On Conjugate Space of 2-Fuzzy Generalized 2-Normed Space حول الفضاء المرافق للفضاء 2-المعياري المعمم 2-الضبابى

Faria Ali C. and Alaa Malek Soady Department of Mathematics, College of Science, Al-Mustansiriyah University, Baghdad, Iraq.

Abstract:

The main goal of this paper is to prove the extension theorem for 2-fuzzy generalized 2-fuzzy 2-bounded 2-fuzzy 2-linear functional in 2-fuzzy generalized 2-normed space. Also, the definition of the 2-fuzzy adjoint operator of 2-fuzzy generalized 2-fuzzy bounded 2-fuzzy 2-linear operator defined on 2-fuzzy generalized 2-normed space is introduced.

الخلاصة

ان الهدف الرئيسي من هذا البحث هو برهان مبرهنة التوسع للدالي 2-الخطي 2-الضبابي 2- المقيد 2-الضبابي المعمم 2-الضبابي المعمم 2-الضبابي. ايضا قدم تعريف المؤثر المجاور 2- الضبابي للمؤثر 2-الخطي 2- الضبابي 1معمم 2-الضبابي المعمم 2-الضبابي المعمم 2-الضبابي.

1. Introduction:

The theory of 2-norm on a linear space has introduced and developed by Gahler in [1]. In 2006 Lewandowska and et.al. [2] introduced the notation of Hahn-Banach extension theorem in generalized 2-normed space. Somasundaram and Beaula [3] defined the notion of 2-fuzzy 2-normed linear space. Later, Thangaraj and Angeline [4] introduced Hahn-Banach theorem in the realm of 2-fuzzy 2-normed linear spaces. Faria and Rasha [5], introduced and proved the form of Hahn-Banach theorem in generalized 2-normed spaces and gave the definition of adjoint operator for generalized 2-bounded 2-linear operator. In this paper we redefined in a general setting the idea of generalized 2-normed space, that appeared in ([2],[5]) and give 2-fuzzy generalized 2-fuzzy 2-bounded 2-fuzzy 2-linear operator and studies extension theorem for 2-fuzzy generalized 2-fuzzy 2-bounded 2-fuzzy 2-linear operator. Moreover, we prove that the 2-fuzzy adjoint operator has the same norm as the 2-fuzzy generalized 2-fuzzy 2-bounded 2-fuzzy 2-linear operator itself.

2. 2-Fuzzy Adjoint Operator of 2-Fuzzy Generalized 2-Fuzzy 2-Bounded 2-Fuzzy 2-Linear Operator:

In this section, we give a definition of 2-fuzzy generalized 2-normed space which based the idea that appeared in [2]. Also, some facts that appeared in [2] are generalized to 2-fuzzy setting. **Definition (2.1), [2]:**

Let X be a real linear space of dimension greater than one. A function $\|\cdot,\cdot\|: X\times X\to [0,\infty)$ is said to be a generalized 2-norm on X in case for each x, y and $z\in X$ and for each $\alpha\in R$,

$$(N_1)||x, \alpha y|| = |\alpha| \cdot ||x, y|| = ||\alpha x, y||$$

$$(N_2)||x, y+z|| \le ||x, y|| + ||x, z||$$

$$(N_3)||x+y,z|| \le ||x,z|| + ||y,z||$$

The pair $(X \times X, \|..\|)$ will be referred to as a generalized 2-normed space on $X \times X$.

