
Tikrit Journal of Pure Science 23 (6) 2018 ISSN: 1813 – 1662 (Print)

E-ISSN: 2415 – 1726 (On Line)

411

Tikrit Journal of Pure Science

Journal Homepage: http://main.tu-jo.com/ojs/index.php/TJPS/index

IMPROVING PARALLEL SOLUTIONS FOR METHOD OF LINES TO

1-D HEAT EQUATION BY USING FIVE POINT FINITE DIFFERENE
Qays Younis Mahmmod

1
 , Akram S. Mohammed

2
 , Zeyas M. Abdullah

2

1
Ministry of Education of Iraq , apartment of Nineveh representation of Erbil

2
Mathematics Department, College of Computer Science and Mathematics, Tikrit University, Tikrit, Iraq

DOI: http://dx.doi.org/10.25130/tjps.23.2018.100

A r t i c l e i n f o.
Article history:

-Received: 13 / 11 / 2017

-Accepted: 10 / 1 / 2018

-Available online: / / 2018

Keywords: parallel solutions,

method of lines, Difference

Methods, 5FDM, Runge – Kutta

4order, Runge – Kutta 5 order.

Corresponding Author:

Name: Akram S. Mohammed

E-mail: akr_te@yahoo.com

Tel:

Abstract

The aim of the study is to explain the numerical solutions of the one

dimensional (1-D) of heat by using method of lines (MOLs). In the

(MOLs) the derivative is firstly transformed to equivalent 5 point central

finite differences methods (FDM) that is also transformed to the ordinary

differential equations (ODEs). The produced (ODEs) systems are solved

by the well-known techniques method of ODEs such as the 4
th

 Runge -

Kutta method and Runge - Kutta Fehlberg. And since of the conversion

of the second derivative to the equivalent of the 5 points FDM which led

to an increase in the size of the system equations ODEs, and thus

increased we have improved the performance of these (MOLs)

techniques by introduce parallel processing to speed up the solution of

the produced ODE systems. The developed parallel technique, are

suitable for running on MIMD (Multiple Instruction Stream, Multiple

Data Stream) computers.

1. Introduction
The method of lines is a general technique for

solution partial differential equations (PDEs) by

typically using finite difference relationships for the

spatial derivatives and ordinary differential equations

for the time derivative.

Many physical, chemical and engineering problems,

mathematically, can be modeled in the form of

system of partial differential equations or system of

ordinary differential equations.
Parabolic PDEs describe practically useful

phenomena such as transport-chemistry problems of

the advection-diffusion-reaction type and problem of

this type play an important role in the modeling of

pollution of the atmosphere, ground water and surface

water. Qais Younis Mahmmod;[15]; thesis Submitted

by " Improving Parallel Numerical Solutions Of

Partial Differential equations".Fatmah M. Alabdali,

Huda Omar Bakodah [3] ; she's study "A New

Modification of the Method of Lines for First Order

Hyperbolic PDEs". Norma Alias Norma Alias&

Noriza Satam, Roziha Darwis, Norhafiza Hamzah;

[13] ; "Some Parallel Numerical Methods in Solving

Partial Differential Equations".Nur Izzati Che

Jawias& Fudiah Ismail& Mohamed Sulieman and

Azmi Jaffar;[14];" Fourth Order Four-stage

Diagonally Implicit Runge-Kutta Method For Linear

Ordinary Differential Equations. M. Javidi [10];

"THE MOL SOLUTION FOR THE ONE-

DIMENSIONAL HEAT EQUATION SUBJECT TO

NONLOCAL CONDITIONS". Karline Soetaert &

Filip Meysman [5];" Solving partial differential

equations, using R package ReacTran;. M.A.

Rehman M. S. A. Taj and M. M. Butt [11]; "fifth-

order numerical methods for heat equation subject to

boundary integral specification" . Louise Olsen-Kettle

[8]; "Numerical solution of partial differential

equations". Samir Hamdi_, William E. Schiesser y

and Graham W. Gri_thsz[17]; "Method of Lines".

Randall J. Leveque [16];"Finite Difference Methods

Ordinary and Partial Differential Equations Steady-

State and Time-Dependent Problem".. Sang-Bae kim

[18];" parallel numerical methods for partial

differential equations". Malik Shahadat Ali Taj

[12];"Higher Order Parallel Splitting Methods For

Parabolic Partial Differential Equations". Jeremy

Kepner [4];Parallel MATLAB for Multicore and

Multinode Computers;[6]; The Solution of Partial

Differetial Equations by the Numerical Method of

Lines Combined with a Parallel ODE Solver”

2 .Classification of PDEs: [15, 21]
The classification of PDEs is important for the

numerical solution you choose.

