

62

 Received 24/10/2020; Accepted 4/2/2021

DOI: https://doi.org/10.33103/uot.ijccce.21.1.6

Video Compression Based on FPGA Using SIMD

Architecture

Hayder Waleed Shnain1, Mohammed Najm Abdullah2, Hassan Awheed Jeiad3
1, 2,3Department of Computer Engineering, University of Technology, Iraq

120361@student.uotechnology.edu.iq1 , 120002@ uotechnology.edu.iq 2 , 120004@ uotechnology.edu.iq 3

Abstract— Recently, video files and images have became the dominant media

material for transmitting or storing across different applications that are used by

different people. So, there was a serious need to find more effective and efficient

video compression techniques to reduce the large size of such multimedia files. This

paper proposes SIMD based FPGA lossless JPEG video compression system with the

facility of scalability. Generally, the proposed system consists of a software side and

a hardware side. The digital video file is prepared to be processed by the hardware

side frame by frame on the software side. The hardware side is proposed to consist of

two main processing circuits, which are the prediction circuit for calculating the

predicted value of each pixel in the certain frame and the encoding circuit that was

represented by a modified RLE (Run-Length-Encoder) to encode the result obtained

through subtracting the predicted value from the real value for each pixel to produce

the final compressed video file. The compression ratio obtained for the proposed

system is equal to 1.7493. The throughput improvement for the two and four

processing units basing on SIMD architecture was 100 MP/s and 200 MP/s,

respectively. The clock results showed that the number of clocks required had become

50% and 25% when using two processing units and four processing units,

respectively, from the number of clocks using single processing units.

Index Terms— Video Compression, Lossless JPEG, RLE, FPGA.

I. INTRODUCTION

Recently, the embedded system tends to be more complex and combine multiple functions in one

system. Moreover, many applications have massive data such as multimedia, medical imaging, radar,

etc. The need for robust architecture increased with high executive performance, and a chip with

multiple cores became very common, and especially single instruction multiple data (SIMD). It

applies the same set of instructions to various data elements. It is appropriate in multimedia

applications like image and video processing applications [1][2].

 The process that reduces the amount of data and thus reduces the space needed to store this data is

called data compression [3]. There are two essential types of data compression lossless compression

and lossy compression. Lossless compression can compress data and then restore the original data

without any change after the decompression process [4][5], while lossy causes some loss of

information, which leads to not recovering the original data after decompressing. Lossy has a higher

compression ratio than it is in lossless [6][7]. To understand the principle of video compression

technology, it is necessary to understand the structure of the video where any video consists of a set of

successive still images (frames), and it is often the temporal interval for any video is (25 fps) or (30

fps) [8]. Each frame consists of a matrix arranged in columns and rows. Moreover, there is a high

nexus between consecutive frames as the video is compressed by removing this close association

between these frames [9].

https://doi.org/10.33103/uot.ijccce.21.1.6
mailto:120361@student.uotechnology.edu.iq1

63

 Received 24/10/2020; Accepted 4/2/2021

DOI: https://doi.org/10.33103/uot.ijccce.21.1.6

 In 2015, T. Inatsuki et al. [10] the authors suggested real-time lossless and near-lossless video

compression and implement it by using JPEG-Ls and DPCM algorithm and using Huffman coding as

an entropy encoder; and this system achieves a compression ratio of 1.818, and the maximum data

throughput is 148.5 Mpixles/s.

 In 2016, I. D. F. Silva et al. [11], the authors offered video compression with scalability by using

SIMD architectures based on FPGA where using low complexity lossless compression for images

(LOCO-I) algorithm. The compression ratio was 1.88 as maximum, and the data throughout for

single-core was 19.69 Mpixels/s and the maximum data throughout achieving when using ten core

where it was 196,9 Mpixels/s.

 In 2017, A. H. Hussein et al. [12], the authors offered modified run-length encoding to

compressed an image. The authors suggested a technique to improve the compression ratio, as they

assumed that if the difference between adjacent pixels was less than (10), meaning that if the current

pixel is equal to or greater by ten or smaller by ten than the previous pixel, the two pixels are

considered identical. They have applied this method to a group of pictures, and the compression ratio

ranged between (5.48-1.07).

 In 2018, K.J. Lin et al. [13], the authors proposed lossless compression for electrocardiogram

(ECG) signal, where the author used the lossless JPEG algorithm for compression and used huffman

coding as an entropy encoder. The compression ratio that achieved was 2.7, with latency through the

encoder is 50 ns.