Definition (2.2), [4]:

Let X be real linear space and F(X) be the set of all fuzzy sets on X. For $U,V\in F(X)$ and $k\in R$, define

$$U+V=\left\{\!\!\left(x+y,\lambda\wedge\mu\right)\!\!\right|\;(x,\lambda)\in U,(y,\mu)\in V\right\}\;\text{and}\;$$

$$kU = \{(kx, \lambda) | (x, \lambda) \in U\}$$

Definition (2.3), [4]:

A fuzzy linear space $\widetilde{X} = X \times (0,1]$ over the real field R where the addition and scalar multiplication operation on \widetilde{X} are defined by

$$(x,\lambda) + (y,\mu) = (x+y,\lambda \wedge \mu)$$

$$k(x,\lambda) = (kx,\lambda)$$

Is a fuzzy normed space in case for each $(x, \lambda) \in \widetilde{X}$

(1)
$$\|(x,\lambda)\| = 0$$
 if and only if $x = 0$, $\lambda \in (0,1]$

(2)
$$\|k(x,\lambda)\| = |k\| (x,\lambda)\|$$
 for each $(x,\lambda) \in \widetilde{X}$ and for each $k \in R$

$$(3) \ \left\| (x,\lambda) + (y,\mu) \right\| \leq \left\| (x,\lambda \wedge \mu) \right\| + \left\| (y,\lambda \wedge \mu) \right\| \ for \ each \ (x,\lambda), (y,\mu) \in \widetilde{X}$$

$$(4) \ \left\| (x, \vee \lambda_t) \right\| = \bigwedge_t \left\| (x, \lambda_t) \right\| \ \text{for each} \ \lambda_t \in (0, 1] \, .$$

Definition (2.4), [4]:

Let X be a real linear space and F(X) be the set of all fuzzy sets in X the addition and scalar multiplication are defined by

$$f+g=\left\{\!\!\left(x+y,\lambda\wedge\mu\right)\right|(x,\lambda)\in f,\,(y,\mu)\in g\right\}\text{ and }$$

$$kf = \{(kx, \lambda) | (x, \lambda) \in f, k \in R \}$$

Definition (2.5),[4]:

Let X be a real linear space. A function $\|.\|: F(X) \to [0,\infty)$ is said to be norm on a F(X) in case for each $f, f_1, f_2 \in F(X)$ and $k \in R$, the following conditions hold

(1)
$$\|\mathbf{f}\| = 0$$
 if and only if $\mathbf{f} = 0$

(2)
$$\|\mathbf{k}\mathbf{f}\| = \|\mathbf{k}\| \|\mathbf{f}\|$$

$$(3) ||f_1 + f_2|| \le ||f_1|| + ||f_2||$$

The pair $(F(X), \|.\|)$ will be referred to as a fuzzy normed space.

Definition (2.6):

A 2-fuzzy generalized 2-normed space is a generalized 2-normed space on $F(X) \times F(X)$.

In order to make definition (2.6) as clear as possible we will consider the following example.

Example (2.7):

Let $(F(X), \|.\|)$ be a fuzzy normed space. For each $f_1, f_2 \in F(X)$ and $k \in \mathbb{R}$ define

$$\|\mathbf{f}_1, \mathbf{f}_2\| = \|\mathbf{f}_1\| \|\mathbf{f}_2\|$$

It is easy to check that $(F(X)\times F(X),\|.,\|)$ is a 2-fuzzy generalized 2-normed space.

Definition (2.8), [4]:

Let X and Y be real linear spaces. A function T from $F(X) \times F(X)$ into F(Y) is said to be 2-fuzzy 2-linear operator in case satisfies the following conditions: for all $f_1, f_2, f_3, f_4 \in F(X)$.

$$(1) \ T(f_1 + f_2, f_3 + f_4) = T(f_1, f_3) + T(f_1, f_4) + T(f_2, f_4) + T(f_1, f_4) + T(f_2, f_4) + T(f_1, f_4$$

$$T(f_2,f_4)$$
.

(2) T $(\alpha f_1, \beta f_2) = \alpha.\beta T(f_1, f_2)$, for all scalars α, β .

Definition (2.9), [4]:

Let X be real linear space. A 2-fuzzy 2-linear functional is a real valued function on $F(X) \times F(X)$ satisfies the following conditions: for all $f_1, f_2, f_3, f_4 \in F(X)$.

$$(1)T(f_1+f_2,f_3+f_4)=T(f_1,f_3)+T(f_1,f_4)+T(f_2,f_3)+T(f_2,f_4).$$

 $(2)T(\alpha f_1, \beta f_2) = \alpha.\beta T(f_1, f_2)$, for all scalars α, β .