http://dx.doi.org/10.25130/tjps.23.2018.100
mailto:akr_te@yahoo.com

Tikrit Journal of Pure Science 23 (6) 2018 ISSN: 1813 – 1662 (Print)

E-ISSN: 2415 – 1726 (On Line)

411

 yxFUyxCUyxBUyxA yyxyxx ,,,2.,

A. Elliptic: 2BAC , for example Laplace's

equation as: 0 yyxx UU

0 ,1 BCA

B. Hyperbolic: 2BAC , for example the 1-D wave

equation as:
ttxx U

c
U

2

1

0 ,/1 , 1 2 BcCA

C. Parabolic: 2BAC for example, the heat or

diffusion equation as:
xxt UU

0 , 1 CBA .
3. ELEMENTS OF THE MOL [21,2]
The basic idea of the MOL is to replace the spatial

(boundary-value) derivatives in the PDE with

algebraic approximations. Once this is done, the

spatial derivatives are no longer stated explicitly in

terms of the spatial independent variables. Thus, in

effect, only the initial-value variable, typically time in

a physical problem, remains. In other words, with

only one remaining independent variable, we have a

system of ODEs that approximate the original PDE.

The challenge, then, is to formulate the

approximating system of ODEs. Once this is done,

we can apply any integration algorithm for initial-

value ODEs to compute an approximate numerical

solution to the PDE. Thus, one of the salient features

of the MOL is the use of existing, and generally well-

established, numerical methods for ODEs.

To illustrate this procedure, we consider the MOL

solution of Eq. (1). First we need to replace the

spatial derivative ux with an algebraic approximation.

In this case we will use a finite difference (FD).

4-Five Point Central Difference

method:[14,11,13]
In this research, centered difference methods are

used. Hence a fourth order polynomial needs to be

fitted through five points. We fit the polynomial

through the five points
jiu ,2
,

jiu ,1
,

jiu ,
 ,

jiu ,1
,

jiu ,2
 and . Thus, the formula is given by,

2

,2,1,,1,2

2

,
2

12

11630161

h

uuuuu

x

u jijijijijiji

This is known as the five-point central difference

method.

5-Numerical solution of 1-D heat equation

using five point difference method

[21,10,5,20,19,7,1,17]
We consider this example:

xxt uu 2 ;

tx 0 , 5.0 , 02.00

 where the initial conditions are)sin(100, xxu ,

and boundary conditions 0),1(, 0,0 tutu

such as the analytical solution of above equation is

 textxu
225.0.sin10,

by substitute about

 4

2

,2,1,,1,2

2

2

12

11630161
ho

h

uuuuu

x

u jijijijiji

we have :

)
12

11630161
(

2
21122

h

uuuuu

dt

du iiiiii

 ….(2)

if we choose 00004.0h ; and the values of initial

conditions are :)sin(100, xxu

05
11 193245422.2))00004.0(sin(10 euu ;

05
22 386490845.3))00008.0(sin(10 euu

04
77

05
23

535271796.1))00028.0(sin(10

579736267.6))00012.0(sin(10

euu

euu

Such that

6811

70

;

 make andcondition initial from 0;0

uuuu

uu

From equation (2) we have:

 0 ; 0 71
dt

du

dt

du From boundary conditions

 0),1(, 0,0 tutu

From equation (2) we have:

)
)00004.0(12

11630161
(25.0

)
12

11630161
(25.0

2

43211

2

2

432112

uuuuu

dt

du

h

uuuuu

dt

du

)
)00004.0(12

11630161
(25.0

)
12

11630161
(25.0

2

54321

3

2

543213

uuuuu

dt

du

h

uuuuu

dt

du

)
)00004.0(12

11630161
(25.0

)
12

11630161
(25.0

2

65432

4

2

654324

uuuuu

dt

du

h

uuuuu

dt

du

)
)00004.0(12

11630161
(25.0

)
12

11630161
(25.0

2

76543

5

2

765435

uuuuu

dt

du

h

uuuuu

dt

du

)
)00004.0(12

11630161
(25.0

)
12

11630161
(25.0

)
)00004.0(12

11630161
(25.0

)
12

11630161
(25.0

2

98765

21

2

987657

2

87654

6

2

876546

uuuuu

dt

du

h

uuuuu

dt

du

uuuuu

dt

du

h

uuuuu

dt

du

and from these equations when n=7 as the example

we have :

7

6

5

4

3

2

1

'
7

'
6

'
5

'
4

'
3

'
3

'
1

301610000

1630161000

1163016100

0116301610

0011630161

000013016

000011630

u

u

u

u

u

u

u

u

u

u

u

u

u

u

dt

ud

Tikrit Journal of Pure Science 23 (6) 2018 ISSN: 1813 – 1662 (Print)

E-ISSN: 2415 – 1726 (On Line)

411

This MOL approach is sometimes used in practice by

first discretizing in space and then applying a

software package for systems of ODEs. There are

also packages that are specially designed to apply

MOL. This approach has the advantage of being

relatively easy to apply to a fairly general set of time-

dependent PDEs, but the resulting method is often not

as efficient as specially designed methods for the

PDE this equation we can written

as:[15,21,10,5,19,1]

 7654321
'' ,,,,,, uuuuuuufubuAu …(3)

If we apply an ODE method to discretize the system

(3), we will obtain a fully discrete method which

produces approximations ni
n
i tuu at discrete

points in time which are exactly the points ni tx , of

the grid.

