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Abstract 

The aim of the study is to explain the numerical solutions of the one 

dimensional (1-D) of heat by using method of lines (MOLs). In the 

(MOLs) the derivative is firstly transformed to equivalent 5 point central 

finite differences methods (FDM) that is also transformed to the ordinary 

differential equations (ODEs). The produced (ODEs) systems are solved 

by the well-known techniques method of ODEs such as the 4
th

 Runge - 

Kutta method and Runge - Kutta Fehlberg. And since of the conversion 

of the second derivative to the equivalent of the 5 points FDM which led 

to an increase in the size of the system equations ODEs, and thus 

increased we have improved the performance of these (MOLs) 

techniques by  introduce parallel processing to speed up the solution of 

the produced ODE systems. The developed parallel technique, are 

suitable for running on MIMD (Multiple Instruction Stream, Multiple 

Data Stream) computers. 

1. Introduction  
The method of lines is a general technique for 

solution partial differential equations (PDEs) by 

typically using finite difference relationships for the 

spatial derivatives and ordinary differential equations 

for the time derivative. 

Many physical, chemical and engineering problems, 

mathematically, can be modeled in the form of 

system of partial differential equations or system of 

ordinary differential equations. 
Parabolic PDEs describe practically useful 

phenomena such as transport-chemistry problems of 

the advection-diffusion-reaction type and problem of 

this type play an important role in the modeling of 

pollution of the atmosphere, ground water and surface 

water. Qais Younis Mahmmod;[15]; thesis Submitted 

by " Improving Parallel Numerical Solutions Of 

Partial Differential equations".Fatmah M. Alabdali, 

Huda Omar Bakodah [3] ; she's study "A New 

Modification of the Method of Lines for First Order 

Hyperbolic PDEs". Norma Alias Norma Alias& 

Noriza Satam, Roziha Darwis, Norhafiza Hamzah; 

[13] ;  "Some Parallel Numerical Methods in Solving 

Partial Differential Equations".Nur Izzati Che 

Jawias& Fudiah Ismail& Mohamed Sulieman and 

Azmi Jaffar;[14];" Fourth Order Four-stage 

Diagonally Implicit Runge-Kutta Method For Linear 

Ordinary Differential Equations. M. Javidi [10]; 

"THE MOL SOLUTION FOR THE ONE-

DIMENSIONAL HEAT EQUATION SUBJECT TO 

NONLOCAL CONDITIONS". Karline Soetaert & 

Filip Meysman [5];" Solving partial differential 

equations, using R package ReacTran;.  M.A. 

Rehman  M. S. A. Taj and M. M. Butt [11]; "fifth-

order numerical methods for heat equation subject to 

boundary integral specification" . Louise Olsen-Kettle 

[8]; "Numerical solution of partial differential 

equations". Samir Hamdi_, William E. Schiesser y 

and Graham W. Gri_thsz[17]; "Method of Lines". 

Randall J. Leveque [16];"Finite Difference Methods 

Ordinary and Partial Differential Equations Steady-

State and Time-Dependent Problem".. Sang-Bae kim 

[18];" parallel numerical methods for partial 

differential equations". Malik Shahadat Ali Taj 

[12];"Higher Order  Parallel Splitting Methods For 

Parabolic Partial Differential Equations". Jeremy 

Kepner [4];Parallel MATLAB for Multicore and 

Multinode Computers;[6]; The Solution of Partial 

Differetial Equations by the Numerical Method of 

Lines Combined with a Parallel ODE Solver” 

2 .Classification of PDEs: [15, 21]  
The classification of PDEs is important for the 

numerical solution you choose. 

http://dx.doi.org/10.25130/tjps.23.2018.100
mailto:akr_te@yahoo.com
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       yxFUyxCUyxBUyxA yyxyxx ,,,2.,   

A. Elliptic:   2BAC  , for example Laplace's 

equation as: 0 yyxx UU  

0              ,1  BCA  

B. Hyperbolic: 2BAC  , for example the 1-D wave 

equation as:
ttxx U

c
U

2

1


 

