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Abstract

The aim of the study is to explain the numerical solutions of the one

dimensional (1-D) of heat by using method of lines (MOLs). In the
(MOLs) the derivative is firstly transformed to equivalent 5 point central
finite differences methods (FDM) that is also transformed to the ordinary
differential equations (ODEs). The produced (ODEs) systems are solved
by the well-known techniques method of ODEs such as the 4™ Runge -
Kutta method and Runge - Kutta Fehlberg. And since of the conversion
of the second derivative to the equivalent of the 5 points FDM which led
to an increase in the size of the system equations ODEs, and thus
increased we have improved the performance of these (MOLs)
techniques by introduce parallel processing to speed up the solution of
the produced ODE systems. The developed parallel technique, are
suitable for running on MIMD (Multiple Instruction Stream, Multiple

Data Stream) computers.

1. Introduction

The method of lines is a general technique for
solution partial differential equations (PDEs) by
typically using finite difference relationships for the
spatial derivatives and ordinary differential equations
for the time derivative.

Many physical, chemical and engineering problems,
mathematically, can be modeled in the form of
system of partial differential equations or system of
ordinary differential equations.

Parabolic = PDEs  describe practically useful
phenomena such as transport-chemistry problems of
the advection-diffusion-reaction type and problem of
this type play an important role in the modeling of
pollution of the atmosphere, ground water and surface
water. Qais Younis Mahmmod;[15]; thesis Submitted
by " Improving Parallel Numerical Solutions Of
Partial Differential equations".Fatmah M. Alabdali,
Huda Omar Bakodah [3] ; she's study "A New
Modification of the Method of Lines for First Order
Hyperbolic PDEs”. Norma Alias Norma Alias&
Noriza Satam, Roziha Darwis, Norhafiza Hamzah;
[13]; "Some Parallel Numerical Methods in Solving
Partial Differential Equations".Nur Izzati Che
Jawias& Fudiah Ismail& Mohamed Sulieman and
Azmi Jaffar;[14];" Fourth Order Four-stage
Diagonally Implicit Runge-Kutta Method For Linear
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Ordinary Differential Equations. M. Javidi [10];
"THE MOL SOLUTION FOR THE ONE-
DIMENSIONAL HEAT EQUATION SUBJECT TO
NONLOCAL CONDITIONS". Karline Soetaert &
Filip Meysman [S];" Solving partial differential
equations, using R package ReacTran;, M.A.
Rehman M. S. A. Taj and M. M. Butt [11]; "fifth-
order numerical methods for heat equation subject to
boundary integral specification" . Louise Olsen-Kettle
[8]; "Numerical solution of partial differential
equations". Samir Hamdi , William E. Schiesser y
and Graham W. Gri_thsz[17]; "Method of Lines".
Randall J. Leveque [16];"Finite Difference Methods
Ordinary and Partial Differential Equations Steady-
State and Time-Dependent Problem”.. Sang-Bae kim
[18];" parallel numerical methods for partial
differential equations". Malik Shahadat Ali Taj
[12];"Higher Order Parallel Splitting Methods For
Parabolic Partial Differential Equations". Jeremy
Kepner [4];Parallel MATLAB for Multicore and
Multinode Computers;[6]; The Solution of Partial
Differetial Equations by the Numerical Method of
Lines Combined with a Parallel ODE Solver”

2 .Classification of PDEs: [15, 21]

The classification of PDEs is important for the
numerical solution you choose.
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A(x'sy)Uxx +2B(xay)ny +C(xay »y :F(x’y)
A. Elliptic: AC> B?, for example Laplace's
equation as: ¢y 4 U,, =0
A=C=], B=0

