiplier, then there

exists 2 >0,e>0and a function x:Nx[0, 2] - R", N=B_(1), with the following

properties:

1- x is continuously differentiable.

2- X(9 : p) =X and x(@ : u) =X forall x<]0,a].

3- X(9 : 1) and x(e" : w)is the unique local minimize of L(.;9:@: ) in N.
According to the previous theorem, if g is sufficiently small and

9> 9,00, then x(§ :u) > x and X(@ :u) —> X . However, since A is

unknown, the condition 9— 4,0 —® cannot be enforced directly. Instead, the

augmented Lagrangian method updates A using the results of the unconstrained

minimization: 3« 3, (9: u),and w < @, (w: 1) . It is necessary to prove, then, that

updating 4, in this manner produces a sequence of Lagrange multiplier estimates

converging to $",w . Since &, ,w, is a continuously differentiable function of 9, @
and & (& :u)=9 0, (0 :u)=w, | can write

9.(9:u)=9 +jvl9+ (" +1(9-9): 1) (9— ) dt

1
o (o u)=0 +J.Va)+ (@0 +t(w—-0); 1) (0—") dt
0
Using the triangle inequality for integrals, it follows that

9.(9:1)-

H3 — g

dt < Clugl9-

< j”v&(g’* +H(9-9 )i , ...(33)
0

o(o:u)-w H < j‘HVaL(a)* +t(wo—w )i’
0

Ha) - H dt < C(,u(ﬂr‘a) -0 H
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where C(u) is an upper bound HV&L (.;y)TH and E(u) is an upper bound HVQ (.;,u)TH

1
Similarly, x(A:u)=x" +IVx(2f +t(A-A) ) (A-2)dt
0

1
andso |x(4: )X < j [Vx(Z +t(2= 2 )| |2 - 2| dt < D(w) |2 - £,
0

where D(u) is an upper bound for HVX(.;M)TH.
The function x, 3, ,w, are defined by the equations
VE(X(3,@: 1)) - Ve(X($: 1))8, (9: 1) —Vh(x(@: p))o, (0: 1) =0 ...(34)
c(x(F: ) ~(u | (8.(9:1)-9)° =0
h(x(@: 1)) =Sl (0: ) - )=0
Differentiating these equations with respect to 4, @ and simplifying the results yields:
VI?(X(0: 1) 9.(9: 1) 0, (0: 1))VX(S,0: 1)

—Ve(x(: )3 (3: p)+Vh(x(@w: p))o, (@: 1) =0
Ve(X(9: ) = (V9. (9: 1) = -1 1(8.(8: 1) - 9)* =0

Vh(x(ew: u))-S5u(Vo, (@ u)+4)=0
or

...(35)

Vx(9,o,1)" | [0
J(X(4; )., (% 1), @, (@; 1); 9,0, )| VI, (G 12)" | =| =l 103, (9 1) = F)* ...(36)
Vo, (o;p)" | |-
Since  J(X(&% w; 11).9, (9 1), G 0, (w; o 1) — I(X, 9 0 ;) as 9—>9 and
o — o, it follows that:
[9(x(8, ; 12).9,(9; 11).0. (; p1); 9, 05 42) Y| is bounded above for all 4, sufficiently
close to 9", " . Therefore, from

VX(4,o; )" 0
VI(E)T | = 10 (X80, 12).8.(%; )., (@, 1) 8,0 1) | ~1 1(3.(9: ) -9 |, ...(37)
Vo, (o;u)" ~1
I can deduce that there exist p > 0and M > Osuch that, for all e (O,p),
[Vx(@ @) | <M, |VO.(% )| < M, Voo, (@ )" | < M . ...(38)
Using uM in place of C(n) and D(u) above, | obtain
[V8.(%m)-F|<mm|s-9, ...(39)
HVa)+ (a);,u)—a)*H <M Ha)-a)*u, ...(40)
[x(8, @3 0) x| < i |99 |eo- ) .(41)

Forall 1< (0, u).

22



A Modified Augmented Lagrange Multiplier Method for Non-Linear Programming

7. Numerical Results

In order to assess the performance of the new algorithm is tested over (10) non-
linear functions with 1<n<4 and 1<c,(x)<9 and 1<h,(x)<2. All the results are

obtained using Pentium 4. All programs are written in FORTRAN language and all
cases the stopping criterion taken to be

X —Xi4| <& 5=10"°

All the algorithm in this paper use the same ELS strategy which is the quadratic
interpolation technique.

The comparative performance for all of these algorithms are evaluated by
considering NOF, NOI and NOC, where NOF is the number of function evaluations,
NOI is the number of iteration and NOC is the number of constrained evaluations where
especially NOF is the best measure of actual work done, it is depended on the linear
search and accuracy required.

Table (6.1) Comparison of Standard Algorithm with New Method

NO NEW-Method ALM-Method
' NOF(NOG)NOI(NOC) NOF(NOG)NOI(NOC)
1 70(10)3(1) 270(24)3(1)
2 105(25)3(1) 909(151)7(1)
3 382(22)4(2) 386(27)4(1)
4 195(13)2(1) 260(35)2(2)
5 290(26)3(1) 547(47)4(2)
6 1755(128)10(9) 1775(500)3(1)
7 558(61)2(1) 319(49)7(1)
8 290(29)3(1) 536(40)2(1)
9 332(15)2(1) 245(26)2(1)
10 264(22)2(1) 571(23)2(1)
Total 4241(351)34(19) 5818(922)36(12)
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Appendix
1- min f(X) — (Xl _ 2)2 _'_lxzz 6- min f(X) = X1 X2X3
4 s.t.
s.t. X, +X2+x;=9
2% +73X2 =4 X, +2(X +x7)=4
Xl_EJrXZSl X, >0
2- min f(x) = x,X, 7- min f(X) = —(x, =1 —(x, —3)* = (X, +1)°
s.t. s.t.
25-x7 —x=0 X, +4x7 =16
X; 20
3- min f(x) = (X, —2)* +(x, —1)° 8- min f(x) =X +2x% X, + X5 +12x, —4x,
s.t. s.t.
X, —2X, =—1 X\ —X, =0
—x2 <
al +X,+1>0 1<%
X, <3
4- min f (x) = x’x, 9- min f(X) =X — X, X, + X’
S.t. s.t.
X2 X2+ x2=4
X X, _(_1) =6 ' 2
2 2%, + X, <2
X +X,20
5- min f(x) = (X, —3)* + (X, —2)* 10- min f (x) = —(x, —2)* +(x, —1)°
s.t. s.t.
X, +2X, =4 X, —2X, +1=0
X, + %2 <5 X; —Xx, <0
X; =0
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