We solve for
'u using System of First-Order

Ordinary Differential Equations (ODEs).

6. System of First-Order Ordinary

Differential Equations (ODEs)[19,7,8,16,2,18]
A- Runge–Kutta Methods:

Runge–Kutta methods generate solution estimates

with the accuracy of Taylor methods without having

to calculate these derivatives. that all one-step

methods to solve the IVP

 bxxxauxutxfu nji 000
' ,,),(

Are expressed as:),(1 jiii txhuu

Where φ(xi, tj) is an increment function and is

essentially a suitable slope over the interval [xi, xi+1]

that is used for extrapolating ui+1 from ui. The order of

the Runge–Kutta method is the number of points that

are used in [xi, xi+1] to determine this suitable slope.

For example, second-order Runge–Kutta methods use

two points in each subinterval to find the

representative slope, and so on.

A-1 Classical Runge–Kutta 4 Method:

The classical RK4 method is described by:

 43211 22
6

1
kkkkhuu ii

Where:
 ji txfk ,1

 hkthxfk

hkthxfk

hkthxfk

ji

ji

ji

34

23

12

,

2

1
,

2

1

2

1
,

2

1

RK4 methods produce estimates with the accuracy of

a fourth-order Taylor method without calculating the

derivatives of f(x, t). Instead, four function

evaluations per step are performed. The classical RK4

method is the most commonly used technique for

numerical solution of first-order IVPs, as it offers the

most acceptable balance of accuracy and

computational effort.

The user-defined function RK4 uses the classical RK4

method to estimate the solution of an IVP.

And applying the Rk4 to the eqn.(3) we have the

results as the tables(1, 2) when k=0.2:

