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 This research aimed to examine the effects of haplotype groups observed in three 

different loci on the Calpastatin gene on ultrasonographic MLD measurements and seasonal 

live weight in five different types of sheep (GBK, HM, K, KM, and R). In the CAST intron 

1, intron 5, and intron 12 regions, 15 SNPs were found. The HWE p-value for SNP2, SNP3, 

SNP5, SNP6, SNP7, SNP8, and SNP14 is less than 0.05, and except SNP9 and SNP10, all 

SNPs have a MAF of more than 0.01. SNP1, SNP2, and SNP7 made up one haplotype block. 

The haploblock has 3 haplogroups. The most common haplotype group was H1 (-AGG-), 

which had a frequency of 0.52; H2 (-TGG-) and H3 (-TAA-) had rates of 0.35 and 0.13, 

respectively. Based on ultrasonographic MLD readings and live weights, there were no 

statistically significant differences between haplotype H1 and H3, but there were 

statistically significant differences between haplotype H2 lambs. The effect of the H2 

haplotype on 90-day MLD depth revealed a statistically significant difference between the 

HM and KM and K and KM breeds. This distinction persisted until the 180th day of life 

before disappearing into adulthood. Similarly, the effect of H2 haplotype on the skin 

thickness at day 90 was significant between K and KM and between K and R, whereas the 

effect of H2 haplotype on fat thickness demonstrated a substantial difference between HM 

and KM at one year of age. 
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Introduction 

 

Sheep farming assumes a pivotal role in the 

socioeconomic landscape, particularly within developing 

countries, by simultaneously addressing nutritional, 

economic, and sociocultural dimensions. It is a reliable 

source of high-quality sustenance, fosters income growth, 

and promotes societal inclusivity (1,2). Within such 

contexts, expeditiously optimizing these multifaceted 

benefits emerges as an imperative. To expedite the 

realization of these objectives, marker-assisted selection 

(MAS) programs have emerged as a prominent and widely 

implemented methodology. Leveraging MAS programs, 

livestock breeders can effectively augment livestock metrics, 

including live weight gain and meat quality (3-5). Notably, 

contemporary selection programs emphasize the effects of 

candidate genes employed in MAS programs regarding meat 

tenderness and composition, reflecting a strategic focus 

aligned with the heightened consumer demand for premium 

meat products (6,7). This strategic orientation not only 

underpins the economic prosperity of sheep farming 

communities but also satisfies the discerning preferences of 

consumers. On the other hand, Calpastatin merits particular 

attention due to its vital contributions in determining the 

quantity and quality of meat (8). Calpastatin, a cellular 

protein inhibiting calpains (Ca2+-dependent cysteine 

proteinases) involved in diverse cellular processes such as 

cytoskeleton modulation, cell migration, cell cycle 

progression, and apoptosis, plays a crucial role in the 

calpain-calpastatin system governing protein turnover, 
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growth, myoblast migration, myoblast fusion, and meat 

tenderness; given its influence on these activities and its 

potential impact on meat quality, the calpastatin (CAST) 

gene emerges as a promising candidate gene for elucidating 

variations in meat traits (9-11). It has been shown that 

calpains are crucial to the breakdown of myofibrillar proteins 

in living muscle tissues and play a major role in postmortem 

proteolysis, a biochemical process responsible for meat 

tenderization (12-14). Thus, Calpastatin acts as an 

endogenous inhibitor of calpains, influencing both the rate 

and extent of postmortem tenderization (11,15,16). More 

precisely, the augmentation in skeletal muscle growth can be 

attributed to reduced muscle protein degradation. This 

decrease is linked to lower calpain activity, which elevated 

calpastatin levels facilitate (17). Additionally, prior studies 

have indicated that elevated calpastatin activity within living 

cells impedes calpains' capacity to degrade myofibrillar 

proteins during postmortem storage (18,19). The CAST 

gene, localized at the 5q15 locus on chromosome 5 of the 

sheep genome and comprising 29 exons, exhibits 

polymorphism across numerous sheep breeds. Research on 

livestock species such as pigs, cattle, sheep, and goats has 

revealed the significant impact of various polymorphisms 

within the CAST gene. These polymorphisms influence 

weight gain, carcass quality, and meat quality, particularly 

tenderness, highlighting their substantial role in animal 

production and meat processing (20-24). These researches 

have demonstrated the significant influence of the CAST 

gene on growth, attributed to its capacity to promote muscle 

fiber proliferation. Specifically, it has documented its impact 

on the birth weight and growth rate of Romney sheep (10) 

until weaning and its influence on post-weaning weight and 

daily weight in Targhee sheep (25). These findings 

underscore the critical importance of assessing the varied 

impacts of the CAST locus and its polymorphisms on a range 

of traits throughout different developmental stages. 

