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 In recent years, fluorescent imaging has emerged as an active area of interest in medical 

imaging. Fluorescent imaging plays a critical role in molecular imaging. Evidence suggests 

its use in providing a detailed structural outlook and genetic and cellular operatives of the 

body procedures on a molecular plane. Imaging agents are identified to be related to risks 

such as not biologically disintegration and great poisonousness. Researchers have shown a 

keen attentiveness to the growth of targeted multifunctional agents in oncology and near-

infrared (NIR) fluorescence imaging. This study assessed fluorescent imaging and bio-

cellular acceptance of the gold (NIR) conjugated cockle shell-derived calcium carbonate 

nanoparticles Au-CsCaCO3NPs. The synthesized Au-CsCaCO3NPs were characterized by 

Transmission electron microscopy (TEM) for size and morphology, Zeta potential, and UV-

Vis spectrophotometer. Biocompatibility of Au-CsCaCO3NPs in cultured human breast 

carcinoma cells MCF-7 and mouse embryonic fibroblast cells NIH3T3 was evaluated using 

bioassays like Lactate Dehydrogenase LDH and Reactive Oxygen Species ROS for toxic 

examination. Cellular morphology and uptake were studied by fluorescence and confocal 

microscopy. The outcomes proved that MCF-7 treated Au-CsCaCO3NP cells observed 

more cell deaths than NIH3T3 treated Au-CsCaCO3NP cells. Additionally, the cells were 

capable of assuming nanoparticles within their cellular compartments. In conclusion, gold-

near infrared dye conjugated cockle shell calcium carbonate nanoparticles Au-

CsCaCO3NPs were easily synthesized, biocompatible, and environmentally friendly. It is 

safe to state that the Au-CsCaCO3NPs could be used for imaging and could present 

opportunities for progressing cancer imaging. 
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Introduction 
 

In current years, the use of nanoparticles (NPs) has been 

noted with confined diameter size ranging from 10-100 nm 

(1) and has also created great promise with their use in 

biomedical photo-imaging, recovering medication, scaffolds 

studies, drug distribution, therapeutics, and tissue 

manufacturing (2-14). The last decade has seen a growing 

trend towards using nanoparticles for imaging (15,16). A 

considerable amount of literature is being focused on the 

theme of biogenic nanoparticles such as aragonite calcium 

carbonate nanoparticles (17) and gold nanoparticles AuNPs 

(18). Aragonite is a unique of the polymorphs of CaCO3 that 

naturally and richly exists (95 - 98 %) in (Anadara granosa), 

a mollusc’s cockle shell that commonly originates in 

Malaysia (19). The effects of using calcium carbonate 
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nanoparticles for imaging have been described with the Eu3+-