0              ,/1 ,    1 2  BcCA  

C. Parabolic:  2BAC    for example, the heat or 

diffusion equation as: 
xxt UU   

0      ,    1  CBA  . 
3. ELEMENTS OF THE MOL [21,2] 
The basic idea of the MOL is to replace the spatial 

(boundary-value) derivatives in the PDE with 

algebraic approximations. Once this is done, the 

spatial derivatives are no longer stated explicitly in 

terms of the spatial independent variables. Thus, in 

effect, only the initial-value variable, typically time in 

a physical problem, remains. In other words, with 

only one remaining independent variable, we have a 

system of ODEs that approximate the original PDE. 

The challenge, then, is to formulate the 

approximating system of ODEs. Once this is done, 

we can apply any integration algorithm for initial-

value ODEs to compute an approximate numerical 

solution to the PDE. Thus, one of the salient features 

of the MOL is the use of existing, and generally well-

established, numerical methods for ODEs. 

To illustrate this procedure, we consider the MOL 

solution of Eq. (1). First we need to replace the 

spatial derivative ux with an algebraic approximation. 

In this case we will use a finite difference (FD).  

4-Five Point Central Difference 

method:[14,11,13]  
In this research, centered difference methods are 

used. Hence a fourth order polynomial needs to be 

fitted through five points. We fit the polynomial 

through the five points 
jiu ,2
, 

jiu ,1
,

jiu ,
 , 

jiu ,1
,

jiu ,2
 and . Thus, the formula is given by, 

2

,2,1,,1,2

2

,
2

12

11630161

h

uuuuu

x

u jijijijijiji  




  

This is known as the five-point central difference 

method. 

5-Numerical solution of 1-D heat equation 

using five point difference method 

[21,10,5,20,19,7,1,17] 
We consider this example: 

xxt uu 2  ;   

tx  0 ,  5.0      ,  02.00   

 where the initial conditions are   )sin(100, xxu   ,     

and boundary conditions       0),1( ,     0,0  tutu  

such as the analytical solution of above equation is 

    textxu
225.0.sin10,     

by substitute about 

 4

2

,2,1,,1,2

2

2

12

11630161
ho

h

uuuuu

x

u jijijijiji







   

we have : 

)
12

11630161
(

2
21122

h

uuuuu

dt

du iiiiii  
 

 ….(2) 

if we choose 00004.0h ; and the values of initial 

conditions are :   )sin(100, xxu   

05
11 193245422.2))00004.0(sin(10  euu  ; 

05
22 386490845.3))00008.0(sin(10  euu   

04
77

05
23

535271796.1))00028.0(sin(10

                                     

579736267.6))00012.0(sin(10









euu

euu






 

Such that 

6811

70

;    

 make  andcondition  initial  from 0;0

uuuu

uu







From equation (2) we have: 

 0    ;    0 71 
dt

du

dt

du From boundary conditions 

      0),1( ,     0,0  tutu  

From equation (2) we have: 

 

)
)00004.0(12

11630161
(25.0

)
12

11630161
(25.0

2

43211

2

2

432112

uuuuu

dt

du

h

uuuuu

dt

du













 

)
)00004.0(12

11630161
(25.0

)
12

11630161
(25.0

2

54321

3

2

543213

uuuuu

dt

du

h

uuuuu

dt

du







  

)
)00004.0(12

11630161
(25.0

)
12

11630161
(25.0

2

65432

4

2

654324

uuuuu

dt

du

h

uuuuu

dt

du







  

)
)00004.0(12

11630161
(25.0

)
12

11630161
(25.0

2

76543

5

2

765435

uuuuu

dt

du

h

uuuuu

dt

du









)
)00004.0(12

11630161
(25.0

)
12

11630161
(25.0

                                                                                                         

)
)00004.0(12

11630161
(25.0

)
12

11630161
(25.0

2

98765

21

2

987657

2

87654

6

2

876546

uuuuu

dt

du

h

uuuuu

dt

du

uuuuu

dt

du

h

uuuuu

dt

du



















and from these equations when n=7 as the example 

we have : 
 