 In 2019, S. M. Hardi at el. [14], the authors implemented run-length encoding on two types of

images (color and gray). The compression ratio obtained when this algorithm was applied to gray an

image ranging from (2.5 - 4.3), while for color images, the compression ratio using run-length

encoding ranged between (0.5 - 0.7).

This paper is organized as follows: Section ІІ describes the proposed system. Section ІІІ

explains the implementation and the results of the test video. Section IV gives the

conclusions..

II. THE PROPOSED SYSTEM

This paper proposed a system that is used to compress the video by using a modified lossless JPEG

algorithm and exploiting SIMD architecture to improve data throughput. Figure 1 shows the block

diagram of the proposed system.

a) Video Source

Video is an electronic way of showing moving visual media. There are two types of videos: digital

video and analog video. Generally, any video contains a set of successive frames, and each frame

consist of three-layers (Y, Cb, Cr) where y is luminance, Cb is the blue difference, and Cr is the red

difference in the case of color videos, and each layer is a group of integer numbers arranged in rows

and columns. The number of frames varies from video to others, and it is usually 24 or 30 frames per

second.

b) Compressor

The compressor or encoder is suggested to convert the video source into a compressed video. It

involves four main stages, as shown in Fig.2. Both the software and the hardware are used to design

the compressor of the proposed system. Frames are extracted from the video by using the software,

while the hardware is used in designing the other stages of the compressor, which include pre-

processing, prediction process, and coding with a modified RLE.

https://doi.org/10.33103/uot.ijccce.21.1.6

64

 Received 24/10/2020; Accepted 4/2/2021

DOI: https://doi.org/10.33103/uot.ijccce.21.1.6

FIG. 1 : BLOCK DIAGRAM OF PROPOSED SYSTEM.

FIG. 2: STAGES OF COMPRESSOR OF THE PROPOSED SYSTEM.

1) Frames Extraction

The first step to compress the video is dividing it into frames and deal with each frame separately

to exploit the phenomena of the correlation between the successive frames or the repetition found in

the frame itself. This operation is done by using a software side.

2) Pre-Processing

It is the process of preamble each frame to perform a prediction process through creating three

adjacent pixels for top and left border pixels where before the pre-processing, there are no adjacent

pixels that can be used to find the predictive value to the top and left pixels for each layer of the

frame. It's applied through the addition of padding that consists of a row and column of zeroes to the

top and left to each layer of each frame of the video. Figure 3 show the frame with a three-layer

before and after the pre-processing. It is applied in FPGA by creating two registers, the first one is the

row_p register, which represents the number of rows and increases with each row, and the second is

the col_p register, which represents the number of columns and increases with each column. The zero

value is given to registers that are used to calculate the predictive value of pixel when the value of

row_p or col_p is 1.

3) Prediction process

It tries to increase the number of successive identical data. Three adjacent pixels were

selected, namely A, B, and C for current pixel X for which the predictive value is to be found, as

shown in Figure 4. The predictive value of each pixel will be calculated as follows[15] :

X' = A + B – C (1)

P = X – X' (2)

where X' is the estimated value and P is the predicted value

In general, there are a set of registers with different sizes where used in the architecture

module proposed of the prediction process. These registers with their description were listed in

Table1. The sample x in Table 1 denotes to X-axis and sample y denote to Y-axis. It is noticed

from Table 1 that the size of I-A, I-B, I-C, I-X, din1, din2 is an 8-bit because the pixel value

ranges from 0 to 255 while the size of I-D and output is 9-bit in anticipation if the result is greater

than 255. For example, if the value of I-A is 230, the value of I-B is 200, and the value of I-C 170,

then the value of I-D will be 260. So It is needed for 9-bit to store the value.

Extracting
Frames

From Video
PreProcessing

Prediction
Process

Coding
With

Modified
RLE

Video Source

ompressorC

Compressed Video

https://doi.org/10.33103/uot.ijccce.21.1.6

65

 Received 24/10/2020; Accepted 4/2/2021

DOI: https://doi.org/10.33103/uot.ijccce.21.1.6

FIG. 3: THE FRAME BEFORE AND AFTER PRE PROCESSING FOR 6*8.

FIG. 4: THREE NEIGHBORING SAMPLES AROUND PIXEL X THAT NEEDS TO BE PREDICTED.