doped calcium carbonate cubic nanoparticles produced by 

the carbonation synthetic route and the photoluminescence 

properties characterized by scanning electron microscope 

and x-ray diffractometer (20-22). In other related studies, it 

has been demonstrated that the technique used to develop 

fabricated oxygen-sensitive polymer nanocapsules using 

layer-by-layer (LBL) tactic using vaterite calcium carbonate 

nanoparticles as templates. Additionally, the buffer used was 

decisive in preserving their reliability and ensuring the 

nanoparticles were stable in alkaline sodium hydrogen 

carbonate (23). In addition, it also found that the 

nanoparticles revealed thermal stability and a notable 

adsorption capacity caused by vigorous spots like the amino 

and carbonyl groups (24-26). Regarding the AuNPs, there is 

a relatively small body of literature concerned with the 

development of AuNPs bioconjugates and their potential use 

in imaging or other biomedical applications (27,28). Also, 

due to their low or non-significant toxicity, they are 

increasingly used in diagnosis, therapeutics, disease 

treatment, and targeted drug delivery systems (29-34). In 

addition, AuNPs bioconjugates maintain high stability upon 

interaction with biomolecules such as proteins and 

antibodies (35,36). Major attention is on the AuNP surface 

plasmon resonance property, which focuses on designing 

diagnostic biomaterials, drug-targeting agents, therapeutics, 

and contrast agents (37-43). Furthermore, existing works on 

AuNPs and their conjugates have extensively been employed 

in agriculture to enhance the visual detection of pesticides, 

the food industry to detect contaminants, and the extension 

of food shelf life (44,45). However, recent developments in 

biomedical imaging have caused limitations with the 

imaging probes meant for clinical usage. These include no 

biological disintegration or gentle elimination and great 

poisonousness, perplexing the manufacture of a robust 

imaging indicator, compromising their further evolution into 

clinical use (15). In addition, research investigations suggest 

that there are also several challenges associated with targeted 

tumor nanoparticles administered by intravenous route due 

to interaction with an intricate atmosphere (46). These 

include clearance of targeted nanoparticles by the 

phagocytes, either by effectively removing nanoparticles 

from circulation, leaving a trivial portion at the tumor sites, 

or by long retention of the nanoparticles, potentially 

developing into complications like toxicity (47). Secondly, 

tumor physiological properties like antigen expression and 

tumor permeability stop the buildup of nanoparticles or drug 

delivery in the region (48-50). It has also been elaborated in 

a prior study that nanoparticles in blood circulation 

habitually bind to plasma proteins (opsonization) that are 

phagocyted within the blood, spleen, bone marrow, and liver 

(51). Similar studies have shown techniques that alleviate 

these limitations by embracing the stabilization of particle 

dispersions using coatings and understanding the outcome of 

the nanoparticles in the bloodstream and their 

physiochemical properties; thus, there is a substantial need 

to produce biocompatible nanoparticles with ideal features 

(52-54). Herewith, Au-CsCaCO3NPs are prepared and 

assessed in vitro using Lactate Dehydrogenase LDH and 

Reactive Oxygen Species ROS assays. Cellular uptake of the 

Au-CsCaCO3NPs was evaluated using fluorescence and 

confocal microscopy. Primarily, the Au-CsCaCO3NPs 

development is prompted by the need for cost-efficient and 

biocompatible nanomaterial for imaging. The preparation 

utilizes method-friendly approaches such as the classic 

Turkevich method (55) and dodecyl dimethyl betaine (BS - 

12). The Au-CsCaCO3NP's potential use for fluorescent 

imaging is also elaborately discussed.  

This work aims to evaluate the gold-near infrared dye 

conjugated cockle shell calcium carbonate nanoparticles 

through bio-cellular uptake, and confocal and fluorescence 

imaging.  

 

Materials and Methods 

 

Ethical approval 

The work procedure was permitted via IACUC UPM; 

AUPR015/2015. 

 

Materials and chemicals 

The gold colloid solution was bought from Malaysia 

(Prima Nexus Sdn Bhd). The breast cancer cell line (JCRB: 

MCF-7) and the fibroblast cell line (JCRB: NIH-3T3) were 

commercially bought from the Japanese Collection Research 

Bioresource (JCRB). All other materials and chemicals used 

were purchased from (Sigma-Aldrich (in Steinheim, 

Germany, and (USA); Naclai tesque, Inc., Kyoto, Japan; and 

Cell Biolabs, Inc., San Diego, CA, USA). Incorporation of 

NIR dye and production of Au-CsCaCO3NPs, 

characterization of Au-CsCaCO3NPs through Transmission 

Electron Microscope (TEM), zeta potential and 

measurement size distribution, UV-VIS spectrophotometer 

and cell biocompatibility were discussed in (56). 

 

Cells seeding and treatment 

The cultured flasks' cells were detached using trypsin and 

seeded into ninety-six well sterile dishes at a concentration 

of 1×105 cells each well. The ninety-six well dishes were 

then placed into the 5% carbon dioxide incubator at 37˚C for 

24 hours. The media in the wells was aspirated, and the cells 

were treated and co-cultured in replicates with Au-

CsCaCO3NPs solution (concentration of one mg/ml in ten 

percent serum-free DMEM media), for twenty-four hours, 

forty-eight hours, and seventy-two hours. The following 

treatment experience was finished, and the media in the wells 

was removed and splashed with phosphate-buffered saline. 

