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  :المستخلص

  

لقد طور برنامج حاسوبي والذي بواسطته يمكن تمثيل انتقال الملوثات بخاصية الانتقال والانتشار في الاوساط 

ان تقنيات البرمجة تضمنت تغير . الغير متجانسة ببعد واحد واثنين وثلاثي الابعاد متغير الزمن في المياه التحت سطحية

  .وثات نقطية وخطية ومساحية بدون التطرق الى الملوثات النبضيةالزمن ومل

ان نظرية . ان شرح تقنية النمذجة الرقمية تضمنت الخلفية الرياضية النظرية وقائمة البرنامج وطريقة النمذجة

ة المعدلة قد اهات الضمنية المتناوبان طريقة الاتج. ارالفروقات المحدده قد استعملت لتمثيل ظاهرة الانتقال والانتش

 ويعمل بكل انواع ٤ان البرنامج المدرج قد كتب في لغة فورتران . استعملت لحل مجموعة معادلات الفروقات المحددة

 يوم ٩٠٥،٦الحد الشرقي  يصل الى النهر بعد  لتر في \ملغم١٠٠٠بعد تشغيل النموذج وجد ان الملوث بتركيز . الوحدات

  .من بداية تشغيل النموذج

 

Abstract: 

 

A general computer program listing is developed that can mathematically simulate 

one, two, and three dimensional non-steady advection-dispersion contaminant transport in 

a heterogeneous subsurface media. Programming techniques, involving time varying, point, 

line and/or area sources of contamination but not a pulsing contamination on the media. 

The discussion of the modeling digital techniques includes the necessary 

mathematical background documented program listing, and job setup procedure. A finite 

difference approach is used to derive and formulate the equations of advection dispersion 

phenomena. A modified alternating direction digital implicit method is used to solve the set 

of resulting finite difference equations. The program included is written in FORTRAN IV 

and operates with any set of units. After the model has been run, it is found that the 

pollutant of concentration 1000mg/liter at the western polluted boundary reaches the river 

with concentration of 96mg/liter after a period of 905.6days since the model started. 
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 Introduction: 

 

The main object of this study is to present a generalized computer program that will 
simulate one, two, and three dimensional unsteady state advection dispersion problems in 
heterogeneous groundwater media. The program covers time varying and contaminated point, 
line and/or area sources. A finite difference approach is adopted . 
Bear [1] presented the tracer distribution caused by dispersion in one and two-dimensional flow. 
It has been experimentally verified that the testing of the transition zone depends upon the path of 
the mean point and is independent of the flow velocity. Rumer [2] obtained longitudinal 
dispersion coefficients using a one-dimensional dispersion model in which the average velocity is 
constant throughout the length of the flow field. Harleman and Rumer [3] measured the 
coefficients of longitudinal and lateral dispersion for steady uniform flow through an isotropic 
porous medium. List and Brooks [4] studied the relationship between the lateral dispersion and 
the Peclet number. It was found that the lateral dispersion is dependent on the viscosity when the 
flow is linear-laminar (low Reynolds number). Narasimhan and Witherspoon [5] because of the 
difficulty in obtaining analytical solutions to groundwater flow and mass transport, many 
investigations have been done using numerical methods. During mid-1960’s, the finite element 
method has developed into a powerful numerical tool for analyzing a variety of groundwater flow 
and pollution problems. Smith et al [6] presented finite element methods for the solution of 
diffusion-convection problems. Galerkin elements are used with equal weight for diffusion and 
convection as a physical modeling process. Frind [7] undertook the problem of contaminant 
transport by using a new simulation technique based on Galerkin finite elements, but formulated 
in terms of principal directions of transport. It is proved that the new technique is more accurate 
and efficient than conventional finite element technique. Peter and Jozef [8] described a new 
method to determine semi-analytical solutions of one-dimensional contaminant transport problem 
with non-linear sorption. It is based on splitting approach where the convection transport is 
solved exactly. Peter [9] discussed the application of the finite element method to the numerical 
solution of scalar two dimensional steady convection-diffusion equations with the emphasis on 
upwinding techniques satisfying the discrete maximum principle. 
Mirbagheri  [10] A mathematical and computer model for the transport and transformation of 
solute contaminants through a soil column from the surface to the groundwater is presented. The 
model simulates selenium species such as selenate, selenite, and selenomethionine as well as 
pesticides and nitrogen. This model is based on the mass balance equation including convective 
transport, dispersive transport, surface adsorption, oxidation and reduction, volatilization, 
chemical and biological transformation. The governing equations are solved numerically by the 
method of implicit finite difference. The simulation results are in good agreement with measured 
values. The major finding in the present study indicates that as the time of simulation increases, 
the concentration of different selenium species approaches the measured values. 
The current analysis is similar to the numerical approaches of Prickett and Lonngquist [11] and 
Pinder and Bredehoeft [12] which are governed by a finite difference form of the partial 
differential equation of groundwater flow.  
 