Table(1) the MOLs by using Runge-Kutta 4 order (Rk4) at k=0.2

T

Numeric

u(4) RK4

EXACT

u(4) RK4 ABS Error

Numeric

u(5) RK4

EXACT

u(5) RK4 ABS Error

Numeric

u(6) RK4

EXACT

u(6)RK4 ABS Error

0 8.660254 10 1.34E+00 10 10 0.00E+00 9.510565 10 4.89E-01

0.2 4.973572 6.10498 1.13E+00 5.914376 6.10498 1.91E-01 5.610682 6.10498 4.94E-01

0.4 2.87859 3.727078 8.48E-01 3.447831 3.727078 2.79E-01 3.284598 3.727078 4.42E-01

0.6 1.67 2.275374 6.05E-01 2.008644 2.275374 2.67E-01 1.924726 2.275374 3.51E-01

0.8 0.969533 1.389111 4.20E-01 1.170178 1.389111 2.19E-01 1.128173 1.389111 2.61E-01

1 0.562992 0.84805 2.85E-01 0.681714 0.84805 1.66E-01 0.661317 0.84805 1.87E-01

1.2 0.326941 0.517733 1.91E-01 0.397148 0.517733 1.21E-01 0.387659 0.517733 1.30E-01

1.4 0.189865 0.316075 1.26E-01 0.231368 0.316075 8.47E-02 0.227243 0.316075 8.88E-02

1.6 0.110262 0.192963 8.27E-02 0.134789 0.192963 5.82E-02 0.133209 0.192963 5.98E-02

1.8 0.064033 0.117804 5.38E-02 0.078524 0.117804 3.93E-02 0.078086 0.117804 3.97E-02

Table(2) the MOLs by using Runge-Kutta 7 order (Rk4) at k=0.2

T

Numeric

u(7) RK4

EXACT

u(7)RK4 ABS Error

Numeric

u(8) RK4

EXACT

u(8)RK4 ABS Error

Numeric

u(9) RK4

EXACT

u(9)RK4 ABS Error

0 10 10 0.00E+00 9.749279 10 2.51E-01 10 10 0.00E+00

0.2 5.977531 6.10498 1.27E-01 5.823917 6.10498 2.81E-01 6.01166 6.10498 9.33E-02

0.4 3.524515 3.727078 2.03E-01 3.445758 3.727078 2.81E-01 3.572725 3.727078 1.54E-01

0.6 2.077419 2.275374 1.98E-01 2.039639 2.275374 2.36E-01 2.122704 2.275374 1.53E-01

0.8 1.224475 1.389111 1.65E-01 1.207499 1.389111 1.82E-01 1.261188 1.389111 1.28E-01

1 0.721732 0.84805 1.26E-01 0.714883 0.84805 1.33E-01 0.749326 0.84805 9.87E-02

1.2 0.425405 0.517733 9.23E-02 0.42324 0.517733 9.45E-02 0.445207 0.517733 7.25E-02

1.4 0.250743 0.316075 6.53E-02 0.250575 0.316075 6.55E-02 0.264517 0.316075 5.16E-02

1.6 0.147794 0.192963 4.52E-02 0.148351 0.192963 4.46E-02 0.157161 0.192963 3.58E-02

1.8 0.087113 0.117804 3.07E-02 0.08783 0.117804 3.00E-02 0.093376 0.117804 2.44E-02

Tikrit Journal of Pure Science 23 (6) 2018 ISSN: 1813 – 1662 (Print)

E-ISSN: 2415 – 1726 (On Line)

411

A-2 Runge–Kutta–Fehlberg Method:

One way to estimate the local truncation error for

Runge–Kutta methods is to use two RK methods of

different order and subtract the results. For cases

involving variable step size, the error estimate can be

used to decide when the step size needs to be

adjusted. Naturally, a drawback of this approach is

the number of function evaluations required per step.

For example, we consider a common approach that

uses a fourth-order and a fifth-order RK. This

requires a total of 10 (four for RK4 and six for

RK5) function evaluations per step. To get around the

computational burden, the Runge–Kutta–Fehlberg

(RKF) method utilizes an RK5 method that uses the

function evaluations provided by its accompanying

RK4method. And it's a form as:

The Runge–Kutta with a fifth-order method form is:

 54311

5

1

4104

2197

2565

1408

216

25
kkkkhuu ii

 65411

55

2

50

9

56430

28561
3

12825

6656

135

16
kkkkkhuw ii

)
40

11

4104

1859

2565

3544
2

27

8
,

2

1
(

)
4104

845

513

3680
8

216

439
,(

)
2197

7296

2197

7200

2197

1932
,

13

12
(

)
32

9

32

3
,

8

3
(

)
4

1
,

4

1
(

),(

543216

43215

3214

213

12

1

hkhkhkhkhkthxfk

hkhkhkhkthxfk

hkhkhkthxfk

hkhkthxfk

hkthxfk

txfk

ji

ji

ji

ji

ji

ji

We applied the Runge–Kutta–Fehlberg (FRK)

Method to the eqn.(3) and we have the results as the

tables(3) :