TABLE 1: DESCRIPTION OF REGISTERS USED IN PREDICTION.

Figure 5 shows the block diagram of the prediction circuit. Firstly, registers din1 and din2 store

the value of the pixels before entering the system. In the first clock, the pixel input

in din1 and din2 stores in register I-B and register I-X. At the next clock, the value of I-B shift into

register I-C, and the value of I-X shift to register I-A and stores the value of din1 and din2 into I-

B and I-X and calculates the predictive value and stores the result in register I-D. This mechanism

continues with every processing clock until the end of the current frame, and it is repeated in the next

frame.

4) Coding with Modified RLE

RLE is used in video compression to store a consecutive set of pixels that have the same value

(identical pixels) in a single value and a single counter. RLE is always effective in image

compression of a binary image while it is not useful in color images. Moreover, there is the

possibility of enlarging the image size instead of reducing it. The latter notice refers to the case when

RLE is used directly to encode the color image with its raw pixel values and without any prior

process like the prediction for these values of image pixels. In this paper, RLE was used after a

prediction procedure for pixels, as mentioned earlier, with a 3-bit size for the repetition counter. For

example, if RLE with 3 bit for a counter is applied to the sequence of 8-bit data:

[83,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,12,0,0,0,0]. The encoded output for the traditional RLE that

Register Description # of bits

I-A Intermediate register, stores the value of pixel in position (x-1,y) from pixel X 8

I-B Intermediate register, stores the value of pixel in position (x,y+1) from pixel X 8

I-C Intermediate register, stores the value of pixel in position (x-1,y+1) from pixel X 8

I-D Intermediate register, used to store the result of X' = A + B - C 9

I-X Intermediate register, and stores the value of pixel X 8

din1 Stores the value of the each pixel from row1 before entering the system 8

din2 Stores the value of the each pixel from row2 before entering the system 8

output Stores the predictive value of current pixel which calculated by X- X' 9

https://doi.org/10.33103/uot.ijccce.21.1.6

66

 Received 24/10/2020; Accepted 4/2/2021

DOI: https://doi.org/10.33103/uot.ijccce.21.1.6

uses 8 bits for the repetition counter will be: [(83,1) (0,9) (3,1) (0,9) (12,1) (0,4)] while the encoded

output for the modified RLE that based on 3-bit counter will be: [(83,1) (0,7) (0,2) (3,1) (0,7) (0,2)

(12,1) (0,4)]. It can be noticed that in traditional RLE, there is a reduction in the sequence from 25

digits that uses 8 bits to represent each of them to 12 digits, and these 12 digits were divided into two

groups. The first group consists of 6 digits of the size of 9 bits. The second group is the rest six digits

of the size 8 bits. Thus, the number of bits reduced from 200 bits for the original sequence to 102 bits

for the encoded sequence by using the traditional RLE. On the other hand, for modified RLE, there is

a reduction in sequence size from 25 digits with 8 bits for each to 16 digits, and these 16 digits were

divided into two groups. The first group consists of 8 digits, which are the first number of each of the

two values enclosed in parentheses in the encoded sequence. These eight digits will be represented

by 9 bits, and it is the real value of the repeated predictive value of the pixel. So, the second group is

the rest eight digits of the encoded sequence that represents the repetition counter, which is proposed

in this work to be represented by just 3 bits for each. That means there will be a reduction in the

number of bites required to represent the original sequence from 200 bits to 96 bits only. Generally,

there are sets of registers with different sizes where used in the architecture of modified RLE, Table

2 lists these registers with their description. Figure 6 shows the block diagram RLE circuit. Initially,

with the first clock, the predictive value of a pixel with a size of 9-bit that store in I-D store in a

register I-temp according to a specified clock. In the next clock, the second predictive value store

in I-D is a comparator with I-temp if they are equal, an enable is active to permit increasing the I-

counter register by 1. if not, then I-temp will copy out to dout register, while I-counter will copy out

to counter, then store the next data element in I-temp and so on until reaching the end of the pixel

stream. The flag last is used to define the desirable output, where it's set to 1 with each desirable

output. The modified RLE uses a register counter with 3 bits only to store the number of repetitions,

so the highest value of the counter is 7. That means the proposed architecture of modified RLE

suggests that the maximum repetition of a certain data element is 7. In fact, this will lead to

decrement the number of bits in the resulted output data stream. The results showed that using a

counter with larger than 3 bits will reduce the compression ratio of the modified RLE.