Study Objectives: 

 

The study is aimed to add the following contributions to ecosystem  
1- Developing and conceptualizing a mathematical simulation technology of subsurface 
contaminant transport in saturated mediums.  



2- Analyzing  a field problem by using the current new technology. 
 
Mathematical Solution: 

 

The beginning of the solution of the 3D advection dispersion equation of the form: 

[  +  ……………………..( 1 ) 

      Where: D is the dispersion coefficient, C is the ground water velocity, and C is the 
volumetric concentration in the media 
 To compromise Eq. (1) to be fitted to the water table condition it may be reduced to two- 
dimensional problem as: 

[  +                             ……………………..( 2 ) 

Where +  is termed for sink and/or source volumetric concentration discharge 

To solve Eq. (2) numerically by using the finite difference approximation, the Taylor series 
expansion is technically fit to proceed. Briefly, the first and second derivatives in x-axis 
according to Taylor are as follows: Erwin Kreyszig [13]  

                                                                    ……………………………( 3 ) 

 

                                                        …………………………….( 4 ) 

Similarly, the first and second derivatives in ordinate axis are as follows: 

                                                                    ……………………………( 5 ) 

 

                                                        …………………………….( 6 ) 

                                                                      …………………………   (7) 

Where Ci,j  is the volumetric concentration at any time, Coi,j is the initial volumetric concentration, 
is the time step within the time domain and the subscript i,j is adapted to help in  

understanding  of direction in the complex analytical terminology. 
  By substitution of the expansions of Eqs. (3,4,5,6,7) into Eq. (2). 

   ( 8 ) 
For expansion of the solution through the modeling process, a non-equal mesh dimensions to be 

used. This leads to , if we assume that if the dispersing is nonhomogeneous 

( ) and by multiplication and rearranging Eq. (8) becomes: 

                                                                                 ……………………..(9) 
Iterative Alternating Direction Implicit Method 



Briefly, the iterative alternating direction implicit method involves first for a given time 
increment, reducing a large set of simultaneous equation down to a number of small set. This is 
done by Guass elimination solution to the node equation. According to Peaceman and Rachford 
[14], the set of column equations is then implicit in the direction along the column and explicit in 
the direction of orthogonal to the column alignment, then the solution of column set equation is a 
straight forward process. 
After all column equations have been processed column by column, the solution of node 
equations set is carried out again by gauss elimination of an individual row while all terms related 
to adjacent rows are held constant. Eventually, after all node equations have been solved row by 
row, the above process is repeated for a sufficient number of times until a convergent is obtained. 
The above solution process should be repeated for each time increment. Peaceman and Rachford 
[14] indicated that this technique is unconditionally stable regardless of the time increment size. 
Accordingly Eq. (9) should be modified and arranged to facilitate the columns and rows solving 
technique. 
For solving Eq. (9) by columns, it may be rearranged as: 

 
  
Eq. (10) of the form 

 
Where the coefficient terms are: 

                                                                                     

 

 

 
For solving Eq. (10) in term of row formulation, it may be rearranged to be as: 

 
Eq. (12) of the form 

 
Where the coefficient terms are: 

 



 

 

 
There are three unknown concentrations of each equation whether for columns Eq. (11) or for 
row Eq. (13). [ In standard matrix notation a set of equations presented by Eq. (11) or Eq. (13) 
forms what is mathematically termed as tri-diagonal matrix]. The solution of a set of columns or 
rows concentration is carried out by Guass-Elimination interpolating what Peaceman and 
Rachford [14] term A and B arrays applied to tri-diagonal matrices. 
 
