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1- Introduction 
 

       A random variable is always considered as a sample from a distribution. This may be  well-known distribution or 

not.  Some  random variables are drawn from one single distribution , such as the normal distribution but this is not 

always so easy because in real-life the random variables might  have been generated from a mixture of several 

distributions. 

In studying  mixture distributions the formula of this distribution have been difficult then it is used some algorithms to 

facilitate finding the estimators , where EM algorithm is used to find the maximum likelihood estimators and the 

metropolis Hastings  algorithm to find the Bayesian estimators   . if the distribution is an exponential family , with 

density  ( )   ( ) (𝑥) 𝑥𝑝 ( ( ) (𝑥))  ,then a conjugate prior distribution for   exists and the prior distribution 

𝑝( )   ( )   ( ( ) ) is conjugate to the likelihood of  the exponential family , see (Bernardo,2009). 
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  Many authors considered estimating the parameters of the mixture distributions. For example, (Newcomb ,1886) 

suggested an iterative reweighting scheme that can be viewed as an application of the EM algorithm of  (Dempster et al. 

,1977) to compute the common mean of a mixture in known proportions of a finite number of univariate normal 

distributions with known variances. (Jewell ,1982) provided maximum likelihood estimates of mixture of exponential 

distributions using EM algorithm..( Li L.A., 1983) quoted several features of mixture models and defined two types of 

mixture models. If the component distributions of a mixture belong to same family, their mixture is known as a type-I 

mixture model. Whereas, a type-II mixture model is defined as the component distributions of a mixture belong to 

different families .. (Upadhyay et. al. ,2002) proposed Bayesian inference in life testing and reliability by using Markov 

Chain Monte Carlo (MCMC). (Pang et. al. ,2004) used MCMC techniques to carry out a Bayesian estimation procedure 

using Hirose’s simulated data. (Chojogh,B,et al,2019)  presented a research in which he clarified mixture distributions  

the research include model of the normal mixture distribution and Poisson mixture distribution for tow component and 

for k-components and estimating the parameters of these model using (EM) algorithm. (“A mixture model for 

determining SARS-COV-2 variant composition in pooled samples”)  presented a research includes a mixture model 

distributions and apply it to a set of variables SARS-COV-2  the model is built by looking at a pre-defined set of data 

,the results showed that these models support these data  well.  

Gamma Distribution 

It is a type of continuous probability distribution and is used in many fields such as Statistics, Economics, 

Physics, Computer Science and others, the Gamma distribution can be determined by two parameters, the shape 

parameter (α) and the scale parameter (β), and the probability density function (pdf) for this distribution is as follows: - 

 (𝑥)  
  

  
𝑥                                                                                                                         (1) 

where α > 0 , β > 0 and x > 0. 

 

2-  Mixture Distribution Models 

It is the process of analyzing data to determine the best mixture model that can be used to describe the observed 

data. Mixture models consist of several different probability distributions and are characterized by their ability to 

represent the distribution of data more accurately than single models. 

Every random variable can be considered as a sample from a distribution, . Some random variables are drawn from 

one single distribution, such as a normal distribution. But life is not always so easy! Most of real-life random variables 

might have been generated from a mixture of several distributions and  not a single distribution. 

Random variables usually come from only one distribution, like (gamma distribution or normal distribution), but in 

real life there are some variables that come from several mixture distributions and these distribution  may be from the 

same family, i.e. from one family, for example, all of them from the normal distribution, but with different parameters, 

or these distributions may be different, for example (gamma distribution and  normal distribution)  together. 
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Let  1,  2,  3, … ,  𝑛 be independent random variables and 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 the    observations of the  random 

variable  and the probability density function for the mixture distribution (pdf) containing k of the components can be 

expressed as follows:-  

            (𝑥)  ∑     (𝑥   )
 
                                                                                                              (2)   

 where  𝑗 represents the mixture  weights and is 0 <  𝑗  < 1 and ∑ 
        and  𝑗(𝑥| 𝑗) represents the probability 

density function of  the variable ( x) and   = ( 1,  2, …  𝑘) represents the parameters  vector of  the  mixture distribution, 
and  it is worth noting that the parameter θ  is treated as a random variable rather than a constant (Tahir & et al, 2016). 
The mixture gamma distribution of k of components is written  as follows:- 

 (𝑥      )  ∑   

  
  

   
𝑥           

                                                                                             (3) 

                   ,   
 
   ,     , 𝑘    . 