FIG.5: BLOCK DIAGRAM OF PREDICTION CIRCUIT.

TABLE 2: DESCRIPTION OF REGISTERS USED IN MODIFIED RLE.

Register Description # of bits

I-temp Intermediate register, stores the current pixel that is compared to the next pixel 9

I-counter Intermediate register, stores the intermediate count of identical consecutive pixels 3

last Flag used to define the Desirable output. Where it's set to 1 with each Desirable output 1

counter Stores the final count of identical pixels 3

dout Stores the value of identical pixels 9

https://doi.org/10.33103/uot.ijccce.21.1.6

67

 Received 24/10/2020; Accepted 4/2/2021

DOI: https://doi.org/10.33103/uot.ijccce.21.1.6

FIG. 6 : BLOCK DIAGRAM OF RLE CIRCUIT.

5) SIMD-based compression process

Essentially, the compression process of the proposal comprises three secondary processes,

which are the pre-processing, prediction process, and encoding with the modified RLE. The pre-

processing of each of the extracted frames of the video file is a straight-through, vertically

dividing the certain frame into two equal partitions in the case of two processing units SIMD

(2PUSIMD) is applied. Padding bits are attached to the left and upper sides of the borders of each

of the two partitions. The same idea is followed for the case of four processing units SIMD

(4PUSIMD) via dividing the single frame into four equal partitions and attaching the padding bits

to the left and upper sides of the four partitions.

 The prediction circuit of the proposal, which explained in details in section II is duplicated to be

comprised of two identical prediction circuits for the case of 2PUSIMD was planned to be tilized.

Each of the two prediction circuits is fed with one half of the previously padded frame of a video

file. In the case of 4PUSIMD is applied, four copies of the original prediction circuit were

constructed with the feeding of each of them by one-quarter of the under processing video frame.

The modified RLE circuit of the proposal, which explained in details in section II, is duplicated to

be comprised of two identical modified RLE circuits for the case of 2PUSIMD was planned to be

utilized. Each of the two modified RLE circuits is fed with one-half of the predictive values of the

frame of a video file. In the case of 4PUSIMD is applied, four copies of the original modified

RLE circuit were constructed with the feeding of each of them by one-quarter of the under

processing video frame.

III. IMPLEMENTATION AND RESULTS

The proposed compression system was implemented by using MATLAB and FPGA, where

Matlab 2012a that compatible with Xilinx ISE 14.7 is used. The specifications of the FPGA board

that used are XC3S500E as a device model with system gates equal to 500 K, block RAM bits

equal to 360 K, and clock frequency of 50 MHz. The system's implementation is carried out by

using two sides: the software side, represented by Matlab 2012a, and the hardware side, which

illustrates by the FPGA board. The software side is responsible for dividing videos stored in the

laptop into frames and dealing with each frame separately. The individual frame is rearranged as

two inputs stored in the workspace file in preparation for completing the rest of the proposed

system using FPGA. To connect between the software side and FPGA side Xilinx System

Generator was used, which works to join the ISE 14.7 platform and Matlab 2012a platform

provided by Xilinx-ISE 14.7. It is specifically focused on Xilinx FPGAs, enabling the developers

https://doi.org/10.33103/uot.ijccce.21.1.6

68

 Received 24/10/2020; Accepted 4/2/2021

DOI: https://doi.org/10.33103/uot.ijccce.21.1.6

to work in the Simulink environment and to generate parameterized cores, particularly optimized

for Xilinx FPGAs. The connection between the laptop and FPGA board is done by using

Universal Serial Bus (USB) cable. Fig.(7.a,b,c) shows the hardware implementation of Lossless

JPEG algorithm by using PUSIMD and 2PUSIMD and 4PUSIMD.

In Fig. (7.b), the red color represents an output of processing unit one, while the blue color

represents an output of processing unit two. In Fig.(7.c), the red color represents an output of

processing unit one, the green color represents an output of processing unit two, the blue color

represents an output of processing unit three, and the pink color represents an output of processing

unit four.

To assess the performance of the proposed system, it was applied to five different types of

standard uncompressed videos that were considered for testing by other researchers[16][17]. The

five video files are Akiyo, Foremen, Cartoon, Flower, and Bridge, which are shown in Fig. 8.