Calculation Setup of Concentrations with A and B Arrays 

An example could be used to show how concentrations are calculated with the use of A and B 
arrays. Although the current method applied to any number of nodes in a row or column, a four 
nodes row-column as in Fig. (1) is considered.  
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Fig. (1) Four Nodes row-Column Mesh Design and Direction of Reading Initialization 

 
 



The concentrations at the nodes 1,2, 3, and 4 along  row can be calculated by first 

writing the row equations [of the form Eq. (14)]  for each node going in order of increasing 
column number (j). Secondly, the resulting equations are arranged in such a manner that the 

concentration at each node of interest  is a function of known parameter of the last node 

, if this is done all other concentrations can sequentially be calculated in order of increasing 

column number. 

At the first   row node, i=1 and the centration is of the form 

 
Since no node with coordinates (0.j), therefore  is set to be zero and Eq. (14) is reduced to: 

 
Eq. (15a) may be rearranged into: 

                                                                                                    

If  , and , then Eq. (14b) becomes 

 
Now the concentration at the node of interest  is a function of known parameters A1 and B1 

and the concentration at only the node  . Proceeding to the next  row node of Fig. 

(1) where i=2, the concentration equation is 

 
The solution for  gives 

 
Substitute Eq. (14c) into Eq. (15a) to obtain 

 
Carrying out multiplication, rearranging and solving for  

 
The known parameters of Eq. (15c) are defined as: 

    

  

Substitution of  and  into Eq. (15c) to obtain 

) 

Proceeding to the next  row where i=3, the concentration equation can be written as: 

 
Similarly, the solution for  gives 

) 
Where: 



    

  

Now and finally, the equation is written for the last  row node i=4, then it becomes 

 
Since  is not exist, then  is set to be zero which leads Eq. (17) to be zero 

 
By using the same analysis to Eq. (17a) to obtain 

 
Where:    

Since the concentration  is now known, then a back substitution allows the other values of  

  and , Similarly all other concentrations in the  row can be determined. 

From the above manipulation, a general form for A and B terms can be written as: 

   

  

Where  is specified for row calculation and by  is specified for column calculation. In 

addition   and  are set equal to zero for the first and last row and column respectively. 

Sets of equations of the form given by equations (18 and 19) for the nodes along a row or column 
are what Peacman and Rachford [14] term the A and B arrays are extremely computer storage 
and execution time. 
A general form of equations (14c, 15d, 16a, and 17b) for row calculation can be written as 

) 
Similarly, the general form of concentration equation for column calculation as 

 
In summary, the process of calculating the concentrations along columns or rows in the digital 
model includes first computing the A and B values, (Eqs. 19, 20) for nodes of columns or rows in 
order of increasing j or I respectively. After the last node concentration has been found, Eqs. (21, 
22) are used to solve for all others concentration in the column or row in order of decreasing j or i 
respectively. After completing the calculation of the concentration in an individual column or 
row, the computer proceeds to the next column or row until all nodes in the digital model domain 
have been processed satisfactorily.  
 
Basic Advection-Dispersion Simulation Program : 

 

The technology of the program written by Prickett and Lonngquist [11] in water resources 
has been modified to fit the modeling of advection-dispersion problems because of its flexibility 
for modification and the ease for input and output data. Fig. (2) presents the listing  of the 
program.  Fig.(3) shows the flowchart sequential steps. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.(3) Modified Simulation Flowchart  of Advection Dispersion Contaminant Transport 

 
Job Sequence and Data Input Files: 

 

The first step in the sequence of modeling technology is beginning by superimposing a 
square finite deference mesh over the map interested domain as shown in Fig. (3). The Number 
of columns and rows are denoted by NC and NR respectively as outlined by Prickett and 
Lonnguist [11] . The boundary of the simulated aquifer is approximated by assigning zero 

diffusivity for all nodes outside the boundary. An initial contaminant concentration  is 

assigned for each node inside the model domain of Fig. (3). A dispersion coefficient is estimated 

and specified for each nodal point. A groundwater flow velocity in term of  and  is 

specified also for each node inside the model domain. Sink and source values of contamination 

concentration denoted by  are specified for the nodes whenever they occur. A large value of 

dispersion coefficient is specified for all nodes located on the constant concentration source 
boundary. Two input data files are prepared for  dimensions in the case non-

homogeneous mesh dimensions   

START 

READ  NODES  FILE 

SET STARTED TIME 
NO  OF  STEPS 
TIME  COUNTER 

PRIDICT  CONCENTRATIONS FOR NEXT TIME 

 

SET SUM OF CHANGES IN 

CONCENTRATIONS  E  TO  

COMPUTE B & A ARRAYS 

FOR A COLUMN 

COMPUTE B & A ARRAYS FOR A ROW 

COMPUTE CONCENTRATIONS FOR ROWS & SUM 
THE CHANGES IN CONCENTRATIONS INTO E 

ALL ROWS 
PROCESSED
ED 

? 