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









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




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


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

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
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







7

6

5

4

3

2

1

'
7

'
6

'
5

'
4

'
3

'
3

'
1

301610000

1630161000

1163016100

0116301610

0011630161

000013016

000011630
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u
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u
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u

dt
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This MOL approach is sometimes used in practice by 

first discretizing in space and then applying a 

software package for systems of ODEs. There are 

also packages that are specially designed to apply 

MOL. This approach has the advantage of being 

relatively easy to apply to a fairly general set of time-

dependent PDEs, but the resulting method is often not 

as efficient as specially designed methods for the 

PDE this equation we can written 

as:[15,21,10,5,19,1] 

 7654321
'' ,,,,,, uuuuuuufubuAu  …(3) 

If we apply an ODE method to discretize the system 

(3), we will obtain a fully discrete method which 

produces approximations  ni
n
i tuu  at discrete 

points in time which are exactly the points  ni tx ,  of 

the grid. 

We solve for  
'u  using System of First-Order 

Ordinary Differential Equations (ODEs). 

6. System of First-Order Ordinary 

Differential Equations (ODEs)[19,7,8,16,2,18] 
A- Runge–Kutta Methods: 

Runge–Kutta methods generate solution estimates 

with the accuracy of Taylor methods without having 

to calculate these derivatives. that all one-step 

methods to solve the IVP 

  bxxxauxutxfu nji  000
'           ,,      ),(  

Are expressed as: ),(1 jiii txhuu 
 

Where φ(xi, tj) is an increment function and is 

essentially a suitable slope over the interval [xi, xi+1] 

that is used for extrapolating ui+1 from ui. The order of 

the Runge–Kutta method is the number of points that 

are used in [xi, xi+1] to determine this suitable slope. 

For example, second-order Runge–Kutta methods use 

two points in each subinterval to find the 

representative slope, and so on. 

A-1 Classical Runge–Kutta 4 Method: 

The classical RK4 method is described by: 

 43211 22
6

1
kkkkhuu ii 

 

Where:  
                 ji txfk ,1 

 

                

 hkthxfk

hkthxfk

hkthxfk

ji

ji

ji

34

23

12

,

2

1
,

2

1

2

1
,

2

1























 

RK4 methods produce estimates with the accuracy of 

a fourth-order Taylor method without calculating the 

derivatives of f(x, t). Instead, four function 

evaluations per step are performed. The classical RK4 

method is the most commonly used technique for 

numerical solution of first-order IVPs, as it offers the 

most acceptable balance of accuracy and 

computational effort. 

The user-defined function RK4 uses the classical RK4 

method to estimate the solution of an IVP. 

And applying the Rk4  to the eqn.(3) we have the 

results as the tables(1, 2) when k=0.2: 

 