B. Hyperbolic; AC < B2, for example the 1-D wave
equation as: 1
q Up = 7Utt

C

A=1 ,C=-1/c%, B=0

C. Parabolic: 4c=p* for example, the heat or
diffusion equation as: ¢/, - gy

A=1 , B=C=0-
3. ELEMENTS OF THE MOL |21,2]
The basic idea of the MOL is to replace the spatial
(boundary-value) derivatives in the PDE with
algebraic approximations. Once this is done, the
spatial derivatives are no longer stated explicitly in
terms of the spatial independent variables. Thus, in
effect, only the initial-value variable, typically time in
a physical problem, remains. In other words, with
only one remaining independent variable, we have a
system of ODEs that approximate the original PDE.
The challenge, then, is to formulate the
approximating system of ODEs. Once this is done,
we can apply any integration algorithm for initial-
value ODEs to compute an approximate numerical
solution to the PDE. Thus, one of the salient features
of the MOL is the use of existing, and generally well-
established, numerical methods for ODEs.
To illustrate this procedure, we consider the MOL
solution of Eq. (1). First we need to replace the
spatial derivative u, with an algebraic approximation.
In this case we will use a finite difference (FD).
4-Five Point Central Difference
method:[14,11,13]
In this research, centered difference methods are
used. Hence a fourth order polynomial needs to be
fitted through five points. We fit the polynomial

through the five points Ui g jo Upy Uy oo Uy o

Ui and Thus, the formula is given by,
ﬁzui\/ ol 16wy =300, + 160, — i,
a? 124°

This is known as the five-point central difference
method.

5-Numerical solution of 1-D heat equation

using five point difference  method
[21,10,5,20,19,7,1,17]

We  consider  this  example: , —pg%
0<x<0.02, p=05,0<¢

where the initial conditions are u(x,O)z 10sin(7zx)
and boundary conditions u(O, z) =0 ,Lu(lL)=0

such as the analytical solution of above equation is

u(x,t)=10sin (). 0257

by substitute about
872;2, _ —lu, ; +16u, —30u2,-’j + 160, —luy, +0(h4)
ox 12h
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we have
du; _ ﬂZ(_lui—Z +16u;_ —30u; +16u,,, _1“i+2) (2
dt 124

if we choose 4 =0.00004 ; and the values of initial
conditions are : 4(xx,0) = 10sin(7zx)

u, =10sin(7(0.00004)) = u, = 2.193245422¢7%%;

u, =10sin(7(0.00008)) = u, = 3.386490845¢ ™"

uy = 10sin(7(0.00012)) = u, = 6.579736267¢ "

u, =10sin(7(0.00028)) = u, =1.535271796¢ %

Such that

u, = 0;u, = 0from initial condition and make
U, =u;Ug =Ug

From equation (2) we have:

du, =0 ; du, —(0 From boundary conditions
dt dt
u(0,)=0 ,u(l,t)=0

From equation (2) we have:

%:0.25(7114,, + 161, —30u, +16u, 71%)3%
dt 121° dt
:0.25(—1147] +16u, —30u, +16u, —lu4)
12(0.00004)*
%:0.25(7 lu, +16u, —30u, +16u, 71u5) 3%
t 124 dt
:0.25(—lul +16u, —30u, +16u, — lus)
12(0.00004)°
%:0.25(71% +16u; —30u, +16u; 71u6)3%
dt 121* dt
:0.25(—1142 + 161, —30u, +16u, —luﬁ)
12(0.00004)*
%:0.25(7 lu, +16u, —30u, + 161, 71u7):%
dt 121* dt
:0.25(—1143 +16u, —30u, +16u, —1u7)
12(0.00004)°
%:0.25(—1% +16u; —30u, +16u, —lug):%
dt 12/ dt
:0.25(—1u4 +16u; —30u, +16u, —lug)
12(0.00004)
%:0.25(— lug +16u, —30u, +16u, —lug)j%
dt 121° dt
:0.25(—1u5 +16u, —30u, +16u, —lug)
12(0.00004)°

and from these equations when n=7 as the example
we have :

w) (<30 16 -1 0 0 0 0) (y
wy| |16 =30 -1 0 0 0 0| |u
- u -1 16 -30 16 -1 0 0 uy
du ;
Zolwl= 0 -1 16 =30 16 <1 0 e
u; 0 0 -1 16 =30 16 -1 |us
g 0 0 0 -1 16 =30 16 | |u,
u; 0 0 0 0 -1 16 -30) \u
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This MOL approach is sometimes used in practice by
first discretizing in space and then applying a
software package for systems of ODEs. There are
also packages that are specially designed to apply
MOL. This approach has the advantage of being
relatively easy to apply to a fairly general set of time-
dependent PDEs, but the resulting method is often not
as efficient as specially designed methods for the
PDE this equation we can written
as: [15 21,10,5,19 1]

U = Au+b=>u = f (1,150, 15, g1, ) ---(3)
If we apply an ODE method to discretize the system
(3), we will obtain a fully discrete method which
produces  approximations " ~u; (zn)at discrete
points in time which are exactly the points (x,z,) of
the grid.