YES 

CONVERGENCE  ACHEVED? 

NO 

COMPUTE CONCENTRATIONS FOR COLUMNS & SUM 
THE CHANGES IN CONCENTRATIONS INTO E 

ALL 
COLUMNS 

POCESSEDE
D 

NO 

NO 

PRINT RESULTS 

YES 

ALL TIME INCREMENT 
PROCESSED? NO 

STOP 



 PARAMETER (IMAX=110,JMAX=110) 
 IMPLICIT REAL*8 (A-H,O-Z) 
 DIMENSION C(IMAX),  
                                            C(IMAX,JMAX),CO(IMAX,JMAX),      
                                             Qc(IMAX,JMAX),D(IMAX), 
SAMIR(IMAX,JMAX) 
 OPEN(1,FILE='AAA.DAT') 
 OPEN(2,FILE='BBB.RES') 
  OPEN(3,FILE='CCC.DAT') 
 OPEN(4,FILE='SAMIR.DAT')  
 OPEN(5,FILE='VVV.dat') 
 READ(1,*)NSTEPS,DELTA,ERROR,NC,NR,VEL,C
C,QQc,  
                                              DD 
       70 ,1.15E-5,.1,100,88, 0.05, 10,4.8,2,60, 50 
C REMOVE NODES OUTSIDE THE MODELED 
AREA 
 DO 520 J=1,NR 
520 READ(4,530)J,(SAMIR(I,J),I=1,NC) 
530 FORMAT(I3,2X,100F5.1) 
 
CC KNCK = NUMBER OF GRID POINTS DIFFERENT 

FROM          
                                              DEFAULT 
C FILL ARRAYS WITH DEFAULT VALUES 
 DO 20 I=1,NC   
   
 DO 20 J=1,NR 
 V(I,J,1)=VEL 
 V(I,J,2)=VEL 
 D(I,J,1)=DD 
                                              D(I,J,2)=DD 
                                              VEL(I,J,1)=VEL 
                                              VEL(I,J,2)=VEL  
                                              C(I,J)=CC 
 Co(I,J)=CC 
 Qc(I,J)=QQc     
20 CONTINUE 
 
C READ NODES FILES 
 KNCK =NC*NR 
                                              DO 22 K=1,KNCK  
                                              
READ(3,*)I,J,V(I,J,1),V(I,J,2),D(I,J,1),D(I,J,2),Co(I,J), Qc(I,J) 
22 CONTINUE 
 
C START OF SIMULATION 
50 TIME=0 
 DO 320 ISTEP=1,NSTEPS 
 TIME=TIME+DELTA 
C PRIDICT CONCENTRATIONS FOR NEXT TIME 
INCREAMENT 
 DO 70 I=1,NC 
 DO 70 J=1,NR 
 D1=C(I,J)-CO(I,J) 
 CO(I,J)=C(I,J) 
 F=1.0 
 IF(DL(I,J).EQ.0.0)GO TO 60 
 IF(ISTEP.GT.2)F=D1/DL(I,J) 
 IF(F.GT.5.)F=5.0 
 IF(F.LT.0.0)F=0.0 
60 DL(I,J)=D1 
 C(I,J)=C(I,J)+D1*F 
 IF(C(I,J).GT.Co(I,J))C(I,J)=Co(I,J)-.01 
70 CONTINUE 
C 
C REFINE ESTIMATE OF CONCENTRATIONS 
 ITER=0 
80 E=0.0 
 ITER=ITER+1 
C ------------------------------------------------------- 
C column calculations 
 DO 190 JJ=1,NC 
 J=JJ 
 IF(MOD(ISTEP+ITER,2).EQ.1)J=NC-I+1 
 DO 170 I=1,NR 
C                                             
c calculate A and B arrays 
 AA=D(I,J,2)/(DY(I,J)**2) 
                                              BB=((2*D(I,J,1)/(DX(I,J)**2)+V(I,J,1)/DX(I,J)+ 