Table(3) the MOLs by using (FRK) at k=0.0001

T
Numeric

u(4) RKF

EXACT

u(4) RKF
ABS Error

Numeric

u(5) RKF

EXACT

u(5) RKF
ABSError

Numeric

u(6) RKF

EXACT

u(6) RKF
ABS Error

0.0001 9.510565 10 4.89E-01 10 10 0.00E+00 9.510565 10 4.89E-01

0.0002 9.487142 9.975356 4.88E-01 9.975436 9.975356 7.98E-05 9.487142 9.975356 4.88E-01

0.0003 9.463729 9.950774 4.87E-01 9.950896 9.950774 1.22E-04 9.463729 9.950774 4.87E-01

0.0004 9.440327 9.926251 4.86E-01 9.926379 9.926251 1.28E-04 9.440327 9.926251 4.86E-01

0.0005 9.416937 9.901789 4.85E-01 9.901888 9.901789 9.85E-05 9.416937 9.901789 4.85E-01

0.0006 9.39356 9.877388 4.84E-01 9.877422 9.877388 3.39E-05 9.39356 9.877388 4.84E-01

0.0007 9.370198 9.853046 4.83E-01 9.852982 9.853046 6.47E-05 9.370198 9.853046 4.83E-01

0.0008 9.346852 9.828765 4.82E-01 9.828568 9.828765 1.97E-04 9.346852 9.828765 4.82E-01

0.0009 9.323523 9.804543 4.81E-01 9.804182 9.804543 3.61E-04 9.323523 9.804543 4.81E-01

0.001 9.300212 9.780381 4.80E-01 9.779824 9.780381 5.57E-04 9.300212 9.780381 4.80E-01

t u

Numeric

u(7) RKF

EXACT

u(7) RKF
ABS Error

Numeric

u(8) RKF

EXACT

u(8) RKF
ABS Error

Numeric

u(9) RKF

EXACT

u(9) RKF
ABS Error

0.0001 10 10 0.00E+00 9.749279 10 2.51E-01 10 10 0.00E+00

0.0002 9.97538 9.975356 2.39E-05 9.725268 9.975356 2.50E-01 9.975363 9.975356 6.55E-06

0.0003 9.950828 9.950774 5.43E-05 9.701323 9.950774 2.49E-01 9.950787 9.950774 1.38E-05

0.0004 9.92634 9.926251 8.92E-05 9.67744 9.926251 2.49E-01 9.926274 9.926251 2.23E-05

0.0005 9.901916 9.901789 1.27E-04 9.653618 9.901789 2.48E-01 9.901822 9.901789 3.23E-05

0.0006 9.877554 9.877388 1.66E-04 9.629854 9.877388 2.48E-01 9.877432 9.877388 4.40E-05

0.0007 9.853251 9.853046 2.05E-04 9.606146 9.853046 2.47E-01 9.853104 9.853046 5.75E-05

0.0008 9.829007 9.828765 2.42E-04 9.582493 9.828765 2.46E-01 9.828838 9.828765 7.26E-05

0.0009 9.804819 9.804543 2.76E-04 9.558892 9.804543 2.46E-01 9.804633 9.804543 8.92E-05

0.001 9.780687 9.780381 3.06E-04 9.535342 9.780381 2.45E-01 9.780488 9.780381 1.07E-04

7- WHY PARALLEL PROCESSING?
Since the method of lines technology is convert the

PDE to the system of the ODEs and we results many

of the ODES that are need high running time if we

used the serial computer, then to solve this equitation

and running speed of the many ODEs we used the

parallel algorithm by using Matlab in the Laptop

which it have Cpu Intel core i5 speed and it have

Ram 4 Gb.

8- TYPES OF PARALLELISM: [15]

In 1966, M. J. Flynn proposed a four-way

classification of computer systems based on the

notions of instruction streams and data streams.

Flynn’s classification has become standard and is

widely used. Flynn coined the abbreviations SISD,

SIMD, MISD, and MIMD) for the four classes of

computers shown in Fig. 1.11, based on the number

of instruction streams (single or multiple) and data

streams (single or multiple) [Flyn96]. The SISD class

represents ordinary “uniprocessor” machines.

Tikrit Journal of Pure Science 23 (6) 2018 ISSN: 1813 – 1662 (Print)

E-ISSN: 2415 – 1726 (On Line)

411

Computers in the SIMD class, with several processors

directed by instructions issued from a central control

unit, are sometimes characterized as “array

processors.” Machines in the MISD category have not

found widespread application, but one can view them

as generalized pipelines in which each stage performs

a relatively complex operation (as opposed to

ordinary pipelines found in modern processors where

each stage does a very simple instruction-level

operation).

Figure 1 the Flynn-Johnson classification of computer

system

9- Parallel Algorithms:[4,12]

A parallel algorithm is one where the tasks could all

be performed in parallel at the same time due to their

data independence. The DG associated with such an

algorithm looks like a wide row of independent tasks.

Figure 2 shows an example of a parallel algorithm. A

simple example of such a purely parallel algorithm is

a web server where each incoming request can be

processed independently from other requests. Another

simple example of parallel algorithms is multitasking

in operating systems where the operating system

deals with several applications like a web browser, a

word processor, and so on.

Figure (2) example of parallel algorithm

10- MIMD systems [18,13,9]
Multiple instruction, multiple data, or MIMD,

systems support multiple simultaneous instruction

streams operating on multiple data streams. Thus,

MIMD systems typically consist of a collection of

fully independent processing units or cores, each of

which has its own control unit and its own ALU.

Furthermore, unlike SIMD systems, MIMD systems

are usually asynchronous, that is, the processors can

operate at their own pace. In many MIMD systems

there is no global clock, and there may be no relation

between the system times on two different processors.

In fact, unless the programmer imposes some

synchronization, even if the processors are executing

exactly the same sequence of instructions, at any

given instant they may be executing different

statements.

There are two principal types of MIMD systems:

shared-memory systems and distributed-memory

systems. In a shared-memory system a collection of

autonomous processors is connected to a memory

system via an interconnection network, and each

processor can access each memory location. In a

shared-memory system, the processors usually

communicate implicitly by accessing shared data

structures. In a distributed-memory system, each

processor is paired with its own private memory, and

the processor-memory pairs communicate over an

interconnection network. So in distributed-memory

systems the processors usually communicate

explicitly by sending messages or by using special

functions that provide access to the memory of

another processor. See Figures (3):

 Figure(3) MIMD parallel computer design

11- Running Time:
Since the running speed of difference application is

the first goal to build for parallel computers, then the

important measure to evaluate algorithms are running

time which defined a time that the algorithm to take

from the first minute at work into the last minute at

stopped. And when the processor is started and

stopped in the different wait, then the running time

equal to the take wait from first processor to yet

stopped the finally processor. And to the answer as

size N then the running time to have solution at using

parallel algorithm is function to N and denote as

T(N), and depend on the two point:

 Counting Steps

Tikrit Journal of Pure Science 23 (6) 2018 ISSN: 1813 – 1662 (Print)

E-ISSN: 2415 – 1726 (On Line)

411

Which is process to calculus the steps or operators

that is running by the algorithm in the bed states. And

measure the running time in the parallel computers by

the number of the unite time called (cycle), while it

measure the counting steps by the number of the

running steps in the staying kinds from the parallel

computers by two measures, it is calculus steps and

counting steps which is used to data traffic from the

processor to another among the memory shared or the

attaching web which is called (routing steps).