Definition (2.10):

Let $(F(X) \times F(X), \|\cdot, \|)$ be a 2-fuzzy generalized 2-normed space and $(F(Y), \|\cdot\|)$ be a fuzzy normed space a 2-fuzzy 2-linear operator $T: (F(X) \times F(X), \|\cdot, \|) \to (F(Y), \|\cdot\|)$ is said to be 2-fuzzy generalized 2-fuzzy 2-bounded in case there is a constant k > 0 such that $\|T(f_1, f_2)\| \le k \|f_1, f_2\|$, for each $f_1, f_2 \in F(X)$.

Remark (2.11)

Let $(F(X) \times F(X), \|..\|)$ be 2-fuzzy generalized 2-normed space and $(F(Y), \|.\|)$ be fuzzy normed space. We denote the set of all 2-fuzzy generalized 2-fuzzy 2-bounded 2-fuzzy 2-linear operator from $(F(X) \times F(X), \|..\|)$ by $B(F(X) \times F(X), F(Y))$.

Proposition (2.12):

Let $T:(F(X)\times F(X),\|.,\|)\to (F(Y),\|.\|)$ be a 2-fuzzy generalized 2-fuzzy 2-bounded 2-fuzzy 2-linear operator. Then

 $\|T\| = \inf\{k : \|T(f_1, f_2)\| \le k \|f_1, f_2\|; (f_1, f_2) \in F(X) \times F(X)\}$ is the norm on the set of all 2-fuzzy generalized 2-fuzzy 2-bounded 2-fuzzy 2-linear operator T.

Theorem (2.13):

Let $(F(X) \times F(X), \|...\|)$ be 2-fuzzy generalized 2-normed space and M be a linear subspace of $F(X) \times F(X)$. If T is a 2-fuzzy generalized 2-fuzzy 2-bounded 2-fuzzy 2-linear functional defined on M then T can be extended to a 2-fuzzy generalized 2-fuzzy 2-bounded 2-fuzzy 2-linear functional T_0 defined on the whole space $F(X) \times F(X)$ such that $\|T\| = \|T_0\|$.

Proof

If $M = F(X) \times F(X)$ or $\|T\| = 0$ then take $T = T_0$. Otherwise without lose the generality assume that $\|T\| = 1$ consider the family \check{A} of all possible extentions of T of norm one. Partially order \check{A} with \leq as follows given (G_1, L_1) , $(G_2, L_2) \in \check{A}$, put $(G_1, L_1) \leq (G_2, L_2)$ if and only if G_2 is an extension of G_1 that is $L_1 \subseteq L_2$, $G_2(f_1, f_2) = G_1(f_1, f_2)$ for each $(f_1, f_2) \in L_1$ and $\|G_2\| = \|G_1\|$.

The family \check{A} is non-empty, because $(T,M)\in \check{A}$. Let $\mathfrak T$ be chain of \check{A} . Define $\widetilde{L}=\bigcup L$. Clearly \widetilde{L} is a real linear subspace of $F(X)\times F(X)$ and contains M. Define $(G,L)\in\mathfrak T$

 $\widetilde{G}:\widetilde{L}\to R$ by $\widetilde{G}(f_1,f_2)=G(f_1,f_2)$ where G is associated with some L, $(G,L)\in\mathfrak{T}$, which contains (f_1,f_2) . Then \widetilde{G} is a 2-fuzzy generalized 2-fuzzy 2-bounded 2-fuzzy 2-linear functional on \widetilde{L} that is an extinction of every G and $\left\|\widetilde{G}\right\|=1$. So the constructed pair $(\widetilde{G},\widetilde{L})$ is hence an upper bound for the chain \mathfrak{T} . By using Zorn's lemma there exists a maximal element $(T_0,L_m)\in \check{A}$. To complete the proof it is enough to show that $L_m=F(X)\times F(X)$. Suppose by contrary that there exists (f_0,g_0) in $F(X)\times F(X)\setminus L_m$. Then consider the linear space

$$L' = L_m + R(f_0, g_0) = \{(f + \alpha f_0, g + \mu g_0); (f, g) \in L_m\}. \text{ Define } \\ T' : L' \to R$$