                                              (2*D(I,J,2)/DY(I,J)**2)+ V(I,J,2)/DY(I,J)-
1/DELTA 
                                             CC=(D(I,J,2)/(DY(I,J)**2)-V(I,J,2)/(DY(I,J)) 
                                              DD=0.0  
 IF(J-1)90,100,90 
  
90                                          DD=DD-(D(I,J,1)/DX(I,J)**2)*C(I-1,J) 
100                                        IF(I-NR)110,120,110 
110                                        DD= DD-(D(I,J,1)/DX(I,J)**2-
V(I,J,1)/DX(I,J))*C(I+1,J) 
120                                        DD= DD- Co(I,J)/DELTA+Qc(I,J)       
  60 W=BB-AA*B(J-1) 
 B(J)=CC/W 
170 A(J)=(DD-AA*A(J-1))/W 
c 
c re-estimate concentrations 
 E=E+ABS(C(I,NR)-A(NR)) 
 C(I,NR)=A(NR) 
 N=NR-1 
180 CA=A(N)-B(N)*C(I,N+1) 
 E=E+ABS(CA-C(I,N)) 
 C(I,N)=CA 

 N=N-1 
 IF(N.GT.0)GOTO 180 
190 CONTINUE 
  
C                                          --------------------------------------------------------- 
c row calculations 
 DO 300 JJ=1,NR 
 J=JJ 
 IF(MOD(ISTEP+ITER,2).EQ.1)J=NR-J+1 
 DO 280 I=1,NC 
                                              Calculate A and B arrays 
                                              AA=D(I,J,1)/(DX(I,J)**2) 
 BB=((2*D(I,J,1)/(DX(I,J)**2)+V(I,J,1)/DX(I,J)+ 
                                              (2*D(I,J,2)/DY(I,J)**2)+ V(I,J,2)/DY(I,J)-
1/DELTA 
                                              CC=(D(I,J,2)/(DX(I,J)**2)-V(I,J,2)/(DX(I,J)) 
 IF(J-NC)210,220,210 
210 DD= DD-(D(I,J,2)/DY(I,J)**2-
V(I,J,2)/DY(I,J))*C(I,J+1) 
220 DD= DD- Co(I,J)/DELTA+Qc(I,J 
270 W=BB-AA*B(I-1) 
 B(I)=CC/W 
280 A(I)=(DD-AA*A(I-1))/W   
  
c re-estimate concentrations 
 E=E+ABS(C(NC,J)-A(NC)) 
 C(NC,J)=A(NC) 
 N=NC-1 
290 CA=A(N)-B(N)*C(N+1,J) 
 E=E+ABS(C(N,J)-CA) 
 C(N,J)=CA 
 N=N-1 
 IF(N.GT.0)GOTO 290 
  
300 CONTINUE 
303 IF(E.GT.ERROR)GOTO 80 
 DELTA=DELTA+DELTA2 
311 WRITE(2,310)TIME,E,ITER ,ISTEP 
310 FORMAT(6X,'TIME= 
',F12.1,2X,'DAYS'/6X,'ERROR=',F14.6,2X 
                                            1,'NUMBER OF ITERATIONS='I5,'ISTEP='I3) 
 DELTA=DELTA*1.2 
  IF(ISTEP.LT.NSTEPS)GOTO 315 
315 R=1 
 DO 320 J=1,NR 
320 WRITE(2,330)J,(C(I,J),I=1,NC) 
330 FORMAT(I2,2X,100F8.2) 

                                              END 
 

 

 Fig. (2) Basic Advection-Dispersion Simulation 

Program under Water-Table Condition 
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Fig. (3) Superimposing a Square Finite Deference Grids over a Model Domain 

 
 
Infinite Groundwater Media Conditions: 

 

I) Convergence Test and Errors 
All computer programs of iterative nature should have an internal check on the error that is 
inherently occurred in solving finite difference equations. Many types of error checks are 
possible depending on the problem under study [11]. The error check in the simulation 
program assures that concentrations have converged to acceptable answer with a specified 
tolerance. The specified tolerance is predetermined or assumed and entered in the (aaa.dat) 
file. The term error represents the maximum allowable sum of the absolute values of the 
changes in concentration for all node points of the model during iteration. If the 
concentrations have no changed more than the error tolerance during the iterative process, the 
solution has converged to acceptable accuracy. 
 