 Steep up (Sp)
 The speed of a program is the time to execute the

program while speed up is defined as the time it takes

to complete an algorithm with one processor divided

by the time it takes to complete the same algorithm

with N processors. The formula of speed up for a

parallel application is given.

 ptime

time
spupspeed

1

Where Time (1) is execution time for a single

processor and Time (p) is execution time using p

parallel processors.

 The Efficiency (ep):

The efficiency of a parallel program is a measure of

processor utilization. Efficiency is defined as the

speed up with processors divided by the number of

processors N.

p

upspeed
efficiency

Where p is the number of processors.

12- The parallel algorithm to the MOL: [15]
1- First algorithm is level technology for RK4:

we see when at solve the PDE by using the MOL

method that they results many of the ODEs which

need high running time and to solve this we used first

algorithm which is worked as :

1. Cpu1 : it's used to calculus the initial condition

from the equation)sin(100, ii xxu for i=1..N and

in this example N=9 and the sending to other

processors Cpu4 , Cpu5 …., CPU9

2. Cpu2: it's used to calculus the boundary condition

 0,0 jtu for j=1..M and the sending to other

processors Cpu4 , Cpu5 …., CPU9

3. Cpu3: it's used to calculus the boundary condition

 0,1 jtu for j=1..M and the sending to other

processors Cpu4 , Cpu5 …., CPU9

4. Cpu4 : it's received the data from the Cpu1 & Cpu2

and Cpu3 to compute the first ODEs U1 by using

Runge-kutta function.

5. Cpu5 :it's received the data from the Cpu1 & Cpu2

and Cpu3 to compute the first ODEs U2 by using

Runge-kutta function.

6. Cpu9 :it's received the data from the Cpu1 & Cpu2

and Cpu3 to compute the first ODEs U9 by using

Runge-kutta function.

We can classification the first parallel algorithm as

the figure (3):

Figure (3) the level algorithm parallel technology to the

MOL &RK4

And the running time by using level parallel

algorithm of the MOLs by using RK4 are showing in

the table (4):

Table (4) the running time of each MOL by using RK4

T u(4) at time

0.917227609s

u(5) at time

0.931212212s

u(6) at time

0.976410798 s

u(7) at time

1.007195172 s

u(8) at time

1.044946441 s

u(9) at time

1.123303412 s

0 8.660254 10 9.510565 10 9.749279 10

0.2 4.973572 5.914373 5.610679 5.977527 5.823914 6.011656

0.4 2.878591 3.447831 3.284598 3.524515 3.445759 3.572726

0.6 1.67 2.008644 1.924726 2.07742 2.039639 2.122704

0.8 0.969533 1.170178 1.128173 1.224475 1.2075 1.261188

1 0.562992 0.681714 0.661317 0.721733 0.714883 0.749326

1.2 0.326941 0.397148 0.387659 0.425405 0.42324 0.445207

1.4 0.189865 0.231368 0.227243 0.250744 0.250575 0.264517

1.6 0.110262 0.134789 0.133209 0.147794 0.148351 0.157161

1.8 0.064033 0.078524 0.078086 0.087113 0.08783 0.093376

We compute the running time to solve the 1-D

equation by MOL and RK4 at using serial Laptop and

it's (3.393 s) such that the number of the ODEs are 9

and using 9 processors and we accelerator the

solutions about 3.699190873 and the efficient of

processors is (0.411021208).

2- Second algorithm is level technology for RK-

Fehlberg:

To accelerator the running time to the MOL method

which is used Runge-Kutta Fehlberg to solve the

ODEs that is results from convert the PDE by MOL

we used the level parallel technology as follows:

Tikrit Journal of Pure Science 23 (6) 2018 ISSN: 1813 – 1662 (Print)

E-ISSN: 2415 – 1726 (On Line)

411

1. Cpu1 : it's used to calculus the initial condition

from the equation)sin(100, ii xxu for i=1..N and

in this example N=9 and the sending to other

processors Cpu4 , Cpu5 …., CPU9

2. Cpu2: it's used to calculus the boundary condition

 0,0 jtu for j=1..M and the sending to other

processors Cpu4 , Cpu5 …., CPU9

3. Cpu3: it's used to calculus the boundary condition

 0,1 jtu for j=1..M and the sending to other

processors Cpu4 , Cpu5 …., CPU9

4. Cpu4 : it's received the data from the Cpu1 & Cpu2

and Cpu3 to compute the first ODEs U1 by using

Runge - kutta Fehlberg function.