Table(1) the MOLs by using Runge-Kutta 4 order (Rk4) at k=0.2 

T 

Numeric 

u(4) RK4  

EXACT 

u(4) RK4  ABS Error 

Numeric 

u(5) RK4  

EXACT 

u(5) RK4  ABS Error 

Numeric 

u(6) RK4  

EXACT 

u(6)RK4  ABS Error 

0 8.660254 10 1.34E+00 10 10 0.00E+00 9.510565 10 4.89E-01 

0.2 4.973572 6.10498 1.13E+00 5.914376 6.10498 1.91E-01 5.610682 6.10498 4.94E-01 

0.4 2.87859 3.727078 8.48E-01 3.447831 3.727078 2.79E-01 3.284598 3.727078 4.42E-01 

0.6 1.67 2.275374 6.05E-01 2.008644 2.275374 2.67E-01 1.924726 2.275374 3.51E-01 

0.8 0.969533 1.389111 4.20E-01 1.170178 1.389111 2.19E-01 1.128173 1.389111 2.61E-01 

1 0.562992 0.84805 2.85E-01 0.681714 0.84805 1.66E-01 0.661317 0.84805 1.87E-01 

1.2 0.326941 0.517733 1.91E-01 0.397148 0.517733 1.21E-01 0.387659 0.517733 1.30E-01 

1.4 0.189865 0.316075 1.26E-01 0.231368 0.316075 8.47E-02 0.227243 0.316075 8.88E-02 

1.6 0.110262 0.192963 8.27E-02 0.134789 0.192963 5.82E-02 0.133209 0.192963 5.98E-02 

1.8 0.064033 0.117804 5.38E-02 0.078524 0.117804 3.93E-02 0.078086 0.117804 3.97E-02 
 

Table(2) the MOLs by using Runge-Kutta 7 order (Rk4) at k=0.2 

T 

Numeric 

u(7) RK4 

EXACT 

u(7)RK4 ABS Error 

Numeric 

u(8) RK4 

EXACT 

u(8)RK4 ABS Error 

Numeric 

u(9) RK4 

EXACT 

u(9)RK4 ABS Error 

0 10 10 0.00E+00 9.749279 10 2.51E-01 10 10 0.00E+00 

0.2 5.977531 6.10498 1.27E-01 5.823917 6.10498 2.81E-01 6.01166 6.10498 9.33E-02 

0.4 3.524515 3.727078 2.03E-01 3.445758 3.727078 2.81E-01 3.572725 3.727078 1.54E-01 

0.6 2.077419 2.275374 1.98E-01 2.039639 2.275374 2.36E-01 2.122704 2.275374 1.53E-01 

0.8 1.224475 1.389111 1.65E-01 1.207499 1.389111 1.82E-01 1.261188 1.389111 1.28E-01 

1 0.721732 0.84805 1.26E-01 0.714883 0.84805 1.33E-01 0.749326 0.84805 9.87E-02 

1.2 0.425405 0.517733 9.23E-02 0.42324 0.517733 9.45E-02 0.445207 0.517733 7.25E-02 

1.4 0.250743 0.316075 6.53E-02 0.250575 0.316075 6.55E-02 0.264517 0.316075 5.16E-02 

1.6 0.147794 0.192963 4.52E-02 0.148351 0.192963 4.46E-02 0.157161 0.192963 3.58E-02 

1.8 0.087113 0.117804 3.07E-02 0.08783 0.117804 3.00E-02 0.093376 0.117804 2.44E-02 
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A-2 Runge–Kutta–Fehlberg Method: 

One way to estimate the local truncation error for 

Runge–Kutta methods is to use two RK methods of 

different order and subtract the results. For cases 

involving variable step size, the error estimate can be 

used to decide when the step size needs to be 

adjusted. Naturally, a drawback of this approach is 

the number of function evaluations required per step. 

For example, we consider a common approach that 

uses a fourth-order and a fifth-order RK. This 

requires a total of 10 (four for RK4 and six for 

RK5) function evaluations per step. To get around the 

computational burden, the Runge–Kutta–Fehlberg 

(RKF) method utilizes an RK5 method that uses the 

function evaluations provided by its accompanying 

RK4method. And it's a form as: 

The Runge–Kutta with a fifth-order method form is:  









 54311

5

1

4104

2197

2565

1408

216

25
kkkkhuu ii

 









 65411

55

2

50

9

56430

28561
3

12825

6656

135

16
kkkkkhuw ii

 

)
40

11

4104

1859

2565

3544
2

27

8
,

2

1
(

)
4104

845

513

3680
8

216

439
,(

)
2197

7296

2197

7200

2197

1932
,

13

12
(

)
32

9

32

3
,

8

3
(

)
4

1
,

4

1
(

),(

543216

43215

3214

213

12

1

hkhkhkhkhkthxfk

hkhkhkhkthxfk

hkhkhkthxfk

hkhkthxfk

hkthxfk

txfk

ji

ji

ji

ji

ji

ji













 

We applied the Runge–Kutta–Fehlberg (FRK) 

Method to the eqn.(3) and we have the results as the 

tables(3) : 
 