 
3- SOME METHODS OF ESTIMATE THE PARAMETERS OF MIXTURE DISTRBUTION    

Mixture distributions are common  statistical distributions, which are used in many fields such  as data analysis, 

machine learning, and others, and these distributions depend on the idea of collecting several simple distributions 

together to produce a complex distribution. And these distributions need to estimate a set of parameters  that  determine 

the distribution of  mixture data. 

  When we have a sample size n (𝑥1, 𝑥3, 𝑥2, … 𝑥𝑛) are randomly drawn from a known distribution but the distribution 

parameters are unknown, for example a sample drawn from the normal distribution with unknown parameters (mean and 

variance), the main objective is to estimate the parameters of  this distribution. In this study, we will discuss two methods  

for estimating parameters of mixture distribution. 

A- Maximum Likelihood Estimation (MLE): 

     This method is one of the most important methods of point estimation and was proposed by the famous 

statistician Fisher in 1920, as it assumes that the parameters to be estimated for a particular population is an unknown 

fixed quantity which estimated based on the sample data. 

Assume we have a sample with size n, i.e., (𝑥1, 𝑥3, 𝑥2, … 𝑥𝑛) Also assume that we  know the distribution from 

which this 

sample has been randomly drawn but we do not know the parameters of that distribution. The principle of this 

method is to find an estimate such as  
   

for the parameter θ which makes the likelihood function at its maximum value. 

If 𝑥1, 𝑥3, 𝑥2, … 𝑥𝑛 are random variables and these variables have an independent and identically distributed (iid) and size 

(n) and drawn from a population with a probability density function  (𝑥| ), the estimator of the likelihood function that 

makes the likelihood function at its maximum value can be obtained by deriving the likelihood function and equating it 

to zero. The likelihood function will be as follows:- 

 (  )  ∏  (𝑥    )
 
                                                                                                                            (4) 

by used (2) 

 (  )  ∏ ∑    (𝑥    
 
   ) 

                                                                                                                (5) 

by given log: 

𝑙𝑛 (  )  ∑ 𝑙𝑛  ∑    (𝑥    
 
   

 
   )                                                                                                     (6) 
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Then we take the partial derivative of  𝑗 once and for  𝑗 again to get the equation for each parameter, but it will be 

difficult to solve the equations formed directly because of the presence of addition operations inside the logarithm, so it 

is necessary to rely on numerical methods and algorithms that use iterative operations in order to reach the maximum 

likelihood estimator (Friedman & et al, 2009). 

Expectation Maximization Algorithm (EM): 

The expectation maximization algorithm (EM) was proposed by (Dempster, Laird & Rubin ,1977) and still to this 

day, and it is one of the most important methods to find the maximum likelihood estimators in the case of latent 

variables or missing values. And this algorithm is used in statistics and machine learning to solve problems related to 

statistical analysis of data such as classification, aggregation and factor analysis (Filho, 2008). 

For example, assuming the collection of data about a particular disease, where the severity of the disease was not 

recorded, but the presence or absence of the disease was recorded, i.e. the absence of the disease was expressed by zero, 

and the presence of the disease was expressed in 

 x> 0, in this case we do not know the values of x, is it 100 or 5 ?, in this case, we cannot use the method of 

maximum likelihood because there are missing values. 

The expectation maximization algorithm consists of two steps (Chris & Raftery, 2017): 

a-Step One: E-Step 

This step aims to estimate probability distributions by taking the expectation of the logarithm of the likelihood 

function in order to find an appropriate estimate of the parameters. 

 ( )    𝑙𝑛 𝑙𝑛 𝑙( )   

here the missing values are treated as constants and not variables (Chojogh et al, 2019). 

b-Step Two: M-Step 

This step aims to determine the optimal values of the parameters using the expectation function in the first step. 