Earlier, it was exchanged with additional media previous to 

additional new treatments, for example, LDH Assay (57) and 

ROS Assay (58). 
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Lactate dehydrogenase assay LDH 

Subsequently, cell seeding of MCF-7 cells and NIH3T3 

cells in ninety-six-well dishes and treatment, the dishes were 

incubated for 72 hours after treatment with different 

concentrations in µg (100, 50, and Control) of the 

nanoparticle solutions. The 96-well plates were cleared of all 

previous media, and cell membrane integrity was assessed 

(58). The protocol measures the amount of LDH out through 

the lysed cells directly related to the damaged cells.  

 

Lactate dehydrogenase treatment protocol 

The 96-well plates were removed from the incubator with 

the previous treatment. Sterile water and Triton X-100 

provided were supplementary to individual wells in 

triplicates for the pre-seeded and treated plates. The dishes 

were incubated for ten minutes in a room environment. 

Approximately 90 µl of media was carefully transferred from 

each well to clean 96-well plates suitable for micro-plate 

readers. Around 10 µl of LDH assay reagent was 

supplementary to the wells and permitted to incubate for 1 

hour to allow for LDH activity of the cells. After incubation, 

the dishes were positioned on a shaker for 10 minutes. The 

suspension's visual concentration was examined with a 

micro-plate reader at a wavelength of 450 nanometers; the 

values were recorded, and a graph was plotted with Excel. 

 

Reactive oxygen species assay ROS 

This part of the study was achieved using a protocol from 

the ROS assay kit. For the preparation of reagents, 1X DCF-

DA (20X DCF-DA stock solution was diluted to 1x in 

serum-free DMEM media and mixed uniformly using a 

sonicator vortex), and Hydrogen Peroxide (H2O2) dilutions 

were prepared in DMEM serum-free media. For the 

preparation of a typical curve, about one to ten serial 

dilutions of DCF standards were prepared in a concentration 

variety of zero µM to ten µM by attenuating the one mM 

DCF stock in DMEM serum-free media. Approximately 75 

µl of individual DCF standard was transferred to a ninety-

six-well dish appropriate for fluorescence measurement, 

followed by 75 µl of the 2X cell lysis buffer. Fluorescence 

data readings were obtained using a fluorescence microplate 

reader, measured at 480 nanometres excitation and 530 

nanometres secretion. 

 

DCF Dye filling 

The 96-well plates were cleared of all previous media and 

washed well with PBS twice. About 100 µl of 1X DCF-DA 

prepared solution was supplementary to the cells and 

incubated for 45-60 min at 37°C. The 96-well dishes were 

cleared of all solutions and washed away well with PBS 

twice. The DCF-DA-loaded cells were treated with the 

prepared hydrogen peroxide in 100 µl media. 

 

Quantitation of Fluorescence 

After treatment with the oxidant, the 96-well plates were 

cleared of all previous media and washed well with PBS 

twice. About 100 µl of media was supplementary to 

individually well along with 100 µl of 2X cell lysis buffer, 

which was carefully miscellaneous and then incubated for 10 

minutes. Around 150 µl of the combination was then moved 

into a hygienic ninety-six-well dish for fluorescent 

measurement. The fluorescence was documented at 480 nm 

excitation and 530 nm emission with a fluorescent micro-

plate reader. The experiment was conducted in triplicates.  

 

In-vitro imaging and cellular acceptance of Au-

CsCaCO3NPs 

Breast cancer cells MCF-7 were seeded into six-well 

dishes and permitted to cultivate in 100% DMEM media. 

Upon accomplishment 80% cell confluence, the media was 

removed and then exchanged with 1ml of new culture media 

complemented with 25 mM HEPES comprising Au-

CsCaCO3NPs suspension and incubated at 37˚C for 6 hours. 