 $T'(f+\alpha f_0,g+\mu g_0)=T_0(f,g)+\alpha\mu\gamma\quad\text{where }(f,g)\in L_m\text{ and }\gamma\in R\text{ will be chosen in such away}$ that $\|T'\|=1$. But $\|T'\|=1$ provided that

$$\left|T_{0}(f,g) + \alpha\mu\gamma\right| \le \left\|f + \alpha f_{0}, g + \mu g_{0}\right\|....(1)$$

For each $(f,g) \in M$ and $\gamma \in R$. Replace (f,g) by $(-\alpha f, -\mu g)$, and divide both sides of (1) by $|\alpha \mu|$. Then the requirement is that

$$\left|T_{0}(f,g) - \gamma\right| \le \left\|f - f_{0}, g - g_{0}\right\|.$$
 (2)

For each $(f,g)\in M$ and $\gamma\in R$. Since T_0 is 2-fuzzy 2-linear by choosing γ in such a way that $T_0(f,g)-\left\|f-f_0,g-g_0\right\|\leq\gamma\leq T_0(f,g)-\left\|f-f_0,g-g_0\right\|.$ Then (2) and therefore (1) holds. So we have proved that $(T',L')\in \check{A}$, $(T_0,L_m)\neq (T',L')$ and $(T_0,L)\leq (T',L')$

which is a contradiction.

Theorem (2.14):

Let (f_0,g_0) be a vector in the 2-fuzzy generalized 2-normed space $(F(X)\times F(X),\|\cdot,\cdot\|)$ such that $\|f_0,g_0\|\neq 0$. Then there exists a 2-fuzzy generalized 2-fuzzy 2-bounded 2-fuzzy 2-linear functional T_0 , defined on the whole space, such that $T_0(f_0,g_0)=\|f_0,g_0\|$ and $\|T_0\|=1$.

Proof:

Consider the linear space

 $M = \left\{ (\alpha f_0, \mu g_0) \right\} \quad \text{and} \quad \quad \text{consider} \quad \text{the functional} \quad T \,, \quad \text{defined on} \quad M \quad \text{as follows} \\ T(\alpha f_0, \mu g_0) = \alpha \mu \|f_0, g_0\|$

Clearly, T is a 2-fuzzy 2-linear functional with the property that $T(f_0, g_0) = ||f_0, g_0||$.

Further, since for any $(f,g) \in M$

$$|T(f,g)| = |\alpha\mu| ||f_0,g_0|| = ||\alpha f_0,\mu g_0|| = ||f,g||$$

We see that T is a 2-fuzzy 2-bounded 2-fuzzy 2-functional. Moreover $\|T\|=1$. It now remains only to apply theorem to assert the existence of a 2-fuzzy generalized 2-fuzzy 2-bounded 2-fuzzy 2-linear functional defined on the whole space, extending T and having the same norm as T, that $\|T_0\|=1$.

Notation (2.15):

Let us denote the set of all 2-fuzzy generalized 2-fuzzy 2-bounded 2-fuzzy 2-linear functional defined on 2-fuzzy generalized 2-normed space $(F(X)\times F(X),\|...\|)$ by $(F(X)\times F(X))^*$ and we call conjugate space of 2-fuzzy generalized 2-normed space, and the set of all bounded linear functional defined on F(Y) by $F(Y)^*$.