 ̂   𝑟 𝑚 𝑥 ( ) 

To estimate mixture Gamma distribution we have the p.d.f of mixture Gamma distributions 

 (𝑥   )  ∑    (𝑥   )

 

   

 

by used (3) 

 (𝑥       )  ∑  

 
 

  

   

𝑥 
          

 

   

 

 

 (     )  ∏∑   

 
 

  

   

𝑥 
          

 

   

 

   

 

Taking the logarithm to the above equation we get 
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𝑙𝑛 𝑙𝑛  (     )    ∑ 𝑙𝑛  ∑  𝑗

 
𝑗

 𝑗

  𝑗

𝑥 
 𝑗   

  𝑗𝑥  𝑘
𝑗  

𝑛
                                                            (7) 

Optimizing this log-likelihood is difficult because of the summation within the logarithm. However, we can use  the 

indicator parameter    for each observation 𝑥  as follows (Corduneanu and Bishop, 2001). 

 

    *      𝑡   𝑜 𝑠 𝑟𝑣 𝑡 𝑜𝑛 𝑥     𝑙𝑜𝑛  𝑡𝑜 𝑡   𝑗    𝑜𝑚𝑝𝑜𝑛 𝑛𝑡          𝑜𝑡  𝑟𝑤 𝑠                                    

And the probability is: 

𝑝(     )     

𝑝(     )       

For fixed i  ∑       
            𝑟𝑛𝑜𝑙𝑙 (  )and       𝑚𝑢𝑙𝑡 𝑛𝑜𝑚  𝑙(            ), the probability density function 

for    as the following form: 

(Saeed,2005)   

( )  
  

            𝑘 
∏  

𝑗

  𝑗
 ∏  

𝑗

  𝑗

𝑘

𝑗  

𝑘

𝑗  

 

 

Since             Are independent, we write the joint indicator density as the following form: 

 ( )  ∏ ∏  
 

    
   

 
                                                                                                         (8) 

where (𝑥    ) (𝑥    )   (𝑥    ) denoted the complement data. Therefore we can write the joint pdf of the 
observation 𝑥  and the indicator    as following form: 

 (     )  ∑     (𝑥    )

 

   

 

                  ∏    (𝑥    ) 
    

    

 ∏ (  

 
 

  

   
𝑥 

          )    
                                                                                                  (9) 

and the complement data likelihood is given by: 

 (     )  ∏  (     ) 
                                                                                                 (10)    

              ∏ ∏    

 
 

  

   
𝑥 

               
   

 
    

                ∏ [[ 
    

  

   
]
∑ 

      

 ∏ 𝑥
 

   
         ∑ 

         
   ] 

    

 ∏ [[ 
    

  

   
]
∑ 

      

  𝑝
 

    
    ∑ 

        ] 
                                                                           (11) 

Where  𝑝  ∏ 𝑥
 

    
    

The log of the complement data likelihood function is 

𝑙𝑛 (     )  ∑ ∑    𝑙𝑛  
 
   

 
    ∑   ∑    𝑙𝑛    

   
 
   ∑ ∑    𝑙𝑛   

 
   

 
    ∑ (    ) 

   ∑    𝑙𝑛𝑥 
 
    

∑   ∑ 𝑥    
 
   

 
                                                                                              (12) 

    The     is latent or missing value because we do not know whether it be       or       therefore we used the 

Expectation Maximization(EM) to estimate the parameters (Sattayatham and Talangtam, 2012). 

Case 1:E-Step 
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  𝑥      (𝑥       )     (𝑥       ) 

             (𝑥       )  =𝑤                                                                                                   (13) 

     

                 (𝑥 )  
 (  𝑗  )𝑝(  𝑗  )

∑  (  𝑗  )𝑝(  𝑗  )𝑘
𝑗  

 

            
  

 
 

  

   
 
 

    
 

     

∑   

 
 

  

   
 
 

    
 

      
   

                                                                                              (14) 

The expected complete log-likelihood is 

 

  𝑙𝑛 (     )  ∑ ∑    𝑙𝑛  
 
   