The cells were splashed in PBS solution (3) periods before 

fluorescent and confocal microscopy examination. 

Fluorescence images were documented to quantify conjugate 

nanomaterial uptake by the cells, and fluoresce emission was 

visualized using a fluorescent microscope 

(Immunofluorescence microscopy system, Tokyo, Japan). 

 

Fluorescent preparation protocol 

The cells were seeded onto four well-chambered 

sterilized slides (SPL Life sci, made in Korea) and incubated 

for twenty-four hours overnight. The medium in the wells 

was detached, and the cells were treated and co-cultured in 

replicates with Au-CsCaCO3NPs solution for 72 hours. Once 

the treatment experience was accomplished, the medium in 

the wells was removed and splashed with PBS twice. The 

cells were re-suspended after trypsinization, and 0.5 ml of 

Devil’s stain (Acridine Orange (AO) and Propidium Iodide 

(PI) in the ratio of 1:1) was supplementary to individually 

well for 60 minutes in a room environment. Afterward, a 

drop was placed on a clean slide with the coverslip. The 

slides were examined using fluorescence microscopy 

(Immunofluorescence microscopy system, Tokyo, Japan). 

 

Confocal preparation protocol 

The cells were seeded onto 4-wells chambered sterile 

slides (SPL life sci, made in Korea) and incubated for 

twenty-four hours overnight. The medium in the wells was 

detached, and the cells were treated and co-cultured in 

replicates with Au-CsCaCO3NPs for 72 hours. Once the 

treatment experience was accomplished, the medium in the 

wells was removed and splashed with PBS twice. The cells 

were stable in 3.7% pre-cooled paraformaldehyde in a room 

environment for fifteen minutes and afterward splashed 

twice with PBS. Around 500 µl of Devil's stain was 

supplementary to individually well for 60 minutes at room 
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temperature and afterward splashed with PBS twice, 

followed by the counter stain of 50 µl prepared intermediate 

DAPI (4', 6-diamidino-2-phenylindole) for two mins at room 

environment. The wells were finally splashed thrice with 

PBS in the dark, and coverslips were mounted with Prolong 

gold antifade reagent (Molecular probe, USA). The slides 

were finally studied using a confocal laser scanning 

microscope (Zeiss, Germany).  

 

Statistical examination 

All data examination was achieved by SPSS software 

(Version 10, Chicago, USA) by student’s t-test and one-way 

ANOVA and stated as Mean ± Standard deviation. The level 

of statistical consequence was P<0.05.  

 

Results  

 

Lactate dehydrogenase assay LDH 

This analysis was further intended to evaluate the cell 

membrane integrity of MCF-7 cell line and NIH3T3 cell line 

treated with the synthesized Au-CsCaCO3NPs. Analyzing 

LDH levels after exposure to the concentrations in µg (100, 

50, and Control) designed from the assay dose-response for 

72 hours. The findings displayed in figure 1 validate that the 

LDH percentage release of MCF-7 cells treated with Au-

CsCaCO3NPs was slightly more significant than that of the 

Au-CsCaCO3NPs treated NIH3T3 cells.  

 

 
 

Figure 1: Comparative LDH released by Au-CsCaCO3NPs 

treated MCF-7 cells and Au-CsCaCO3NPs treated NIH3T3 

cells, presenting higher LDH % release with MCF-7 as 

compared to NIH3T3 at P< 0.05. 

 

Reactive oxygen species ROS 

The objective of ROS experimental assay analysis was to 

further investigate the ROS of Au-CsCaCO3NPs on MCF-7 

and NIH3T3 by measuring the relative fluorescence units 

(RFU) (Figure 2).  

 
 

Figure 2: DCF Standard curve. 

 

The results show that Au-CsCaCO3NPs treated MCF-7 

cells also showed greater ROS release as matched to the Au-

CsCaCO3NPs treated NIH3T3 cells. They displayed minimal 

ROS release of less than 400 RFU at a concentration of 100 

µg in matched to their MCF-7 counterparts (Figure 3). 