—
'

We solve for # using System of First-Order
Ordinary Differential Equations (ODEs).

6. System of First-Order Ordinary
Differential Equations (ODEs)[19,7,8,16,2,18]
A- Runge—Kutta Methods:

Runge—Kutta methods generate solution estimates
with the accuracy of Taylor methods without having
to calculate these derivatives. that all one-step
methods to solve the IVP
u :f('xi’tj) ,u(x0)=u0,
Are expressed as: Uy =Uu; + h¢(xiatj)

Where ¢ (x;, t) is an increment function and is
essentially a suitable slope over the interval [X;, X]

a=xy<x<x,=b
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that is used for extrapolating u;.; from u;. The order of
the Runge—Kutta method is the number of points that
are used in [X;, X;+1] to determine this suitable slope.
For example, second-order Runge—Kutta methods use
two points in each subinterval to find the
representative slope, and so on.

A-1 Classical Runge—Kutta 4 Method:

The classical RK4 method is described by:

U, =u; + éh(kl + 2k, + 2k + k)
Where:

k= flx.t;)

f( +;ht +— kh)

fx+ ht+ kh)

ky = f(x,. + h,tj +ksh)
RK,4 methods produce estimates with the accuracy of
a fourth-order Taylor method without calculating the
derivatives of f(x, t). Instead, four function
evaluations per step are performed. The classical RKy
method is the most commonly used technique for
numerical solution of first-order IVPs, as it offers the
most acceptable balance of accuracy and
computational effort.
The user-defined function RK, uses the classical RK,
method to estimate the solution of an IVP.
And applying the Rk, to the eqn.(3) we have the
results as the tables(1, 2) when k=0.2:

Table(1) the MOLs by using Runge-Kutta 4 order (Rk4) at k=0.2

Numeric EXACT Numeric EXACT Numeric EXACT
T u(4) RK4 u(4) RK4 ABS Error | u(5) RK4 u(5) RK4 ABS Error | u(6) RK4 u(6)RK4 ABS Error
0 8.660254 10 1.34E+00 10 10 0.00E+00 9.510565 10 4.89E-01
0.2 | 4973572 6.10498 1.13E+00 5.914376 6.10498 1.91E-01 5.610682 6.10498 4.94E-01
0.4 | 2.87859 3.727078 8.48E-01 3.447831 3.727078 2.79E-01 3.284598 3.727078 4.42E-01
0.6 | 1.67 2.275374 6.05E-01 2.008644 2.275374 2.67E-01 1.924726 2.275374 3.51E-01
0.8 | 0.969533 1.389111 4.20E-01 1.170178 1.389111 2.19E-01 1.128173 1.389111 2.61E-01
1 0.562992 0.84805 2.85E-01 0.681714 0.84805 1.66E-01 0.661317 0.84805 1.87E-01
1.2 | 0.326941 0.517733 1.91E-01 0.397148 0.517733 1.21E-01 0.387659 0.517733 1.30E-01
1.4 | 0.189865 0.316075 1.26E-01 0.231368 0.316075 8.47E-02 0.227243 0.316075 8.88E-02
1.6 | 0.110262 0.192963 8.27E-02 0.134789 0.192963 5.82E-02 0.133209 0.192963 5.98E-02
1.8 | 0.064033 0.117804 5.38E-02 0.078524 0.117804 3.93E-02 0.078086 0.117804 3.97E-02
Table(2) the MOLs by using Runge-Kutta 7 order (Rk4) at k=0.2
Numeric EXACT Numeric EXACT Numeric EXACT