 
    ∑   ∑    𝑙𝑛  

 
   

 
    ∑ ∑    𝑙𝑛   

 
   

 
     ∑ (    ) ∑    𝑙𝑛𝑥 

 
     

   

∑   ∑ 𝑥    
 
   

 
                                                                                                              (15) 

 

∑ ∑    ∑∑ (𝑥 )

 

   

 

   

 

   

 

   

 

                    ∑

  

 
 

  

   
𝑥

 

    
      

∑   

 
 

  

   
𝑥

 

    
       

   

 

   

 

                     ∑   𝑛 
                                                                                                                    (16) 

 

Case 2:M-SteP 

 

     (     )  

∑ ∑        
 
   

 
    ∑   

 
   ∑        

 
    ∑ ∑         

 
   

 
    ∑ (    ) 

   ∑        
 
    

∑   
 
   ∑      

 
     (∑      

   )                                                           (17) 

 

   𝑙𝑛  

   

 
∑    

 
   

  

     

 

    
∑    

 
   

 
 

 

 ∑  ∑
∑   𝑗

𝑛
   

 

𝑘

𝑗  

𝑘

𝑗  

 

 ∑
∑   𝑗

𝑛
   

 

𝑘

𝑗  

   

 
 

 
∑∑   𝑗

𝑛

   

𝑘

𝑗  
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   ∑∑   𝑗

𝑛

   

𝑘

𝑗  

 

    
∑    

 
   

∑ ∑    
 
   

 
   

 

 

   
∑    

 
   

 
                                                                                                                                              (18) 

𝑛     ∑   

 

   

    

 
       

   
 ∑    𝑙𝑛  

 
    ∑    

      

   

 
    ∑    𝑙𝑛𝑥 

 
                                                                         (19) 

      

We solve this equation by Newton’s Raphson  method 

 

   𝑙𝑛  

   

 
∑      

 
   

  

 ∑𝑥    

 

   

   

 
 
 

∑      
 
   

∑      
 
   

                                                                                                                                             (20) 

2-Bayesian Estimation Approach 

In many cases, it is easy to find a suitable formula for the posterior distribution, but sometimes we may face 

difficulties in finding posterior distributions, which may require the integration of high- dimensional functions (high-

grade functions), so it was necessary to develop methods that facilitate the process of finding posterior distributions and 

solve this problem, and the most important of these methods is the Markov Chain Monte Carlo (MCMC) where this 

method was used by researchers in the early 1990s and was widely applied to solve Bayes' problems as it relies on the 

idea of obtaining a random sample of conditional distributions of parameters . 

The most commonly used methods of the Markov Chain Monte Carlo (MCMC) are the Gibbs Sampling Algorithm 

and the Metropolis-Hastings Algorithm, which we will use in this paper. 

Metropolis - Hastings Algorithm 

The Metropolis-Hastings algorithm is one of the main methods of the (MCMC) the main methods to estimate the 

parameters of mixture distributions and is used in many scientific and engineering applications, especially in the fields 

of Statistics and Physics. 

Let 𝑥1, 𝑥3, 𝑥2, … 𝑥𝑛 be identically distributed random (iid) and have a probability density function  (𝑥| ) and we 

do not know the posterior distribution of the parameters of this function and suppose that 𝑞( | ′
) is a candidate 

distribution with the parameter θ', the steps of this algorithm are: (al-masri,2020) 

Metropolis-Hastings Algorithm Steps: 

1-Choose an initial value for the parameter  (0)
 so that it is close to the parameter values of the real data. 