 

 
 

Figure 3: Comparative ROS generation by Au-

CsCaCO3NPs treated MCF-7 cells and Au-CsCaCO3NPs 

treated NIH3T3 cells, presenting higher ROS generation 

with MCF-7 as compared to NIH3T3 at P<0.05. 

  

Fluorescent imaging and confocal imaging 

The purpose of fluorescent and confocal imaging of 

MCF-7 and NIH3T3 was to morphologically visualize cell 

death and the possibility of cellular uptake of the 

nanoparticles using the AO and PI double staining method 

and DAPI. The results in the MCF-7 fluorescent micrographs 

display most live cells with the Control, unlike the Au-

CsCaCO3NP treated cells, which show more cell death 

(Figure 4). The NIH3T3 fluorescent micrographs show more 

live cells with the Control and Au-CsCaCO3NPs (Figure 5).  
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Figure 4: Fluorescent images of MCF-7 cells subsequent 

treatment with (AO), (PI), and merged (PI and AO). Images 

(a) and (b) show live cells' subsequent treatment with (AO), 

with the Control having extra cells equal to Au-

CsCaCO3NPs treated cells. Images (c) and (d) show dead 

cells in the next treatment with (PI), with the Control having 

fewer cells equal to Au-CsCaCO3NPs treated cells. Images 

(e) and (f) show live and dead cells together after merging. 

(Magnification ×10, scale bar 100 µm). 

 

 
 

Figure 5: Fluorescent images of NIH3T3 cells next treatment 

with (AO), (PI), and merged (PI and AO). Images (a) and (b) 

show live cells next treatment with AO, Au-CsCaCO3NPs 

treated cells showing not much difference with the Control. 

Images (c) and (d) show fewer or no dead cells in the next 

treatment with PI. Images (e) and (f) show live and dead cells 

together after merging. (Magnification ×10, scale bar 100 

µm).  

 

However, the most interesting fact is that the MCF-7 

treated cells observed more cell deaths than the NIH3T3 

treated cell counterparts. The findings in the confocal 

micrographs are an overview of the mechanisms of 

intracellular uptake by MCF-7 and NIH3T3 which show the 

appearance of the nanoparticles inside the cellular 

compartment under four different fluorescent filters (blue, 

green, red, and merged filters) unlike the controls as 

indicated by arrows within their figures illustrated in figures 

6-9.  

 

Figure 6: Confocal micrographs of MCF-7 Control 

presentation cellular morphology under different fluorescent 

filters using DAPI (blue), AO (green), PI (red), and merged 

filter. ((A) ×63, scale bar 50 µm (B) ×20, scale bar 100 µm). 

 

 
 

Figure 7: Confocal micrographs of Au-CsCaCO3NPs treated 

MCF-7 cells presentation cellular acceptance and 

morphology under different fluorescent filters using DAPI 

(blue), AO (green), PI (red) and merged filter (living cells 

(control cells) pointer by black arrows). ((A) ×63, scale bar 

50 µm (B) ×20, scale bar 100 µm). 

 

 
 

Figure 8: Confocal micrographs of NIH3T3 Control 

presentation cellular morphology under different fluorescent 

filters using DAPI (blue), AO (green), PI (red), and merged 

filter. ((A) ×100, scale bar 20 µm (B) ×20, scale bar 100 µm). 
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Figure 9: Confocal micrographs of Au-CsCaCO3NPs treated 

NIH3T3 cells presentation cellular acceptance and 

morphology under different fluorescent filters using DAPI 

(blue), AO (green), PI (red) and merged filter (living cells 

(control cells) pointer by black arrow). ((A) ×100, scale bar 

20 µm (B) ×20, scale bar 100 µm). 