II) Program Iterative 

High accuracy answers require more computer calculations which may be controlled by 
limiting the number of iterations. As the error term increased, the corresponding number of 

iterations per time delta decreased to meet the convergence of the solution. 
 
III) uniform Time Increment, Delta 

 



IV) Although small increments are needed for more accuracy where concentration 
changing rapidly (especially in the starting of contamination process) the small time 
increment becomes less important as the contamination process has proceeded. 

 

V )Recharge Boundary Conditions 
Point, line, and area boundaries are defined as boundaries at which there are no changes in 

water concentration. Those types of boundaries are most handled in the simulation process by 
setting the dispersion coefficient of the nodes along the position of the recharge boundaries to 

extremely large value. 
 
Case Study & Model Validation: 
  

To examine the model validity and the effect of the advection-dispersion parameters 
and field characteristics, an illustrative example is selected for this purpose. Fig.(4) represents 
the location map of the model domain. The current case study to be simulated by the model is 
to find out the value of the pollutant transport toward the river spatially and temporally within 
the model domain. It is supposed that the polluted boundary induces a certain amount of 
pollutant from the west toward the east to contaminate the river. Moreover, the study area 
shows that there is no flow of groundwater toward the north or south as a result of the natural 
existing boundary. 
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Fig.(4) Geographic map of the Model Area Under study 

 
 

Discretization of the Domain 
A square paper is superimposed over the geographic map to discretize the domain of the 
considered area into a suitable number of meshes. It is found that the number of columns 

 and the number of rows NR  . The current descretization is shown in Fig.(5). 
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Fig.(5) Discretization Mesh Design of the model Domain 

 

Base Map implementation : 

 

The most important process is the adoption of the base map which is defined as the number of 
cells in the model domain cover the boundary of the modeled area, and it is assigned in the 

modeling process by their individual xy coordinates as shown in table.(1)Appendix A. 

 
Data Input Files: 

 

The following data are adopted for the proposed problem; they are specified by separated files 
for each node within the model domain: 
D(I,J,1) = 1.5 m2/hr ,  D(I,J,2) = 0.2 m2/hr 
V(I,J,1)  = 1.2 m/hr , V(I,J,2)  = 0.5 m/hr 
, Delta = 0.2,  Co = 1000 mg/l 
The pollutant concentration of 1000mg/l is specified for the nodes along the west polluted 
boundary 
 
Results & Discussion: 

 

 The model is run for long period and the induced concentrations are represented by the 
contour map of Fig.(6). The figure shows how the pollutant transports from the polluted 
boundary toward the river across a distance of 33km causing a concentration of 96 mg/liter at 
the river after a period of 905.6 days.  
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Fig.(6) Pollutant Distribution Contour Map in (mg/l) 

 
 
Fig.(7) shows the concentration profile along section A-A which is shown in Fig.(5) 
 

 
 

Fig.(7) Concentration Profile Along Section A-A 

 
 
Conclusions: 

 

The current technical study reveals the following conclusions:- 
1- The current model has been proved to be a powerful tool to simulated and analyze any 
environmental disaster including; point, line and area pollution sources in subsurface 
saturated mediums. 



2- The model can deal with a three dimensional subsurface systems by assigning the 
necessary data for each node within the model domain.  
3- The undertaken problem has been analyzed by the current mathematical model and 
reasonable results are obtained.  
 
Recommendations 
It is recommended to: 
1- Simulate the convection-dispersion problems of contaminant transport by using the 
current modeling technique. 
2- Expand the current program to comprise the problems of pulses pollutants in groundwater 
media. 
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Appendix A 

Table. (1) Base Map Design 

Mesh 
No. 

x y Mesh 
No. 

x y Mesh 
No. 

x y Mesh 
No. 

x y Mesh 
No. 