2-Choose the default sample sizes for random variable observations x 

3-We make  a repetition  from i=1,2,…,N 
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a- We generate a suggested value     followed the proposed distribution (we use the prior distribution for each 

model). 

b-  We calculate the acceptance probability: 

 

𝑝(       )  𝑚 𝑛    
 (𝑥  𝑥    𝑥 )𝑞(       )

 (𝑥  𝑥    𝑥 )𝑞(       )

̇
 

 

where the numerator  represents the value of the proposed parameter compensated in the equation for a conditional 

distribution. The denominator represents the value estimated by the equation of a conditional distribution.. 

c-  Generate random numbers ui of uniform (0,1).  

d- If ui < α(  
i−1

,  ′) , we assume that    =  ′       
       and if ui≥ α(  

i−1
,  ′) , we assume that    =   −1 

4- We repeat the previous steps each time by making       i=i +1 and go to step 1.1-  Posterior 

When the indicator parameter zi is unknown, for all observation xi, i = 1, 2, . . . , n and the scale parameter a, 

the shape parameters   and the weight parameter λ are known. The conjugate prior p (  ) of    is multinomial 

with hyper parameters (1, λ1, λ2, . . . , λk). 

By using Bayes’ theorem, the posterior distribution: 

(      𝑥       )  
 (              ) (     )

∑  (              ) (      
   )

  
  

 
 

  

   
 
 

    
 
     

∑   

 
 

  

   
 
 

    
 
      

   

  𝑤                                   (21) 

Since each     takes two values only 1 or 0, then 

𝑝(𝑥       )    (𝑥       )    𝑤                                                                                           (22) 

Therefore, the posterior distribution  𝑝(𝑥       ) has a multinomial distribution (1, wi1, wi2, . . . , wik), where i = 
1, 2, . . . , n and j = 1, 2, . . . , k. 

 

2-    Posterior 

When the weight parameter    is unknown and the scale parameter a and the shape  parameters   are known. By 

ignoring terms that contain      in (11) the complete data likelihood function is given by: 

 ( )  ∏(  )
∑    

 
   

 

   

 

 ∏ ( 𝑗)
 𝑗𝑘

𝑗                                                                                                                                (23) 

Where    is the number of the observations  

   𝑛     

 ∑ (    𝑥 

 

   

) 

By using (13) 
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 ∑     (𝑥       )     (      𝑥       ) 
     ∑  (      𝑥       ) 

     ∑ 𝑤  
 
           (24)                                

The conjugate prior p (λ) is a  Dirichlet  distribution  with  hyperparameters  µ  = (µ1, µ2, . . . , µk) is given  

𝑝( )  
 ∑ (  

 
   )

∏    
 
   

∏  
 

    
 

   

 

     ,        

By ignoring terms that contain    the posterior distribution is a Dirchlet with hyperparameters (   

∑ 𝑤  
 
       ∑ 𝑤  

 
         ∑ 𝑤  

 
   ) is given by 

𝑝(      𝑥  )   ( ) ( ) 

 
 ∑ ( 𝑗

𝑘
𝑗  )

∏   𝑗
𝑘
𝑗  

∏  
𝑗

 𝑗  

𝑘

𝑗  

( 𝑗)
 𝑗

 

 
 ∑ ( 𝑗

𝑘
𝑗  )

∏   𝑗
𝑘
𝑗  

∏  
𝑗

 𝑗    𝑗

𝑘

𝑗  

 

 ∏  
𝑗

 𝑗   ∑ 𝑤 𝑗
𝑛
   𝑘

𝑗                                                                                                          (25) 

3-aj Posterior 

  When the shape parameter aj is unknown, for some j = 1, 2, . . . , k and both the weight parameter λ and the scale 

parameters   are known. By ignoring terms that contain      . . , aj−1, aj+1, . . . , ak in (11), the complete data 

likelihood function is given by: 

𝑙(  )  (
 

 

  

   

)∑    
 
   (∏𝑥

 

  
)   

 

   

 

 (
 
𝑗

 𝑗

  𝑗

)∑   𝑗
𝑛
   (𝑝

𝑗
) 𝑗                                                                                                             (26) 

Where  𝑝  ∏ (𝑥 )
    

    

The conjugate prior p (aj) is an exponential family with hyper parameters (𝑠  𝑡 ) is given by 

𝑝(  )  (
 

 

  

   
)  𝑡

 

  
                                                                                                                (27) 

The posterior distribution   𝑝(𝑥                              ) with hyper parameters (𝑠 
  ∑    

 
    𝑠    𝑡 

  

𝑝 𝑡 ) is given by𝑝(𝑥                              )  𝑙(  )𝑝(  ) 