(A) PUSIMD (B) 2 PUSIMD

(C) 4 PUSIMD

FIG. 7: HARDWARE IMPLEMENTATION HARDWARE OF LOSSLESS JPEG ALGORITHM BY USING PUSIMD AND 2PUSIMD AND

4PUSIMD.

A)AKIYO (B) FORMEN C) CARTOON (D) FLOWER (E) BRIDGE

FIG. 8: FIVE TEST STANDARD VIDEOS.

https://doi.org/10.33103/uot.ijccce.21.1.6

69

 Received 24/10/2020; Accepted 4/2/2021

DOI: https://doi.org/10.33103/uot.ijccce.21.1.6

All the five mentioned videos have an AVI (Audio Video Interleave) file format, a duration of

10 seconds with 30 frames/second, and the number of total frames for each video file was 300

frames. The size of each frame was 480*640 pixels with a color model of type YCrCb. The

Compression Ratio (CR) is denoted by the mathematical formula [18]:

Compression Ratio (CR) =
𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑧𝑒

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑧𝑒
 (3)

a) Compression Ratio for Single Frame

This subsection and the next one are dedicated to make a study for ensuring that using the

modified version of RLE that uses 3-bit as a size for repetition counter with a prediction which

was proposed by this paper is better than the traditional RLE when applied for the video coding to

obtain better compression ratio. Essentially, the traditional RLE is based on using 8-bit as a size

for the repetition counter and is used for coding of any type of data file without any

considerations for the specification and nature of that data file. In this work, it is founded that the

size of the repetition counter can be taken less than 8-bit. In fact, it can be just a 3-bit size, and

this reduction in the counter size will improve the obtained compression of the video file.

 Here, three different suggestions for RLE were taken to study. The first is RLE with a size of

8-bit of repetition counter. Secondly, RLE is considered with an 8-bit counter size with

prediction. Thirdly, RLE with a 3-bit counter size with prediction. However, these three

suggestions were applied to five individual frames that were taken from the five test video files to

evaluate how efficient they are in terms of reducing the size of video files. The obtained

compression ratio for the three suggestions is shown in Fig. 9.

It can be observed that the lowest value for the compression ratio is obtained for 8-bit RLE

without prediction. This is because the prediction process increases the number of identical pixels

and the highest value obtained of the compression ratio for RLE with a counter size of 3 bits with

applying the prediction approach of the pixels. It has been found that in most cases, the number

of identical pixels does not exceed 7. Also, it is noticeable that the compression ratio varies from

one frame to another due to the difference in the spatial details.

b) Compression Ratio for Video Files

The same scenario of the three RLE variants of the previous subsection has been applied to

the five video files, which are Akiyo, Foremen, Cartoon, Bridge, and Flower, for evaluating the

performance of the proposed Lossless JPEG that is based on the modified 3-bit RLE with

prediction. This is done by taking the 300 frames of each video sample and then applying the

proposal on the three layers (Y, Cr, Cb) of each frame of the certain video file. Figure 10 shows

the compression ratio obtained for each video type when the three RLE variants are applied.

By looking at Fig. 10, it could be noticed that the lowest compression ratio was achieved

when using the traditional RLE and note the extent of the improvement achieved. Firstly, by using

an 8-bit for RLE after the prediction process. Secondly, by using 3-bit for RLE after the

prediction process.

https://doi.org/10.33103/uot.ijccce.21.1.6

70

 Received 24/10/2020; Accepted 4/2/2021

DOI: https://doi.org/10.33103/uot.ijccce.21.1.6

FIG.9: COMPRESSION RATIO FOR DIFFERENT COUNTER SIZE OF RLE AND PREDICTION.

FIG. 10: COMPRESSION RATIO FOR VIDEO FRAMES.

c) The Effect of the Size of Repetition Counter of RLE

To study the effect of the size of the repetition counter of RLE on the compression ratio,

Lossless JPEG with a different counter size of RLE was used to encode an individual frame. RLE

with 2 through 8 bits counter size was applied to five 480x640 color frames, which are Akiyo,

Foremen, Cartoon, Bridge, and Flower. The results are shown in Fig. 11. It can be noticed that the

highest value of the compression ratio is obtained when the RLE counter size is 3 bits. That means,

according to the taken sample frames, it is suitable for the counter size to be 3 bits to give the

highest compression ratio since the length of almost sequence of identical pixels not exceeds 7 in

general.