5. Cpu5 :it's received the data from the Cpu1 & Cpu2

and Cpu3 to compute the first ODEs U2 by using

Runge - kutta Fehlberg function.

6. Cpu9 :it's received the data from the Cpu1 & Cpu2

and Cpu3 to compute the first ODEs U9 by using

Runge-kutta Fehlberg (FRK) function.

The table (5) showing the running time each of the

MOL by level parallel algorithm using (FRK):

Tikrit Journal of Pure Science 23 (6) 2018 ISSN: 1813 – 1662 (Print)

E-ISSN: 2415 – 1726 (On Line)

414

we solve the 1-D heat equation in above example by

MOL and Runge-Kutta Fehlbreg method it take wait

by serial computer (Laptop) is (1.774 s) bout when

we used the parallel algorithm by using 9 processors

we accelerator the solutions about (2.092746169) and

the efficient is (0.232527352).

Conclusion
1. We used the 5 point central (FDM) and Runge-

kutta 4
th

 order classes to solve the 1-D heat equation

xxt uu 2 and we heve the numerical solutions with

the little absolute error when using the step time

k=0.2

2. We improving the numerical solutions of 1-D heat

equation on the above by using MOL and solve the

ODE equations by Runge-kutta Fehlberg method and

we have results absolute error little than from the

Runge-kutta 4 order suh that the using the k=0.0001

3. We accelerator the running time for solving by

using MOL since the alot of the number of the

ordinary differential equations which leads from the

converts the PDEs to ODEs by MOL method and to

treat that we used first level parallel algorithm for

Runge-kutta 4 order to speed the running time of the

solves and we have the speed up about (3.699190873)

and the efficient of processors is (0.411021208) such

that we using 9 processors.

4. We speed up the MOL equations which is using

the Runge-kutta Fehlberg by the second level parallel

algorithm to speed up about (2.092746169) and the

efficient is (0.232527352) and by using 9 processors.

References
[1] Alkis Gonstantinides & Navid Mostoufi;(1999);

Numerical Methods for Chemical Engineers with

MATLAB Applications; by Prentice hall PTR ISBN

0-13-013851-7. [8]
[2]Daniel R. Lynch;(2005); NUMERICAL

PARTIAL DIFFERENTIAL EQUATIONS FOR

ENVIRONMENTAL SCIENTISTS AND

ENGINEERS A First Practical Course; 2005 Springer

Science + Business Media, Inc..

[3] Fatmah M. Alabdali, Huda Omar Bakodah;

(2014); A New Modification of the Method of Lines

for First Order Hyperbolic PDEs; Applied

Mathematics, 2014, 5, 1457-1462 Published Online

June 2014 in Sci Res. http://www.scirp.org/journal/am.

[4] Jeremy Kepner;(2009); "Parallel MATLAB for

Multicore and Multinode Computers"; by the Society

for Industrial and Applied Mathematics (SIAM);

ISBN 978-0-898716-73-3.

[5] Karline Soetaert & Filip Meysman; (2010);

Solving partial differential equations, using R

package Reac Tran;

http://www.nioo.knaw.nl/ppages/ksoetaert.

[6] Khaddaj, S. A. and Liddell, H. M., (1990), “The

Solution of Partial Differetial Equations by the

Numerical Method of Lines Combined with a Parallel

ODE Solver”, Numerical Methods in Engineering:

Theory and Applications, Vol. I, Edited by Pande, G.

N. and Middleton, J., University College of Swansea

Elsevier Applied Science Publisher Ltd..

[7] Leon Lapidus &G eorge F. pinder; (1999);

NUMERICAL SOLUTION OF ARTIAL

DIFFERENTIAL EQUATIONS IN SCIENCE AND

ENGINEERING; by John Wiley & Sons, Inc. All

rights reserved ISBN 0-471-35944-0 .

[8]Louise Olsen-Kettle; Numerical solution of partial

differential equations.

http://researchers.uq.edu.au/researcher/768.

[9]M. AKRAM ; (2005); A parallel algorithm for the

inhomogeneous heat equations; University College of

Information Technology, Punjab University, Old

Campus, Lahore-54000, Pakistan; J. Indian Inst. Sci.,

Sep.–Oct. 2005, 85, 253–264.

[10] M. Javidi; (2006);" THE MOL SOLUTION

FOR THE ONE-DIMENSIONAL HEAT

EQUATION SUBJECT TO NONLOCAL

CONDITIONS"; Kermanshah 67149, Iran;

International Mathematical Forum, 1, 2006, no. 12,

597-602.