 (
 

𝑗

 𝑗

  𝑗

)

∑   𝑗 𝑠𝑗
𝑛
   

(𝑝
𝑗
𝑡𝑗)

 𝑗

 

 (
 𝑗

 𝑗

  𝑗

)

𝑠𝑗
 

(𝑡𝑗 )
 𝑗                                                                                                                     (28)  

4- j Posterior 
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  When the scale parameter  
 
is unknown, for some j = 1, 2, . . . , k and the shape parameter a, and the weight 

parameter λ are known. By ignoring terms that contain (                           ) in (11), the complete 

data likelihood function is given by: 

𝑙(  )  ( 
 

  
)∑    

 
       ∑      

 
    

The conjugate prior p ( 
 
) is the gamma distribution with hyper parameters (𝑣    ) 

𝑝(  )  
(  )

  

   
 

 

    
                                                                                                             (29) 

The posterior distribution  𝑝(𝑥                              ) is the gamma distribution with hyper 

parameters (𝑣      ) 

𝑝(𝑥                              )  𝑙(  )𝑝(  ) 

 ( 
𝑗

 𝑗
)∑   𝑗

𝑛
    

  𝑗
∑ 𝑥   𝑗

𝑛
    

𝑗

𝑣𝑗  
 

  𝑗 𝑗  

  
𝑗

 𝑗 ∑   𝑗 𝑣𝑗  
𝑛
   

 
  𝑗

∑ 𝑥   𝑗
𝑛
     𝑗  

  
𝑗

𝑣𝑗  
 

 
  𝑗 𝑗

 

                                                                                                                                       (30) 

Where   𝑣 
    ∑    

 
    𝑣        

  ∑ 𝑥    
 
       

 

5-Joint Posterior of     

   When the weight parameter λ is known and the shape parameters   and the scale parameter   are unknown. By 

ignoring terms that contain λ in (11), the complete data likelihood function is given by: 

 (     )  ∏(
  

  

   

)

 

   

 ∑   

 

   

  𝑝
 

    
    ∑      

 
    

The conjugate prior p (     ) with hyper parameters (𝑠  𝑚 ) is given by 

𝑝(     )  ∏ (
  

  

   
)

  
 
     𝑡

 

    
                                                                             (31) 

By ignoring terms that contain λ, the joint posterior distribution 

𝑝(      𝑥    )    (     ) 𝑝(     ) 

     ∏ (
 𝑗

 𝑗

  𝑗

)
∑   𝑗 𝑠𝑗

𝑛
   

𝑘
𝑗  𝑡𝑗𝑝𝑗

 𝑗   
  𝑗(∑ 𝑥   𝑗 𝑚𝑗

𝑛
   )

 

          (
 𝑗

 𝑗

  𝑗

)
𝑠𝑗
 

(𝑡𝑗
 )

 𝑗  
 

  𝑗𝑚𝑗
 

                                                                                                 (32) 

with the hyper parameters 

𝑚 
  ∑(𝑥     𝑚 )  𝑠 

 

 

   

 ∑     𝑠  𝑡 
 

 

   

 𝑡 𝑝  

4- Simulation study 
In this section, a simulation study using Monte Carlo methods in Bayesian method of estimation and EM algorithm 

in maximum likelihood estimation and compare the efficiency of MLE method with Bayesian method of estimation 

using by computing  the mean of  the sum of  the modulus of the bias (MBias), and  the root-mean square error 

(RMSE),  
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     The general  form of  tow-component  mixture  gamma  distribution  is given by 

 (𝑥      )   
  

  

   

𝑥          (   )
  

  

   

𝑥          

 

The simulation study was written using R language. The simulation study included the following basic stages: 

First stage: choosing the initial vales as follows: 

1-choosing the initial values for the parameters (                           ) , the   and (1-  ) selected 

randomly from the first and the second component density. 

2- choose different sample size( 50, 100, 150) to generate the data set of tow-component mixture gamma distribution with 

parameters. 

3-Repeat the experiment 1000 repetitions for each experiment. 

4-choose values for the random variable. 