 

Discussion 

 

The results show a biocompatibility assessment of the 

nanoparticles on the cell lines by evaluating the cell 

membrane integrity. It was initially established that a normal 

cell membrane is impermeable to LDH release activity, and 

a common and standard biocompatibility test was used in in 

vitro cytotoxicity studies (57). A bioassay was used to 

quantify the number of dead cells through LDH leaked from 

the damaged cell plasma membrane correlating to cell death 

rate (59). This study surprisingly illustrates that the 

conjugated nanoparticles LDH % release of NIH3T3 was 

significantly lower compared to that of MCF-7. This result 

could be clarified because nanoparticle internalization could 

prompt intracellular responses along with the growing 

accumulation of LDH within the cytosol, facilitating the 

reverse conversion of lactate to pyruvate following a 

decrease of NAD+ to NADH within the cell. Furthermore, 

these results propose the possibility of conjugated particles 

for biomolecular and cellular bio-medical uses, such as 

imaging and drug distribution.  

Several reports have proven LDH to oxidize lactate to 

pyruvate while consuming NADH (60). The cytosolic 

enzymes are released into the extracellular liquids only when 

the cell membrane integrity is absent, assessing the cell 

membrane integrity by calculating the quantity of LDH 

released from the lysed cells, which is directly proportional 

to the damaged cells (58). Recent literature on LDH findings 

with work done on cancer cell line HeLa and MCF-7 using 

nanoparticle delivery systems and surface functionalized 

nanoparticles have reported higher LDH leakages (61). In the 

same regard, high LDH leakages have been confirmed with 

MCF-7 as a result of metallic nanoparticles (62), but also 

known reports have argued that lower LDH release with 

slight comprises of the cell membrane integrity by fibroblast 

cells L929 (63). However, this outcome is contrary to that of 

Smith (58), Lanari (64), Abdullah (65), Koren (66) who 

found that LDH assay studies on HeLa, MCF-7, and NIH3T3 

using gold nanoribbons revealed utmost LDH discharge in 

HeLa than MCF-7 and reported no significant difference 

with the LDH% discharge between MCF-7 and NIH3T3 

(67). In addition, previous studies on nanomaterials have 

reported that they induce high LDH levels, attributed to 

nanoparticle morphology inducing oxidative stress (68). 

Therefore, the current LDH results revealed no toxicity, as 

demonstrated by the conjugated nanoparticles. 

Collectively, the overall ROS assay findings of the 

nanoparticles on MCF-7 and NIH3T3 offer beneficial 

thought into O2 metabolism. ROS refers to chemicals, 

radicals, or molecules that include reactive oxygen 

composites, for example, peroxides subsequent from typical 

O2 metabolism with vigorous characters in homeostasis and 

cell signaling (69). This study was intended to determine the 

cell lines' relative fluorescence units (RFU). The results in 

this work indicate that the Au-CsCaCO3NPs treated MCF-7 

cells showed greater ROS release as paralleled to the Au-

CsCaCO3NPs treated NIH3T3 cells. ROS generation of the 

NIH3T3 was considerably lesser than on MCF-7 and showed 

reliable ROS generation, likewise in agreement with earlier 

biocompatibility outcomes highlighting the remarkability of 

Au-CsCaCO3NPs.  

Consequently, these outcomes could be explained by the 

statement that the internalization of the nanoparticles 

probably caused oxidative stress, which, in sequence, caused 

cell death, as displayed in the outcomes. This work supports 

evidence that the introduction of environmental stress 

significantly raises ROS levels, producing considerable 

cellular injury, furthermore, known as oxidative stress (70). 

Also, it corroborates the results of earlier studies in which 

cancer cells create significant levels of ROS. This is further 

explained by increased metabolic activities of oxidases and 

peroxisomes, mitochondria malfunctioning, or cellular 

dysfunction (71-73). Constant with prior works, this research 

found literature that reported nanoparticle cellular 

acceptance to make mitochondrial membrane penetrability 

and damaging the respiratory chain, producing apoptosis 

(74). Similarly, it has been argued for native cancer treatment 

that (Burkitt lymphoma B cells) and (epithelial breast cancer 

cells) produced probable injury using directed X-ray and 

AuNPs causing great ROS generation leading to cellular 

necrosis or apoptosis nonetheless, whereas supporting slight 

injury to neighboring, particle-free tissue (75). 