d) Effect of SIMD

The effect of using the SIMD architecture in the compression ratio is shown in Table 3, where

simple N represents the number of processing units that are used. It has been noticed that the

compression ratio suffers from a decrease in its value whenever more the processing units are

used due to the fact that the identical pixel chain has been broken by dividing the frame by the

number of the used processing units.

e) Evaluation for SIMD parameters

By using the ISE platform, the highest frequency of the proposed system that obtained is 81.7

MHz, but the maximum frequency provided by the Spartan 3E FPGA board is 50MHz, so the

result is calculated according to this frequency. Table 4 shows the effect of using the SIMD

architecture in some parameters, which are the number of clocks and the time needed to the

compressed frame with size 480*640 (YCrCb), maximum data throughput, logical elements

which are used, and the percentage of wasted clocks.

Akiyo Foremen Cartoon Bridge Flower

RLE(8-bit) 1.18 1.002 1.09 1.3925 1.4235

RLE(8-bit) with prediction 1.4 1.1 1.119 1.4959 1.5151

RLE(3-bit) with prediction 1.7412 1.4463 1.42483 1.8558 1.8266

0

0.5

1

1.5

2

Akiyo Foremen Cartoon Bridge Flower

RLE(8-bit) 1.1592 0.9247 1.1114 1.2593 1.1972

RLE(8-bit) with prediction 1.2662 1.1047 1.2886 1.4351 1.3343

RLE(3-bit) with prediction 1.6028 1.2079 1.6031 1.7493 1.6411

0

0.5

1

1.5

2

https://doi.org/10.33103/uot.ijccce.21.1.6

71

 Received 24/10/2020; Accepted 4/2/2021

DOI: https://doi.org/10.33103/uot.ijccce.21.1.6

FIG. 11: COMPRESSION RATIO FOR LOSSLESS JPEG WITH DIFFERENT COUNTER SIZES OF RLE.

TABLE 3: THE INFLUENCE OF USING SIMD ARCHITECTURE IN COMPRESSION RATIO.

TABLE 4: THE EFFECT OF USING SIMD IN SOME PARAMETERS.

IV. CONCLUSIONS

In this paper, the main gained conclusions is a hardware implementation of a Lossless JPEG

algorithm based on FPGA has been accomplished. The results show that the system's performance

based on FPGA offers fewer process times than software processing time, where the software is more

than hardware by (554*100)% time. Using prediction with modified RLE increases the compression

ratio. The possibility of obtaining an acceptable compression ratio by using the Lossless JPEG with

simple and uncomplicated compression algorithms when compared to other more complicated

compression algorithms. The introduced modified RLE improved the obtained video compression

ratio by just reducing the number of bits for the repetition counter of the traditional RLE from eight to

three bits for the application of video compression. The adoption of SIMD architectural increases the

maximum data throughput but consume more logical resources.

8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit

Akiyo 1.4428 1.5364 1.635 1.7262 1.7353 1.7412 1.4894

Foremen 1.1047 1.1775 1.2584 1.3425 1.4176 1.4463 1.3341

Cartoon 1.0935 1.1652 1.2444 1.3267 1.3907 1.4248 1.3182

Bridge 1.4959 1.5132 1.5833 1.6684 1.7153 1.8558 1.5184

Flower 1.5151 1.53 1.595 1.6719 1.7096 1.8466 1.518

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Frame Compression Ratio

N = 1 N = 2 N = 4

Akiyo 1.7412 1.7396 1.7358

Foremen 1.4463 1.4443 1.4416

Cartoon 1.4248 1.4236 1.4214

Bridge 1.8558 1.8012 1.7978

Flower 1.8466 1.7947 1.7913

Number of PUs
Number of

Clocks
Time (ms)

Maximum Data

Throughput

(Mpixels / s)

Logical

Elements

The Percentage of

Wasted Clocks

1 923041 18.460825 50 279 0.0015611

2 462241 9.244820 100 551 0.0031174

4 231841 4.636820 200 1043 0.0062154

https://doi.org/10.33103/uot.ijccce.21.1.6

72

 Received 24/10/2020; Accepted 4/2/2021

DOI: https://doi.org/10.33103/uot.ijccce.21.1.6

REFERENCES

[1] M. Baklouti et al., FPGA-based many-core System-on-Chip design: Embedded Hardware Design (MICPRO),Elsevier,

2015, pp.38.10.1016/j.micpro.2015.03.007. hal-01144977.