x y 

1 ١ ١ 31 ٢١ ١١ 61 ٢٥ ٢٧ 91 ٧ ٣٩ 121 ١ ٢٧ 

2 ٢ ١ 32 ٢١ ١٢ 62 ٢٥ ٢٨ 92 ٦ ٣٩ 122 ١ ٢٦ 

3 ٣ ١ 33 ٢٢ ١٢ 63 ٢٥ ٢٩ 93 ٥ ٣٩ 123 ١ ٢٥ 

4 ٣ ٢ 34 ٢٣ ١٢ 64 ٢٥ ٣٠ 94 ٥ ٤٠ 124 ١ ٢٤ 

5 ٤ ٢ 35 ٢٤ ١٢ 65 ٢٤ ٣٠ 95 ٤ ٤٠ 125 ١ ٢٣ 

6 ٥ ٢ 36 ٢٤ ١٣ 66 ٢٤ ٣١ 96 ٤ ٤١ 126 ١ ٢٢ 

7 ٥ ٣ 37 ٢٥ ١٣ 67 ٢٣ ٣١ 97 ٤ ٤٢ 127 ١ ٢١ 

8 ٦ ٣ 38 ٢٥ ١٤ 68 ٢٣ ٣٢ 98 ٤ ٤٣ 128 ١ ٢٠ 

9 ٧ ٣ 39 ٢٦ ١٤ 69 ٢٣ ٣٣ 99 ٤ ٤٤ 129 ١ ١٩ 

10 ٧ ٤ 40 ٢٦ ١٥ 70 ٢٢ ٣٣ 100 ٣ ٤٤ 130 ١ ١٨ 

11 ٨ ٤ 41 ٢٧ ١٥ 71 ٢٢ ٣٤ 101 ٣ ٤٥ 131 ١ ١٧ 

12 ٩ ٤ 42 ٢٨ ١٥ 72 ٢١ ٣٤ 102 ٢ ٤٥ 132 ١ ١٦ 

13 ٩ ٥ 43 ٢٩ ١٥ 73 ٢١ ٣٥ 103 ١ ٤٥ 133 ١ ١٥ 

14 ١٠ ٥ 44 ٢٩ ١٦ 74 ٢٠ ٣٥ 104 ١ ٤٤ 134 ١ ١٤ 

15 ١٠ ٦ 45 ٣٠ ١٦ 75 ٢٠ ٣٦ 105 ١ ٤٣ 135 ١ ١٣ 

16 ١١ ٦ 46 ٣٠ ١٧ 76 ٢٠ ٣٧ 106 ١ ٤٢ 136 ١ ١٢ 

17 ١٢ ٦ 47 ٣٠ ١٨ 77 ١٩ ٣٧ 107 ١ ٤١ 137 ١ ١١ 

18 ١٢ ٧ 48 ٢٩ ١٨ 78 ١٨ ٣٧ 108 ١ ٤٠ 138 ١ ١٠ 

19 ١٣ ٧ 49 ٢٩ ١٩ 79 ١٧ ٣٧ 109 ١ ٣٩ 139 ١ ٩ 

20 ١٤ ٧ 50 ٢٨ ١٩ 80 ١٧ ٣٨ 110 ١ ٣٨ 140 ١ ٨ 

21 ١٤ ٨ 51 ٢٨ ٢٠ 81 ١٦ ٣٨ 111 ١ ٣٧ 141 ١ ٧ 

22 ١٥ ٨ 52 ٢٨ ٢١ 82 ١٥ ٣٨ 112 ١ ٣٦ 142 ١ ٦ 

23 ١٥ ٩ 53 ٢٧ ٢١ 83 ١٤ ٣٨ 113 ١ ٣٥ 143 ١ ٥ 

24 ١٦ ٩ 54 ٢٧ ٢٢ 84 ١٣ ٣٨ 114 ١ ٣٤ 144 ١ ٤ 

25 ١٧ ٩ 55 ٢٧ ٢٣ 85 ١٢ ٣٨ 115 ١ ٣٣ 145 ١ ٣ 

26 ١٨ ٩ 56 ٢٧ ٢٤ 86 ١١ ٣٨ 116 ١ ٣٢ 146 ١ ٢ 

27 ١٨ ١٠ 57 ٢٦ ٢٤ 87 ١١ ٣٩ 117 ١ ٣١    

28 ١٩ ١٠ 58 ٢٦ ٢٥ 88 ١٠ ٣٩ 118 ١ ٣٠    

29 ١٩ ١١ 59 ٢٥ ٢٥ 89 ٩ ٣٩ 119 ١ ٢٩    

30 ٢٠ ١١ 60 ٢٥ ٢٦ 90 ٨ ٣٩ 120 ١ ٢٨    

 
 