T u(7) RK4 u(7)RK4 ABS Error u(8) RK4 u(8)RK4 ABS Error u(9) RK4 u(9)RK4 ABS Error

0 10 10 0.00E+00 9.749279 10 2.51E-01 10 10 0.00E+00
0.2 5.977531 6.10498 1.27E-01 5.823917 6.10498 2.81E-01 6.01166 6.10498 9.33E-02
0.4 3.524515 3.727078 2.03E-01 3.445758 3.727078 2.81E-01 3.572725 3.727078 1.54E-01
0.6 2.077419 2.275374 1.98E-01 2.039639 2.275374 2.36E-01 2.122704 2.275374 1.53E-01
0.8 1.224475 1.389111 1.65E-01 1.207499 1.389111 1.82E-01 1.261188 1.389111 1.28E-01

1 0.721732 0.84805 1.26E-01 0.714883 0.84805 1.33E-01 0.749326 0.84805 9.87E-02
1.2 0.425405 0.517733 9.23E-02 0.42324 0.517733 9.45E-02 0.445207 0.517733 7.25E-02
1.4 0.250743 0.316075 6.53E-02 0.250575 0.316075 6.55E-02 0.264517 0.316075 5.16E-02
1.6 0.147794 0.192963 4.52E-02 0.148351 0.192963 4 .46E-02 0.157161 0.192963 3.58E-02
1.8 0.087113 0.117804 3.07E-02 0.08783 0.117804 3.00E-02 0.093376 0.117804 2.44E-02
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A-2 Runge—Kutta—Fehlberg Method:

One way to estimate the local truncation error for
Runge—Kutta methods is to use two RK methods of
different order and subtract the results. For cases
involving variable step size, the error estimate can be
used to decide when the step size needs to be
adjusted. Naturally, a drawback of this approach is
the number of function evaluations required per step.
For example, we consider a common approach that
uses a fourth-order and a fifth-order RK. This
requires a total of 10 (four for RK, and six for

RKj5) function evaluations per step. To get around the
computational burden, the Runge—Kutta—Fehlberg
(RKF) method utilizes an RK5 method that uses the
function evaluations provided by its accompanying
RK method. And it's a form as:

The Runge—Kutta with a fifth-order method form is:
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—u +h 7]{ 1408/(3 2197k4 1 5)
216 2565 4104 5
28561 2
w —u+ A0 005603 2861, 9, 2
135 12825 56430 50 55
ky = f(x;,t;)
ky =f(xl.+lh,tv+lklh)
k—f(x+ ht+ kh+ kh)
1932 7200 7296
ky —f(x[-%—ﬁh,t‘ +T97k1h 2197k2h ka )
ks =f(x[+h,t.+439kh 8k,h + @k h—ﬁk +h)
513 4104
3544 1859 11
ke = f(x; +—= ht ——kh+2k h— 2565k3h+mk4h—rok5h)

We apphed the Runge—Kutta—Fehlberg (FRK)
Method to the eqn.(3) and we have the results as the
tables(3) :