Furthermore, it has been proven that carbon and metallic 

nanomaterials produce slight ROS. But, their morphology, 

size, positive surface charges, aggregation, cellular interface, 

and nano metallic ions guide oxidative stress discharge, 

producing physiological dysfunction of the cell, which in 

sequence stimulates DNA injury (76,77). This finding 

contradicts previous studies, which have suggested a 

significantly higher generation of ROS over time by metallic 

nanomaterial as described by Xue (78) with works on human 
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liver HepG2 cells. Similarly, no significant effects were 

found with the work on NIH3T3 cells (79). Conclusively, 

these results offer competencies of the conjugated 

nanoparticles for cellular imaging applications. 

These results provide interesting insights into 

fluorescence and confocal imaging of the Au-CsCaCO3NPs 

treated cells of MCF-7 and NIH3T3 using AO, PI double 

staining, and DAPI. The current work was intended to define 

the cell death and cellular acceptance of the synthesized 

nanoparticles where the most prominent finding to arise from 

the fluorescence imaging is the fact that the MCF-7 treated 

cells observed more cell deaths in comparison to the NIH3T3 

treated cells counterparts. Additionally, from the confocal 

imaging, it is abundantly clear that the cells could take up 

nanoparticles within their cellular compartments. These 

results reflect those of Feng (80) and Yuan (81), who also 

found that fabricated bio-conjugated nanoparticles 

confirmed cellular internalization into MCF-7 and MDA-

MB-231 over NIH3T3. Furthermore, these results encourage 

agreement with further work. In this water, soluble 

fluorescent conjugated polyelectrolytes with self-assembly 

3D nanostructures were established to use for bioimaging of 

cancer and normal cell lines, including MCF-7 and NIH3T3 

which also showed comparable figures as well (82). 

In addition, the present study also supports similar 

evidence from Zhang (83) that conjugated nanoparticles 

were booked up by the treated MCF-7 and NIH3T3 cells. 

More importantly, the results align with recent studies that 

confirmed cellular acceptance of the nanoparticles, cell death 

findings, and non-toxicity to the normal cell line over the 

cancer cell line (84-86). Although these results differ from 

some published studies Muehlmann (87) and Li (88) they are 

consistent with several recent works Li (89), Li (90) and 

Yang (91). It seems likely that these results could be due to 

a numeral of features affecting the efficiency of the 

nanoparticles and cellular uptake, for example, size, shape, 

charge, and surface modification of the nanoparticles, 

explained by pinocytosis, a type of endocytosis associated 

with internalization of the nanoparticles. Elaborately, 

smaller particles, such as nanoparticles, can easily be 

internalized by the cell (92-95). Regarding shape and charge, 

it has been confirmed that more positive charges and 

spherical particles are easily booked up by the cell caused by 

the highly negative charge present in the cell membrane (96-

100). These are useful results; therefore, it is safe and 

possible that our conjugated nanoparticles could be used for 

bio-imaging. 

 

Conclusions 
 

This research aimed to assess fluorescent imaging and 

bio-cellular uptake of the Au-CsCaCO3NPs. Based on the 

results of this study, it is now possible to state that the easily 

synthesized conjugated nanoparticles are biocompatible, 

environmentally friendly, and could be used for bio-imaging. 