[11] M.A. Rehman M. S. A. Taj and M. M. Butt

;(2010); FIFTH-ORDER NUMERICAL METHODS

FOR HEAT EQUATION SUBJECT TO A

BOUNDARY INTEGRALSPECIFICATION; Acta

Math. Univ. Comenianae Vol. LXXIX, 1(2010), pp.

89-104.

[12] Malik Shahadat Ali Taj;(1995); Higher Order

Parallel Splitting Methods For Parabolic Partial

Differential Equations"; thesis submitted for the

degree of Doctor of Philosophy Uxbridge, Middlesex,

England. UB8 3PH.

[13] Norma Alias; (2010); "Some Parallel Numerical

Methods in Solving Partial Differential

Equations";V2-396 2010 2nd International

Conference on Computer Engineering and

Technology.

[14]Nur Izzati Che Jawias& Fudiah Ismail&

Mohamed Sulieman and Azmi Jaffar; "Fourth Order

Four-stage Diagonally Implicit Runge-Kutta Method

For Linear Ordinary Differential Equations";

Malaysian Journal of Mathematical Sciences 4(1):95-

`05(2010).

[15] Qais Younis Mahmmod; (2013); Improving

Parallel Numerical Solutions Of Partial Differential

equations; thesis Submitted to The Council of the

College of Education,University of Mosul.

[16] Randall J. Leveque;(2007); Finite Difference

Methods for Ordinary and Partial Differential

Equations Steady-State and Time-Dependent

Problems; by the Society for Industrial and Applied

Mathematics.

[17] Samir Hamdi & William E. Schiesser y and

Graham W. Gri_thsz; (2009); Method of Lines; Ecole

Polytechnique, France; Lehigh University, USA; City

University,UK; Scholarpedia, 2(7):2859.

[18] Sang-Bae kim;(1993);" parallel numerical

methods for partial differential equations"; thesis of

Purdue University in partial requirements for the

degree of doctor of philosophy.

http://www.scirp.org/journal/am
http://researchers.uq.edu.au/researcher/768

Tikrit Journal of Pure Science 23 (6) 2018 ISSN: 1813 – 1662 (Print)

E-ISSN: 2415 – 1726 (On Line)

411

[19] Timothy Sauer ; (2012); NUMERICAL Analysis

second edition; By Pearson Education, Inc. ISBN-13:

978-0-321-78367-7.

[20] VICTOR J. Law; (2013); NUMERICAL

METHODS for CHEMICAL ENGINEERS Using

Excel , VBA, and MATLAB; by Taylor & Francis

Group, LLC Boca Raton, FL 33487-2742.

[21] William E. Schiesser & Graham W. Griffiths ;

(2009) ; A Compendium of Partial Differential

Equation Models: Method of Lines Analysis with

Matlab; ISBN-13 978-0-511-50853-0.

تحسين الحمول المتوازية لطريقة الخطوط في حل معادلة الحرارة ذات البعد الواحد باستخدام النقاط
 الخمسة لمفروقات المنتهية

 1زياد محمد عبدالله ، 1اكرم سالم محمد، 4قيس يونس محمود يونس
 ، وزارة التربية ، اربيل ، العراق ممثمية وزارة التربية في اربيل 1
 ، جامعة تكريت ، تكريت ، العراقالحاسوب والرياضيات قسم الرياضيات ، كمية عموم 2

 الممخص

 (MOL). في بداية طريقة الخطوط (MOL)الهدف من الدراسة هو الحمول العددية لمعادلة الحرارة ذات البعد الواحد باستخدام طريقة الخطوط
وبالتالي تتحول هذه المعادلة التفاضمية الجزئية الى نقوم بتحويل المشتقة الثانية لما يكافئها باستخدام النقاط الخمسة المركزية لمفروقات المنتهية

مثل استخدام (ODEs)لحل المعرفة. ثم نحل منظومة المعادلات التفاضمية الاعتيادية باستخدام احدى الطرق (ODEs)معادلة تفاضمية اعتيادية
قة الثانية الى ما يكافئها باستخدام النقاط الخمسة لمفروقات كوتا فيمبريج. وبسبب تحويل المشت-كوتا ذات الرتبة الرابعة وطريقة رونج-طريقة رونج

وبالتالي الى زيادة وقت الحل، قمنا بتطوير كفاءة طريقة (ODE)والتي ادت الى زيادة حجم منظومة المعادلات الخطية . (FDM) المنتهية
(MOLs) ولحل هذه المشكمة استخدامنا المعالجات المتوازية لتعجيل حل منظومة(ODE) واستخدمنا حاسبات من نوع .MIMD في التقنية

 .المتوزاية المطورة الملائمة لتنفيذها