Table(3) the MOL:s by using (FRK) at k=0.0001

T E(I;l;n I:E% uFEi()l?{CIgF ABS Error i\g;l;n Iich uli?)?{% ABSError Egg;n QECF uli?)l?{CIgF ABS Error
0.0001 | 9.510565 10 4.89E-01 10 10 0.00E+00 | 9.510565 10 4.89E-01
0.0002 | 9.487142 9.975356 4.88E-01 9.975436 9.975356 7.98E-05 9.487142 9.975356 4.88E-01
0.0003 | 9.463729 9.950774 4.87E-01 9.950896 9.950774 1.22E-04 9.463729 9.950774 4.87E-01
0.0004 | 9.440327 9.926251 4.86E-01 9.926379 9.926251 1.28E-04 9.440327 9.926251 4.86E-01
0.0005 | 9.416937 9.901789 4.85E-01 9.901888 9.901789 9.85E-05 9.416937 9.901789 4.85E-01
0.0006 9.39356 9.877388 4.84E-01 9.877422 9.877388 3.39E-05 9.39356 9.877388 4.84E-01
0.0007 | 9.370198 9.853046 4.83E-01 9.852982 9.853046 6.47E-05 9.370198 9.853046 4.83E-01
0.0008 | 9.346852 9.828765 4.82E-01 9.828568 9.828765 1.97E-04 9.346852 9.828765 4.82E-01
0.0009 | 9.323523 9.804543 4.81E-01 9.804182 9.804543 3.61E-04 9.323523 9.804543 4.81E-01
0.001 9.300212 9.780381 4.80E-01 9.779824 9.780381 5.57E-04 9.300212 9.780381 4.80E-01
| e | aoae | Awsnor | et | POCE | avsemor | Mot | iy | ABS B
0.0001 10 10 0.00E-+00 9.749279 10 2.51E-01 10 10 0.00E+00
0.0002 9.97538 9.975356 2.39E-05 9.725268 9.975356 2.50E-01 9.975363 9.975356 6.55E-06
0.0003 | 9950828 9.950774 5.43E-05 9.701323 9.950774 2.49E-01 9.950787 9.950774 1.38E-05
0.0004 9.92634 9.926251 8.92E-05 9.67744 9.926251 2.49E-01 9.926274 9.926251 2.23E-05
0.0005 | 9901916 9.901789 1.27E-04 9.653618 9.901789 2.48E-01 9.901822 9.901789 3.23E-05
0.0006 | 9877554 9.877388 1.66E-04 9.629854 9.877388 2.48E-01 9.877432 9.877388 4.40E-05
0.0007 | 9853251 9.853046 2.05E-04 9.606146 9.853046 2.47E-01 9.853104 9.853046 5.75E-05
0.0008 | 9.829007 9.828765 2.42E-04 9.582493 9.828765 2.46E-01 9.828838 9.828765 7.26E-05
0.0009 | 9804819 9.804543 2.76E-04 9.558892 9.804543 2.46E-01 9.804633 9.804543 8.92E-05
0.001 9.780687 9.780381 3.06E-04 9.535342 9.780381 2.45E-01 9.780488 9.780381 1.07E-04

7- WHY PARALLEL PROCESSING?

In 1966, M. J.

Flynn proposed a four-way

Since the method of lines technology is convert the
PDE to the system of the ODEs and we results many
of the ODES that are need high running time if we
used the serial computer, then to solve this equitation
and running speed of the many ODEs we used the
parallel algorithm by using Matlab in the Laptop
which it have Cpu Intel core i5 speed and it have
Ram 4 Gb.

8- TYPES OF PARALLELISM: [15]

classification of computer systems based on the
notions of instruction streams and data streams.
Flynn’s classification has become standard and is
widely used. Flynn coined the abbreviations SISD,
SIMD, MISD, and MIMD) for the four classes of
computers shown in Fig. 1.11, based on the number
of instruction streams (single or multiple) and data
streams (single or multiple) [Flyn96]. The SISD class
represents ordinary “uniprocessor” machines.
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Computers in the SIMD class, with several processors
directed by instructions issued from a central control
unit, are sometimes characterized as ‘“array
processors.” Machines in the MISD category have not
found widespread application, but one can view them
as generalized pipelines in which each stage performs
a relatively complex operation (as opposed to
ordinary pipelines found in modern processors where
ecach stage does a very simple instruction-level
operation).

Dinta Sireamis)
Singla Muliipla
s ] SISD SIMD
g H “Uniprocusscsi™ ~Aaray Frocssan”
w
'g OMsV GMMP
el ey ic
E 5 MISD MIMD 8
- DMSV DMMP =
“Disirib. Shared | "Diaicth. mamory_
Shared Variaides  bMessage Passing
Communléatlon/Synchronlzation

Figure 1 the Flynn-Johnson classification of computer
system

9- Parallel Algorithms:|[ 4,12]