Moreover, they allowed for cellular uptake by cancer cells 

and standard cells and imparted cell death to the cancer cells 

in contrast to the standard cells. Altogether, these findings 

recommend the possible opportunity the synthesized 

conjugated nanoparticles could play in progressing cancer 

imaging. This research extends our knowledge of bio-

imaging using Au-CsCaCO3NPs and its potential 

application in diseased-cellular diagnostics.  
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التصوير التألقي وتقييم امتصاص الخلايا الحيوية 

لصبغة الذهب القريبة من الأشعة تحت الحمراء 

 لسيوم النانويةالمصاحبة لجسيمات كربونات الكا
 

، سفانه خضر 2ودمحم بنتي ، روزي1حنان كريمة كيراندا

 4، زوكي أبو بكر زكريا3محمود
 
لمتقدم، امركز البحث والابتكار، كلية هامبر، معهد التكنولوجيا والتعليم 1

ية، قسم التصوير، كلية الطب والعلوم الصح2، تورونتو، أونتاريو، كندا

ب فرع التشريح، كلية الط3، سيردانغ، ماليزياجامعة بوترا ماليزيا، 

بل قسم العلوم البيطرية ق4، البيطري، جامعة الموصل، الموصل، العراق

 ليزياالسريرية، كلية الطب البيطري، جامعة بوترا ماليزيا، سيردانغ، ما

 

 الخلاصة

 

في  في السنوات الأخيرة، برز التصوير التألقي كمجال نشط للاهتمام

بي. يلعب التصوير التألقي دورا حاسما في التصوير التصوير الط

 الجزيئي. تشير الدلائل إلى استخدامه في توفير نظرة هيكلية مفصلة

. تم والعوامل الوراثية والخلوية لإجراءات الجسم على المستوى الجزيئي

تحديد عوامل التصوير على أنها مرتبطة بمخاطر مثل عدم التفكك 

عوامل ل. أظهر الباحثون اهتماما شديدا بنمو الالبيولوجي والتسمم الهائ

شعة المستهدفة متعددة الوظائف في علاج الأورام والتصوير التألقي بالأ

تحت الحمراء القريبة. قيمت هذه الدراسة التصوير التألقي وتقييم 

راء امتصاص الخلايا الحيوية لصبغة الذهب القريبة من الأشعة تحت الحم

 تم دراسة خصائص ونات الكالسيوم النانوية.المصاحبة لجسيمات كرب

نَّعة لصبغة الذهب القريبة من الأشعة تحت الحمراء المُص الحجم والتشكل

والمصاحبة لجسيمات كربونات الكالسيوم النانوية بواسطة المجهر 

وق فالإلكتروني النافذ، وإمكانات زيتا، ومقياس الطيف الضوئي للأشعة 

شعة تحت البنفسجية. تم تقييم التوافق الحيوي لصبغة الذهب القريبة من الأ

ية في مُصنَّعة والمصاحبة لجسيمات كربونات الكالسيوم النانوالحمراء ال

والخلايا الليفية  MCF-7خلايا سرطان الثدي البشرية المستزرعة 

جينز باستخدام الاختبارات الحيوية مثل هيدرو NIH3T3 الجنينية الفأرية

شكل للفحص السمي. تمت دراسة الت وأنواع الأكسجين التفاعلية اللاكتات

ائج أثبتت النت .لامتصاص بواسطة المجهر التألقي ومتحد البؤرالخلوي وا

 والمعالجة بـصبغة الذهب أن خلايا سرطان الثدي البشرية المستزرعة

القريبة من الأشعة تحت الحمراء والمصاحبة لجسيمات كربونات 

جنينية موت خلايا أكثر من الخلايا الليفية ال أظهرت الكالسيوم النانوية

ت افة إلى ذلك، كانت الخلايا قادرة على تحمل الجسيمابالإض الفأرية

 في الختام، تم تصنيع صبغة الذهب .النانوية داخل حجراتها الخلوية

القريبة من الأشعة تحت الحمراء والمصاحبة لجسيمات كربونات 

. من الكالسيوم النانوية بسهولة، وكانت متوافقة حيويا، وصديقة للبيئة

حت استخدام صبغة الذهب القريبة من الأشعة ت الجدير بالذكر أنه يمكن

الحمراء والمصاحبة لجسيمات كربونات الكالسيوم النانوية للتصوير 

 التألقي بشكل امن والذي يمكن أن يوفر فرصا للتقدم في تصوير جميع

 السرطانات. أنواع
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