Table(3) the MOLs by using (FRK) at k=0.0001 

T 
Numeric 

u(4) RKF 

EXACT 

u(4) RKF 
ABS Error 

Numeric 

u(5) RKF 

EXACT 

u(5) RKF 
ABSError 

Numeric 

u(6) RKF 

EXACT 

u(6) RKF 
ABS Error 

0.0001 9.510565 10 4.89E-01 10 10 0.00E+00 9.510565 10 4.89E-01 

0.0002 9.487142 9.975356 4.88E-01 9.975436 9.975356 7.98E-05 9.487142 9.975356 4.88E-01 

0.0003 9.463729 9.950774 4.87E-01 9.950896 9.950774 1.22E-04 9.463729 9.950774 4.87E-01 

0.0004 9.440327 9.926251 4.86E-01 9.926379 9.926251 1.28E-04 9.440327 9.926251 4.86E-01 

0.0005 9.416937 9.901789 4.85E-01 9.901888 9.901789 9.85E-05 9.416937 9.901789 4.85E-01 

0.0006 9.39356 9.877388 4.84E-01 9.877422 9.877388 3.39E-05 9.39356 9.877388 4.84E-01 

0.0007 9.370198 9.853046 4.83E-01 9.852982 9.853046 6.47E-05 9.370198 9.853046 4.83E-01 

0.0008 9.346852 9.828765 4.82E-01 9.828568 9.828765 1.97E-04 9.346852 9.828765 4.82E-01 

0.0009 9.323523 9.804543 4.81E-01 9.804182 9.804543 3.61E-04 9.323523 9.804543 4.81E-01 

0.001 9.300212 9.780381 4.80E-01 9.779824 9.780381 5.57E-04 9.300212 9.780381 4.80E-01 

t u 

Numeric 

u(7) RKF 

EXACT 

u(7) RKF 
ABS Error 

Numeric 

u(8) RKF 

EXACT 

u(8) RKF 
ABS Error 

Numeric 

u(9) RKF 

EXACT 

u(9) RKF 
ABS Error 

0.0001 10 10 0.00E+00 9.749279 10 2.51E-01 10 10 0.00E+00 

0.0002 9.97538 9.975356 2.39E-05 9.725268 9.975356 2.50E-01 9.975363 9.975356 6.55E-06 

0.0003 9.950828 9.950774 5.43E-05 9.701323 9.950774 2.49E-01 9.950787 9.950774 1.38E-05 

0.0004 9.92634 9.926251 8.92E-05 9.67744 9.926251 2.49E-01 9.926274 9.926251 2.23E-05 

0.0005 9.901916 9.901789 1.27E-04 9.653618 9.901789 2.48E-01 9.901822 9.901789 3.23E-05 

0.0006 9.877554 9.877388 1.66E-04 9.629854 9.877388 2.48E-01 9.877432 9.877388 4.40E-05 

0.0007 9.853251 9.853046 2.05E-04 9.606146 9.853046 2.47E-01 9.853104 9.853046 5.75E-05 

0.0008 9.829007 9.828765 2.42E-04 9.582493 9.828765 2.46E-01 9.828838 9.828765 7.26E-05 

0.0009 9.804819 9.804543 2.76E-04 9.558892 9.804543 2.46E-01 9.804633 9.804543 8.92E-05 

0.001 9.780687 9.780381 3.06E-04 9.535342 9.780381 2.45E-01 9.780488 9.780381 1.07E-04 
 

7- WHY PARALLEL PROCESSING?  
Since the method of lines  technology is convert the 

PDE to the system of the ODEs and we results many 

of the ODES that are need high running time if we 

used the serial computer, then to solve this equitation 

and running speed of the many ODEs we used the 

parallel algorithm by using Matlab in the Laptop 

which it  have Cpu Intel core i5 speed and it have 

Ram 4 Gb. 

8- TYPES OF PARALLELISM: [15] 

In 1966, M. J. Flynn proposed a four-way 

classification of computer systems based on the 

notions of instruction streams and data streams. 