A parallel algorithm is one where the tasks could all
be performed in parallel at the same time due to their
data independence. The DG associated with such an
algorithm looks like a wide row of independent tasks.
Figure 2 shows an example of a parallel algorithm. A
simple example of such a purely parallel algorithm is
a web server where each incoming request can be
processed independently from other requests. Another
simple example of parallel algorithms is multitasking
in operating systems where the operating system
deals with several applications like a web browser, a
word processor, and so on.
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i,

ofeXoo

IR

A1 CH ..-1|r_|

&

Figure (2) example of parallel algorithm

10- MIMD systems [18,13,9]

Multiple instruction, multiple data, or MIMD,
systems support multiple simultaneous instruction
streams operating on multiple data streams. Thus,
MIMD systems typically consist of a collection of
fully independent processing units or cores, each of
which has its own control unit and its own ALU.
Furthermore, unlike SIMD systems, MIMD systems
are usually asynchronous, that is, the processors can
operate at their own pace. In many MIMD systems
there is no global clock, and there may be no relation
between the system times on two different processors.
In fact, unless the programmer imposes some
synchronization, even if the processors are executing
exactly the same sequence of instructions, at any
given instant they may be executing different
statements.

There are two principal types of MIMD systems:
shared-memory systems and distributed-memory
systems. In a shared-memory system a collection of
autonomous processors is connected to a memory
system via an interconnection network, and each
processor can access each memory location. In a
shared-memory system, the processors usually
communicate implicitly by accessing shared data
structures. In a distributed-memory system, each
processor is paired with its own private memory, and
the processor-memory pairs communicate over an
interconnection network. So in distributed-memory
systems the processors usually communicate
explicitly by sending messages or by using special
functions that provide access to the memory of
another processor. See Figures (3):

[ cPu I

!

I Mamory |

I

| cPuU I

T

| Mamory I

I

l Mamaory |

| Interconnoact

cPu ‘

T

| cPu |

[

l Mamoary ]

f I

Figure(3) MIMD parallel computer design

11- Running Time:

Since the running speed of difference application is
the first goal to build for parallel computers, then the
important measure to evaluate algorithms are running
time which defined a time that the algorithm to take
from the first minute at work into the last minute at
stopped. And when the processor is started and

148

stopped in the different wait, then the running time
equal to the take wait from first processor to yet
stopped the finally processor. And to the answer as
size N then the running time to have solution at using
parallel algorithm is function to N and denote as
T(N), and depend on the two point:

Counting Steps
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Which is process to calculus the steps or operators
that is running by the algorithm in the bed states. And
measure the running time in the parallel computers by
the number of the unite time called (cycle), while it
measure the counting steps by the number of the
running steps in the staying kinds from the parallel
computers by two measures, it is calculus steps and
counting steps which is used to data traffic from the
processor to another among the memory shared or the
attaching web which is called (routing steps).

e Steep up (Sp)

The speed of a program is the time to execute the
program while speed up is defined as the time it takes
to complete an algorithm with one processor divided
by the time it takes to complete the same algorithm
with N processors. The formula of speed up for a
parallel application is given.

time(l)

time(p)

Where Time (1) is execution time for a single
processor and Time (p) is execution time using p
parallel processors.

e The Efficiency (ep):

The efficiency of a parallel program is a measure of
processor utilization. Efficiency is defined as the
speed up with processors divided by the number of
processors N.

speed up

speed up(sp)=

efficiency=

Where p is the number of processors.

12- The parallel algorithm to the MOL: [15]

1- First algorithm is level technology for RK4:

we see when at solve the PDE by using the MOL
method that they results many of the ODEs which
need high running time and to solve this we used first
algorithm which is worked as :

1. Cpu, : it's used to calculus the initial condition
from the equation u(x,,O) =10sin( ;) for i=1..N and
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in this example N=9 and the sending to other
processors Cpuy , Cpus ...., CPUy

2. Cpuy: it's used to calculus the boundary condition
u(O,tj)zo for j=1.M and the sending to other

processors Cpuy , Cpus ...., CPUy

3. Cpus: it's used to calculus the boundary condition

u(l t.)=0 for j=1.M and the sending to other
27

processors Cpuy , Cpus ...., CPUy

4. Cpuy: it's received the data from the Cpu; & Cpu,
and Cpu; to compute the first ODEs U; by using
Runge-kutta function.