[2] W. Y. Lo, D. P. K. Lun, W. C. Siu, W. Wang, and J. Song, “Improved SIMD architecture for high performance video

processors”, IEEE Trans. Circuits Syst. Video Technol., vol. 21, no. 12, pp. 1769–1783, 2011, doi:

10.1109/TCSVT.2011.2130250.

[3] P. Yellamma and N. Challa, “Performance Analysis Of Different Data Compression Techniques On Text File,” Int. J.

Eng. Res. Technol., vol. 1, no. 8, pp. 1–6, 2012.

[4] A. Gupta, A. Bansal, and V. Khanduja, “Modern lossless compression techniques: Review, comparison and analysis,”

Proc. 2017 2nd IEEE Int. Conf. Electr. Comput. Commun. Technol. ICECCT2017, no.February,2017,doi:

10.1109/ICECCT.2017.8117850.

[5] V. Singh, “A SURVEY ON LOSSLESS TEXT DATA,” no. May, pp. 1–5, 2018.

[6] M. Singh, S. Kumar, S. Singh, and M. Shrivastava, “Various Image Compression Techniques: Lossy and Lossless,”

Int. J. Comput. Appl., vol. 142, no. 6, pp. 23–26, 2016, doi: 10.5120/ijca2016909829.

[7] David Salomon, Data Compression: The Complete Reference. Springer-Verlag, London, 2007.

[8] Iain E. Richardson," The H.264 Advanced Video Compression Standard", Wiley Publishing, 2010.

[9] Thyagarajan, K. S, “Still image and video compression with MATLAB“,Hoboken: Wiley-Blackwell. ,(2011).

[10] T. Inatsuki, M. Matsuura, K. Morinaga, H. Tsutsui, and Y. Miyanaga, “An FPGA implementation of low-latency video

transmission system using lossless and near-lossless line-based compression,” Int. Conf. Digit. Signal Process. DSP,

vol. 2015-Septe, pp. 1062–1066, 2015, doi: 10.1109/ICDSP.2015.7252041.

[11] I. de Faria Silva, L. Souza e Silva, C. Alves Carneiro, Z. M. Assis Peixoto, and F. Magalhaes Freitas Ferreira, “An

FPGA-Based SIMD Architecture for Video Compression with Scalable Throughput,” IEEE Potentials, vol. 35, no. 1,

pp. 32–37, 2016, doi: 10.1109/mpot.2014.2312426.

[12] A. H. Husseen, S. S. Al-juboori, and R. J. Mohammed, “Image compression using proposed enhanced run length

encoding algorithm,” Ibn AL-Haitham J. Pure Appl. Sci., vol. 24, no. 1, 2017.

[13] K. J. Lin, H. H. Huang, and Y. Y. Lin, “An FPGA Implementation of Lossless ECG Compressors Based on Multi-Stage

Huffman Coding,” 2018 IEEE 7th Glob. Conf. Consum. Electron. GCCE 2018, pp. 410–413, 2018, doi:

10.1109/GCCE.2018.8574652.

[14] S. M. Hardi, B. Angga, M. S. Lydia, I. Jaya, and J. T. Tarigan, “Comparative Analysis Run-Length Encoding

Algorithm and Fibonacci Code Algorithm on Image Compression,” J. Phys. Conf. Ser., vol. 1235, no. 1, 2019, doi:

10.1088/1742-6596/1235/1/012107.

 [15] ITU-T. ISO DIS 10918-1, “Digital compression and coding of continuous-tone still images (JPEG) “, Recommendation

T.81.

 [16] Z. Haitham and M. K. Mahmood Al-Azawi, “Video Compression Based on Motion Compensation and Contourlet

Transform,” 2018 3rd Sci. Conf. Electr. Eng. SCEE 2018, no. Mc, pp. 90–94, 2018, doi: 10.1109/SCEE.2018.8684077.

[17] E. Akyol, D. Mukherjee, and Y. Liu, “Complexity control for real-time video coding,” Proc. - Int. Conf. Image Process.

ICIP, vol. 1, pp. 77–80, 2006, doi: 10.1109/ICIP.2007.4378895.

[18] S. Katsigiannis, D. Maroulis, and G. Papaioannou, “A GPU based real-time video compression method for video

conferencing,” in 2013 18th International Conference on Digital Signal Processing (DSP), 2013, pp. 1–6.

https://doi.org/10.33103/uot.ijccce.21.1.6