Proposition (2.16):-

Let $(F(X) \times F(X), \|..\|)$ be 2-fuzzy generalized 2-normed space. Then $((F(X) \times F(X))^*, \|.\|)$ is a complete normed linear space with norm defined by

$$||T|| = \inf\{k : |T(f_1, f_2)| \le k ||f_1, f_2|| : (f_1, f_2) \in F(X) \times F(X)\}.$$

Proof:-

It is easy to see $((F(X) \times F(X))^*, \|.\|)$ is a normed linear space. In order to prove $(F(X) \times F(X))^*$ complete let $\{T_k\}_{k \in \mathbb{N}}$ be a Cauchy sequence in $(F(X) \times F(X))^*$ thus $\lim_{k \to \infty} \|T_k - T_{k+p}\| = 0, \forall p = 1, 2, \dots$. Also,

$$|(T_k - T_{k+p})(f_1, f_2)| \le ||T_k - T_{k+p}|| ||f_1, f_2||$$
. Then

$$\begin{split} \left|(T_k-T_{k+p})(f_1,f_2)\right| &\longrightarrow 0 \quad \text{as } k \longrightarrow \infty, \ \forall \ f_1,f_2 \in F(X) \ . \quad \text{Thus} \quad \{T_k(f_1,f_2)\} \quad \text{is a Cauchy sequence in } R. \ \text{Since} \quad (R,\|.\|) \quad \text{is complete then} \quad \lim_{k \to \infty} T_k(f_1,f_2) = y \quad \text{exists in} \quad (R,\|.\|) \ . \ \text{Define} \end{split}$$

 $T: F(X) \times F(X) \to R$ by $T(f_1, f_2) = y$ then it can be easily verified that T is 2-fuzzy generalized 2-fuzzy 2-bounded 2-fuzzy 2-linear functional. Hence

$$\left|T_{k}(f_{1},f_{2})-T_{k+p}(f_{1},f_{2})\right|\leq\left\|T_{k}-T_{k+p}\right\|\left\|f_{1},f_{2}\right\|\leq\epsilon\left\|f_{1},f_{2}\right\|\ \forall\ k\geq N(\epsilon),\ f_{1},f_{2}\in F(X),\ p=1,2,....L$$

etting $p \longrightarrow \infty$ we get

$$\begin{split} &\left|T_{k}\left(f_{1},f_{2}\right)-T(f_{1},f_{2})\right|\leq\epsilon\left\|f_{1},f_{2}\right\|,\ \forall\ k\geq N(\epsilon)\ \text{and}\ \forall\ f_{1},f_{2}\in F(X).\ \text{Thus}\\ &\left\|T_{k}-T\right\|\leq\epsilon,\ \forall k\geq N(\epsilon)\ .\text{Then}\ \left\|T_{k}-T\right\|{\longrightarrow}0\ \text{as}\ k{\longrightarrow}\infty\,. \end{split}$$

Hence $(F(X) \times F(X))^*$ is complete.

Definition (2.17):

Let $T: (F(X) \times F(X), \|...\|) \to (F(Y), \|..\|)$ be a 2-fuzzy generalized 2-fuzzy 2-bounded 2-fuzzy 2-linear operator from a 2-fuzzy generalized 2-normed space $F(X) \times F(X)$ to a normed space F(Y). The operator $T^X: F(Y)^* \to (F(X) \times F(X))^*$ is defined by

 $(T^Xg)(f_1,f_2)=g(T(f_1,f_2))=h(f_1,f_2),\ g\in F(Y),\ f_1,f_2\in F(X),\ \ \text{is called the 2-fuzzy adjoint operator of }T.$

Next, we give the following theorem which is based on the idea that appeared in [5].

Theorem (2.18):

Let $(F(X) \times F(X), \|\cdot,\cdot\|)$ be a 2-fuzzy generalized 2-normed space and $(F(Y), \|\cdot\|)$ be a normed space. If $T: (F(X) \times F(X), \|\cdot,\cdot\|) \to (F(Y), \|\cdot\|)$ is a 2-fuzzy generalized 2-fuzzy 2-bouned 2-fuzzy 2-linear operator. Then $T^X: F(Y)^* \to (F(X) \times F(X))^*$ is a bounded linear operator and $\|T^X\| = \|T\|$.