5. Cpus :it's received the data from the Cpu; & Cpu,
and Cpu; to compute the first ODEs U, by using
Runge-kutta function.

6. Cpuy :it's received the data from the Cpu; & Cpu,
and Cpu; to compute the first ODEs Uy by using
Runge-kutta function.

We can classification the first parallel algorithm as
the figure (3):

U, U, U3 U; Us | Ug U,
Cpua Cpus Cpus|
cpu2| Cpus Cpu? Cpud Cpu3
CP UL —
Km0 ¥ Xa Xy Xy X X ¥m=1

Figure (3) the level algorithm parallel technology to the
MOL &RK4

And the running time by using level parallel
algorithm of the MOLs by using RK4 are showing in
the table (4):

Table (4) the running time of each MOL by using RK4

T u(4) at time u(5) at time u(6) at time u(7) at time u(8) at time u(9) at time
0.917227609s | 0.931212212s | 0.976410798 s | 1.007195172 s | 1.044946441 s | 1.123303412 s

0 8.660254 10 9.510565 10 9.749279 10
0.2 4.973572 5.914373 5.610679 5.977527 5.823914 6.011656
0.4 2.878591 3.447831 3.284598 3.524515 3.445759 3.572726
0.6 1.67 2.008644 1.924726 2.07742 2.039639 2.122704
0.8 0.969533 1.170178 1.128173 1.224475 1.2075 1.261188
1 0.562992 0.681714 0.661317 0.721733 0.714883 0.749326
1.2 0.326941 0.397148 0.387659 0.425405 0.42324 0.445207
1.4 0.189865 0.231368 0.227243 0.250744 0.250575 0.264517
1.6 0.110262 0.134789 0.133209 0.147794 0.148351 0.157161
1.8 0.064033 0.078524 0.078086 0.087113 0.08783 0.093376

We compute the running time to solve the 1-D
equation by MOL and RK4 at using serial Laptop and
it's (3.393 s) such that the number of the ODEs are 9
and using 9 processors and we accelerator the
solutions about 3.699190873 and the efficient of
processors is (0.411021208).
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2- Second algorithm is level technology for RK-
Fehlberg:

To accelerator the running time to the MOL method
which is used Runge-Kutta Fehlberg to solve the
ODEs that is results from convert the PDE by MOL
we used the level parallel technology as follows:
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N.
E-ISS
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to compute the first ODEs U; by using
to compute the first ODEs U, by using
to compute the first ODEs Uy by using

4. Cpuy: it's received the data from the Cpu; & Cpu,

and Cpu,
5. Cpus :it's received the data from the Cpu; & Cpu,

and Cpu,
6. Cpuy :it's received the data from the Cpu; & Cpu,

and Cpus
The table (5) showing the running time each of the
MOL by level parallel algorithm using (FRK):

Runge-kutta Fehlberg (FRK) function.

Runge - kutta Fehlberg function.
Runge - kutta Fehlberg function.

.
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1.M and the sending to other

1.M and the sending to other

for j

. it's used to calculus the initial condition
for j

0
0

Cpu,;

1)

(1

in this example N=9 and the sending to other
processors Cpuy , Cpus ...

processors Cpuy , Cpus ...
2. Cpuy: it's used to calculus the boundary condition
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3. Cpus: it's used to calculus the boundary condition

from the equation 4(x,,0)
processors Cpuy , Cpus ...

u(O,tj)

u

1.
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we solve the 1-D heat equation in above example by
MOL and Runge-Kutta Fehlbreg method it take wait
by serial computer (Laptop) is (1.774 s) bout when
we used the parallel algorithm by using 9 processors
we accelerator the solutions about (2.092746169) and
the efficient is ( 0.232527352).

Conclusion

1. We used the 5 point central (FDM) and Runge-
kutta 4™ order classes to solve the 1-D heat equation
u, = f*u, and we heve the numerical solutions with

the little absolute error when using the step time
k=0.2

2. We improving the numerical solutions of 1-D heat
equation on the above by using MOL and solve the
ODE equations by Runge-kutta Fehlberg method and
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