Second stage: data generation : 

A random variable is generated depending on the type of distribution 

Third stage: estimating the parameters according to the mixture distributions using the estimation methods. 

Fourth stage: the results compare the efficiency of MLE method with Bayesian method of estimation using by 

computing  the mean of  the sum of  the modulus of the bias (MBias), and  the root-mean square error (RMSE), where 

the smaller RMSE and MBias indicates a better overall quality of the estimates. 

 

    𝑠     ∑   ̂       ̂    

 

   

 

     √   ∑( ̂   )  ( ̂   ) 

 

   

 

 

  To find the MLE estimators, the Newton Raphson method was adopted. The parameters (   ) are estimated with  

Metropolis method (MT) of estimation using the joint prior in (31) with hyperparameters (s = 1; m = 1; t = 1) where the 

simulation study was carried out 1000 times. Table 1 present the estimates (Est.) and the RMSE and MBias values by 

MLE and MT method. The smaller RMSE and MBias for each sample size is highlighted in bold . Looking at these 

tables we observe that: we obtained  that  Metropolis method is uniformly better than MLE  in all cases. 
 

Table 1: MBias and RMSE of the MLE estimates and the MT estimators for two component mixture Gamma distribution 

 

Sample 

size 

Method  ̂   ̂   ̂
 
  ̂

 
  ̂ 

RMSE MBise 

 

 

50 

 

 

EM 

 

5.2594 

 

2.3304 

 

9.1590 

 

3.8302 

 

0.4065 

 

2.3633 

 

2.0702 

 

McMc 

 

2.5164 

 

3.3312 

 

4.1121 

 

5.8485 

 

0.5114 

 

1.0555 

 

0.8401 

 

 

100 

 

 

EM 

 

2.8220 

 

6.3777 

 

5.8096 

 

10.8190 

 

0.4999 

 

2.0152 

 

1.3130 

 

McMc 

 

2.6802 

 

6.2251 

 

5.5243 

 

10.6079 

 

0.5091 

 

1.9129 

 

1.3075 

 

 

150 

 

EM 

 

5.2594 

 

2.3304 

 

9.1590 

 

3.8302 

 

0.4065 

 

2.3633 

 

2.0702 

 

McMc 

 

2.5164 

 

3.3312 

 

4.1121 

 

5.8485 

 

0.5114 

 

1.0555 

 

0.8401 

5- Discussion  

 

       The parameters       are estimated with Metropolis method and the Expectation Maximization  algorithm(EM) 

from the simulation results, it is observed that Bayes estimator better than maximum likelihood 

 (     ) (     )estimation in all cases 
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6- Conclusion 

 

1- Mixture distributions ( in the case of similar and different components) the distributions formula becomes more 

complex, to make it easier to find a maximum likelihood estimator.it uses the EM algorithm . and MT algorithm to 

find the Bayesian estimators estimator  in all cases.  

2- After creating the simulation by taking different sample sizes (50,100,150)and using comparison criteria RMSE and 

MBias show that the Bayesian estimators is the best. 
      

 

7- Acknowledgment  

  

The authors are sincerely grateful to the University of Mosul and College of Computer Sciences and Mathematics for 

their provided facilities, which helped me very much to improve this work's quality.  

  

8- Conflict of interest  
 

The authors have no conflict of interest.  

 

 

9- References  
 
1. Saieed, H,A.(2005)” Estimation 0f  parameters of mixture distributions and Its  application on Neonatal birth weight 

data in Nineveh Govemorate”, Unpublished doctors thesis , college of computer Science and Mathematics , 
University of  Mosul.. 

2. Al-masri, Hanin, s,. (2020).”Bayesian inference on the genralized gamma distrbution”. Journal of natural studies, 
Islamic university of gaza, V(28), pp 01-18. 

3. Jos´e M Bernardo and Adrian FM Smith.. (1982)” Bayesian theory”. volume 405 of Wiley Series in Probability and 
Statistics. John Wiley & Sons, 2009. 