Flynn’s classification has become standard and is 

widely used. Flynn coined the abbreviations SISD, 

SIMD, MISD, and MIMD) for the four classes of 

computers shown in Fig. 1.11, based on the number 

of instruction streams (single or multiple) and data 

streams (single or multiple) [Flyn96]. The SISD class 

represents ordinary “uniprocessor” machines. 
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Computers in the SIMD class, with several processors 

directed by instructions issued from a central control 

unit, are sometimes characterized as “array 

processors.” Machines in the MISD category have not 

found widespread application, but one can view them 

as generalized pipelines in which each stage performs 

a relatively complex operation (as opposed to 

ordinary pipelines found in modern processors where 

each stage does a very simple instruction-level 

operation). 
               

 
Figure 1 the Flynn-Johnson classification of computer 

system 
 

9- Parallel Algorithms:[ 4,12] 

A parallel algorithm is one where the tasks could all 

be performed in parallel at the same time due to their 

data independence. The DG associated with such an 

algorithm looks like a wide row of independent tasks. 

Figure 2 shows an example of a parallel algorithm. A 

simple example of such a purely parallel algorithm is 

a web server where each incoming request can be 

processed independently from other requests. Another 

simple example of parallel algorithms is multitasking 

in operating systems where the operating system 

deals with several applications like a web browser, a 

word processor, and so on. 

 

 
Figure (2) example of parallel algorithm 

 

10- MIMD systems [18,13,9] 
Multiple instruction, multiple data, or MIMD, 

systems support multiple simultaneous instruction 

streams operating on multiple data streams. Thus, 

MIMD systems typically consist of a collection of 

fully independent processing units or cores, each of 

which has its own control unit and its own ALU. 

Furthermore, unlike SIMD systems, MIMD systems 

are usually asynchronous, that is, the processors can 

operate at their own pace. In many MIMD systems 

there is no global clock, and there may be no relation 

between the system times on two different processors. 

In fact, unless the programmer imposes some 

synchronization, even if the processors are executing 

exactly the same sequence of instructions, at any 

given instant they may be executing different 

statements. 

There are two principal types of MIMD systems: 

shared-memory systems and distributed-memory 

systems. In a shared-memory system a collection of 

autonomous processors is connected to a memory 

system via an interconnection network, and each 

processor can access each memory location. In a 

shared-memory system, the processors usually 

communicate implicitly by accessing shared data 

structures. In a distributed-memory system, each 

processor is paired with its own private memory, and 

the processor-memory pairs communicate over an 

interconnection network. So in distributed-memory 

systems the processors usually communicate 

explicitly by sending messages or by using special 

functions that provide access to the memory of 

another processor. See Figures (3): 
 

 
                                                       Figure(3) MIMD parallel computer design  
 

11- Running Time: 
Since the running speed of difference application is 

the first goal to build for parallel computers, then the 

important measure to evaluate algorithms are running 

time which defined a time that the algorithm to take 

from the first minute at work into the last minute at 

stopped. And when the processor is started and 

stopped in the different wait, then the running time 

equal to the take wait from first processor to yet 

stopped the finally processor. And to the answer as 

size N then the running time to have solution at using 

parallel algorithm is function to N and denote as 

T(N), and depend on the two point: 

 Counting Steps 
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Which is process to calculus the steps or operators 

that is running by the algorithm in the bed states. And 

measure the running time in the parallel computers by 

the number of the unite time called (cycle), while it 

measure the counting steps by the number of the 

running steps in the staying kinds from the parallel 

computers by two measures, it  is calculus steps and 

counting steps which is  used to data traffic from the 

processor to another among the memory shared or the 

attaching web which is called (routing steps). 

 Steep up (Sp)    
 The speed of a program is the time to execute the 

program while speed up is defined as the time it takes 

to complete an algorithm with one processor divided 

by the time it takes to complete the same algorithm 

with N processors. The formula of speed up for a 

parallel application is given. 

 
 
 ptime

time
spupspeed

1
 

 

Where Time (1) is execution time for a single 

processor and Time (p) is execution time using p 

parallel processors. 

 The Efficiency (ep): 

The efficiency of a parallel program is a measure of 

processor utilization. Efficiency is defined as the 

speed up with processors divided by the number of 

processors N. 

p

upspeed
efficiency

 


 

Where p is the number of processors. 