Proof:-

Since the operator T^x with its domain $F(Y)^*$ is a linear space then

$$\begin{split} \textbf{T}^{\textbf{X}}(\alpha_{1}\textbf{g}_{1} + \alpha_{2}\textbf{g}_{2})(\textbf{f}_{1},\textbf{f}_{2}) &= (\alpha_{1}\textbf{g}_{1} + \alpha_{2}\textbf{g}_{2})\textbf{T}(\textbf{f}_{1},\textbf{f}_{2}) \\ &= \alpha_{1}\textbf{g}_{1}\textbf{T}(\textbf{f}_{1},\textbf{f}_{2}) + \alpha_{2}\textbf{g}_{2}\textbf{T}(\textbf{f}_{1},\textbf{f}_{2}) \\ &= \alpha_{1}(\textbf{T}^{\textbf{X}}\textbf{g}_{1})(\textbf{f}_{1},\textbf{f}_{2}) + \alpha_{2}(\textbf{T}^{\textbf{X}}\textbf{g}_{2})(\textbf{f}_{1},\textbf{f}_{2}) \end{split}$$

$$Also, \left\| T^X g \right\| = \left\| h \right\| \leq \left\| g \right\| \left\| T \right\|$$

Moreover,
$$\|T^X\| = \inf\{K : \|T^Xg\| \le K\|g\| \}$$

Then,
$$\|T^X\| \le \|T\|$$

For every vector (f_1, f_2) in $F(X) \times F(X)$ such that $||f_1, f_2|| \neq 0$, then there is $g_0 \in F(Y)^*$ such that $||g_0|| = 1$ and $g_0(T(f_1, f_2)) = ||T(f_1, f_2)||$.

Writing $h_0 = T^X g_0$, we obtain

$$\begin{split} \left\| T(f_1,f_2) \right\| &= g_0(T(f_1,f_2)) = h_0(f_1,f_2) \leq \left\| h_0 \right\| \left\| f_1,f_2 \right\| = \left\| T^x g_0 \right\| \left\| f_1,f_2 \right\| \\ &\leq \left\| T^x \right\| \left\| g_0 \right\| \left\| f_1,f_2 \right\| \end{split}$$

since, $\|\mathbf{g}_0\| = 1$, we have

$$\left\|T(f_1,f_2)\right\| \leq \left\|T^X\right\| \left\|f_1,f_2\right\|$$

But,
$$||T(f_1, f_2)|| \le ||T||||f_1, f_2||$$

where, k = ||T|| is the smallest constant k such that $||T(f_1, f_2)|| \le k ||f_1, f_2||$

Hence,
$$\|T^X\| \ge \|T\|$$
. Therefore $\|T^X\| = \|T\|$.

References:

- [1] Gahler S., "Lineare 2-normierte Raume", Math. Nachr., Vol. 28, PP. 1-43, (1964).
- [2] Lewandowska Z., Moslehian M. and Moghaddam A., "Hahn-Banach Theorem in Generalized 2-Normed Spaces", Communications in Mathematical Analysis, Vol. 1, PP. 109-113, (2006).
- [3] Somasundaram R. and Beaula T., "Some Aspects of 2-fuzzy 2-Normed Linear Spaces ", Bull Malyasian Mathemetical sciences society, Vol. 32, PP.211-222, (2009).
- [4] Thangaraj B. Angeline G., "Hahn Banach Theorem on 2-Fuzzy 2-Normed Linear Spaces", International journal of advanced scientific and technical research, Vol.5, PP.2249-9954, (2012).
- [5] Faria A. and Rasha A., "Modification of Extention Theorem and Adjoint Operator in Fuzzy Generalized 2-Normed Spaces", Furth International scientific conference, Al-Qadisiya University, college of computer Sceince and Mathmetics, 21-23-October, (2012).