4. Jewell NP. (1982).“Mixtures of exponential distributions”. Ann Stat.; 10(2): 479-484. 
5. Chris, F., & Raftery, A,. (2017). “Model-based clustering, discriminant analysis, and density estimation”. Journal of 

the American statistical Association, 5(1). 
6. Corduneanu, A. & Bishop, C.M. (2001), “Variational bayesian model selection for mixture distrbution “, Artifitial 

intellegence and statistics, T. Jaakkola and T. Richardson (Eds) pp 27-34, Morgan Kaufmann. 
7. Dempster AP, Laird NM, Rubin DB. 1977. Maximum likelihood from incomplete data via the EM algorithm. J. R. 

Stat. Soc. B 39:1–38 
8. Friedman, J., Hastie, T., and Tibshirani, R. (2009). “ The elements of statistical learning,”, Springer series in 

statistics , New york, Vol 2. 
9. Filho, I. (2008). "Mixture Models for the Analysis of Gene Expression: Integration of Multiple Experiments and 

Cluster Validation. Berlin, Germany: Department of Mathematics and Computer Science, Free University of Berlin, 
GermanyPatwray, A. N.; Sriwastav, G. L.; Hazarika, J. "Inference of R= P (X< Y<Z) for n-Standby System: A 
Monte-Carlo Simulation Approach". J. Math, 2016, 12: 18-22.S 

10. Ghojogh, B., Ghojogh, A., Crowley, M., and Karray, F. (2019). “Fitting  a mixture distrbution to data” , Tutorial. 
Waterloo, canada. 

11. Li L.A., Decomposition Theorems,.( 1983), “Conditional Probability, and Finite Mixtures Distributions”. PhD 
Thesis, State University, Albany, New York,. 

12. Newcomb S. (1886).” A generalized theory of the combination of observations so as to obtain the best result).Am. J. 
Math. 8:343–66 

13. SK Upadhyay, N Vasishta, and AFM Smith(2000). “Bayes inference in life testing and reliability via markov chain 
monte carlo simulation”. Sankhy¯a: The Indian Journal of Statistics, Series A, pages 203{222. 

14. Sattaytham, P. and Talangtam, T.(2012). “Fitting of finite mixture distrbutions to motor insurance claims”. Journal of 
mathematics and statistics, 8(1), pp 49-56. 

15. Valieris ,R. , Drummond,R.D., Defelicibns , A. , Dias-Neto , E., Rosales, R.A.& da Silva, I.T. “A mixture  model for 
determining SARS-COV-2 varint composition in pooled  samples”, Universidade de sao paulo, Ribeirao, sao paulo 
14040-901, Barazil. 

 

 

 
 

 



Iraqi Journal of Statistical Sciences, Vol. 21, No. 1, 2024, Pp (138-150) 
 

150 

 

 تقدير معلمات توزيع كاما المختلط باستخدام دالة الامكان الاعظم واستدلال بيز 
 

 سالم محمد عمي الرسامنغم ابراهيم عبدالله نجم  و  ريا 
 قدم الاحصاء والطعمهماتية ، كمية عمهم الحاسهب والرياضيات ، جامعة الطهصل، الطهصل، العراق

 
لتقدير معمطاتو. تدتخدم ىذه الدراسة  خهارزمية  يركز ىذا البحث عمى تهزيع كاما الطختمط حيث تدتخدم تقظيتي دالة الامكان الاعظم واسمهب بيز :الخلاصة

لإيجاد مقدرات الامكان الاعظم كطا تم استخدام خهارزمية ميتروبهلس ىاستظغ   Expectation Maximization Algorithm (EM)تعظيم التهقع 
Algorithm (MT)   Metropolis-Hastings   الطختمط ، ثم تتم مقارنة ىذه الطقدرات باستخدام مجطهع  لطحاكاة التقديرات البيزية لطعمطات تهزيع كاماا

 . وقد تبين ان مقدر بيز ىه افضل من مقدر الامكان الاعظم . (MSE)( والجذر التربيعي لطتهسط الخطأ )MBiseمعامل التحيز )
 مية تعظيم التهقع ، ميتروبهلس ىاستيظغ.: تهزيع كاما ، التهزيعات الطختمطة ، التقدير البيزي ، دالة الامكان ، خهارز الكلمات المفتاحية