12- The parallel algorithm to the MOL: [15] 
1- First algorithm is level technology for RK4: 

we see when at solve the PDE by using the MOL 

method that they results many of the ODEs which 

need high running time and to solve this we used first 

algorithm which is worked as : 

1. Cpu1 : it's used to calculus the initial condition 

from the equation   )sin(100, ii xxu  for i=1..N and 

in this example N=9 and the sending to other 

processors Cpu4 , Cpu5 …., CPU9 

2. Cpu2: it's used to calculus the boundary condition 

       0,0 jtu for j=1..M and the sending to other 

processors Cpu4 , Cpu5 …., CPU9 

3. Cpu3: it's used to calculus the boundary condition 

       0,1 jtu for j=1..M and the sending to other 

processors Cpu4 , Cpu5 …., CPU9  

4. Cpu4 : it's received the data from the Cpu1 & Cpu2 

and Cpu3   to  compute  the first ODEs U1 by using 

Runge-kutta function. 

5. Cpu5 :it's received the data from the Cpu1 & Cpu2 

and Cpu3   to  compute  the first ODEs U2 by using 

Runge-kutta function. 

                                         

6. Cpu9 :it's received the data from the Cpu1 & Cpu2 

and Cpu3   to  compute  the first ODEs U9 by using 

Runge-kutta function. 

We can classification the first parallel algorithm as 

the figure (3): 
 

 
Figure (3) the level algorithm parallel technology to the 

MOL &RK4 
 

And the running time by using level parallel 

algorithm of the MOLs by using RK4 are showing in 

the table (4): 

 

Table (4) the running time of each MOL by using RK4 

T u(4) at time 

0.917227609s 

u(5) at time 

0.931212212s 

u(6) at time 

0.976410798 s 

u(7) at time 

1.007195172 s 

u(8) at time 

1.044946441 s 

u(9) at time 

1.123303412 s 

0 8.660254 10 9.510565 10 9.749279 10 

0.2 4.973572 5.914373 5.610679 5.977527 5.823914 6.011656 

0.4 2.878591 3.447831 3.284598 3.524515 3.445759 3.572726 

0.6 1.67 2.008644 1.924726 2.07742 2.039639 2.122704 

0.8 0.969533 1.170178 1.128173 1.224475 1.2075 1.261188 

1 0.562992 0.681714 0.661317 0.721733 0.714883 0.749326 

1.2 0.326941 0.397148 0.387659 0.425405 0.42324 0.445207 

1.4 0.189865 0.231368 0.227243 0.250744 0.250575 0.264517 

1.6 0.110262 0.134789 0.133209 0.147794 0.148351 0.157161 

1.8 0.064033 0.078524 0.078086 0.087113 0.08783 0.093376 
 

We compute the running time to solve the 1-D 

equation by MOL and RK4 at using serial Laptop and 

it's (3.393 s) such that the number of the ODEs are 9 

and using 9 processors and we accelerator the 

solutions about 3.699190873 and the efficient of 

processors is (0.411021208). 

2- Second algorithm is level technology for RK- 

Fehlberg: 

To accelerator the running time to the MOL method 

which is used Runge-Kutta Fehlberg to solve the 

ODEs that is results from convert the PDE by MOL 

we used the level  parallel technology as follows: 



Tikrit Journal of Pure Science 23 (6) 2018 ISSN: 1813 – 1662 (Print) 

E-ISSN: 2415 – 1726 (On Line) 
 

411 

1. Cpu1 : it's used to calculus the initial condition 

from the equation   )sin(100, ii xxu  for i=1..N and 

in this example N=9 and the sending to other 

processors Cpu4 , Cpu5 …., CPU9 

2. Cpu2: it's used to calculus the boundary condition 

       0,0 jtu for j=1..M and the sending to other 

processors Cpu4 , Cpu5 …., CPU9 

3. Cpu3: it's used to calculus the boundary condition 

       0,1 jtu for j=1..M and the sending to other 

processors Cpu4 , Cpu5 …., CPU9  

4. Cpu4 : it's received the data from the Cpu1 & Cpu2 

and Cpu3   to  compute  the first ODEs U1 by using 

Runge - kutta Fehlberg function. 

5. Cpu5 :it's received the data from the Cpu1 & Cpu2 

and Cpu3   to  compute  the first ODEs U2 by using 

Runge - kutta Fehlberg function. 

                                         

6. Cpu9 :it's received the data from the Cpu1 & Cpu2 

and Cpu3   to  compute  the first ODEs U9 by using 

Runge-kutta Fehlberg (FRK) function. 

The table (5) showing the running time each of the 

MOL by level parallel algorithm using (FRK): 
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we solve the 1-D heat equation in above example by 

MOL and Runge-Kutta Fehlbreg method it take wait 

by serial computer (Laptop) is (1.774 s) bout when 

we used the parallel algorithm by using 9 processors 

we accelerator the solutions about (2.092746169) and 

the efficient is ( 0.232527352). 

Conclusion 
1. We used the 5 point central (FDM) and Runge-

kutta 4
th

 order classes to solve the 1-D heat equation 

xxt uu 2 and we heve the numerical solutions with 

the little absolute error when using the step time 

k=0.2 

2. We improving the numerical solutions of 1-D heat 

equation on the above by using MOL and solve the 

ODE equations by Runge-kutta Fehlberg method and 

we have results absolute error little than from the 

Runge-kutta 4 order suh that the using the k=0.0001 

3. We accelerator the running time for solving by 

using MOL since the alot of the number of the 

ordinary differential equations which leads from the 

converts the PDEs to ODEs by MOL method and to 

treat that we used first level parallel algorithm for 

Runge-kutta 4 order to speed the running time of the 

solves and we have the speed up about (3.699190873) 

and the efficient of processors is (0.411021208) such 

that we using 9 processors. 

4. We speed up the MOL equations which is using 

the Runge-kutta Fehlberg by the second level parallel 

algorithm to speed up about (2.092746169) and the 

efficient is (0.232527352) and by using 9 processors.  
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تحسين الحمول المتوازية لطريقة الخطوط في حل معادلة الحرارة ذات البعد الواحد باستخدام النقاط 
 الخمسة لمفروقات المنتهية

 1زياد محمد عبدالله ، 1اكرم سالم محمد،  4قيس يونس محمود يونس
 ، وزارة التربية ، اربيل ، العراق ممثمية وزارة التربية في اربيل 1
 ، جامعة تكريت ، تكريت ، العراقالحاسوب والرياضيات قسم الرياضيات ، كمية عموم  2
 

 الممخص

 (MOL). في بداية طريقة الخطوط (MOL)الهدف من الدراسة هو الحمول العددية لمعادلة الحرارة ذات البعد الواحد باستخدام طريقة الخطوط 
وبالتالي تتحول هذه المعادلة التفاضمية الجزئية الى نقوم بتحويل المشتقة الثانية لما يكافئها باستخدام النقاط الخمسة المركزية لمفروقات المنتهية 

مثل استخدام  (ODEs)لحل  المعرفة. ثم نحل منظومة المعادلات التفاضمية الاعتيادية باستخدام احدى الطرق (ODEs)معادلة تفاضمية اعتيادية 
قة الثانية الى ما يكافئها باستخدام النقاط الخمسة لمفروقات كوتا فيمبريج. وبسبب تحويل المشت-كوتا ذات الرتبة الرابعة وطريقة رونج-طريقة رونج

وبالتالي الى زيادة وقت الحل، قمنا بتطوير كفاءة طريقة  (ODE)والتي ادت الى زيادة حجم منظومة المعادلات الخطية . (FDM) المنتهية
(MOLs)   ولحل هذه المشكمة استخدامنا المعالجات المتوازية لتعجيل حل منظومة(ODE) واستخدمنا حاسبات من نوع .MIMD  في التقنية

 .المتوزاية المطورة الملائمة لتنفيذها
 

 

 

 