Therefore, evaluating the effects of the CAST locus and its 

polymorphisms on various traits at different stages is crucial, 

and a comprehensive understanding of their potential effects 

from birth to adulthood before integrating them into MAS 

programs can significantly improve the efficiency of 

selection processes. Nevertheless, ultrasound technology, 

designed for evaluating the composition and quality of 

animal carcasses intended for market, facilitates swift and 

cost-effective assessment of carcass properties in live 

animals without causing harm (26-28). Utilizing ultrasound 

measurements in live animals holds practical significance, 

enabling the selection of particular carcass traits based on 

measurement criteria for breeding purposes and predicting 

the optimal timing for slaughtering or marketing (29-31). 

Previous studies have identified polymorphic variants in 

intron 1 (32), intron 5 (14), and intron12 (24,33) of the CAST 

gene in sheep; however, the relationship between haplotypic 

diversity and live weight, as well as ultrasonographic muscle 

measurements, has not been explored.  

Therefore, the current study aims to fill this gap by 

investigating single nucleotide polymorphisms (SNPs) in 

these regions within selected meat-type sheep breeds in 

Turkey and determining the associations between haplotypes 

and live weight and ultrasonographic muscle measurements 

collected at various time points. 

 

Materials and methods 

 

Ethical approve  

The Ethics Committee of the Sheep Breeding Research 

Institute in Türkiye (approval number: 13360037) granted 

consent for all animal trials on April 11, 2018. This research 

was conducted at the Bandirma Sheep Breeding Research 

Institute, Balikesir, Türkiye. Lambs used in this study were 

sourced from the institute's farm and constituted the primary 

animal material for our research endeavors.  

 

Animals and DNA isolation 

The study specifically focused on lambs born within the 

2018 lambing season and restricted the inclusion criteria to 

those born within a 10-day window after the lambing season. 

In total, the study encompassed 202 lambs, encompassing 

diverse breeds such as German Black‐Head Mutton × 

Kivircik (GBK), Hampshire Down × Merino (HM), Kivircik 

(K), Karacabey Merino (KM), and Ramlic (R). It is pertinent 

to note that our prior investigations have extensively 

documented these animals, offering comprehensive insights 

into their care and feeding regimens. As elucidated by Kader 

Esen (3) and Kader Esen (2), these details provided a 

foundational understanding of the subjects under scrutiny. 

The methodology involved the collection of blood samples 

from the lamb's Vena jugularis, ensuring meticulous 

preservation in 10 ml EDTA tubes to obtain high-quality 

genomic DNA. These samples were then stored at -20 °C 

until the subsequent DNA extraction process was executed 

with precision and accuracy. 

 

Genetic analyses and identification of SNPs  

DNA extraction from the samples followed the protocols 

outlined in the GeneAll® kit. Specific primers were designed 

to target three distinct regions with lengths of 565, 254, and 

448 base pairs to investigate the CAST gene. The 

amplification process was conducted in a 20 μL reaction 

mixture containing DNA and each primer at a concentration 

of 100 ng using a commercially available kit. Primers for 

amplifying Intron 1 were described by Khederzadeh (17), 

while those for Intron 5 and Intron 12 were sourced from the 

work of Byun (10). The detailed polymerase chain reaction 

(PCR) conditions are provided in table 1. 

Following the Sanger sequencing method, PCR products 

underwent sequencing using the ABI3500 genetic analyzer 

(Applied Biosystems, Foster City, CA, USA). Geospiza's 

FinchTV software (Version 1.4) was employed to visualize 

and scrutinize the sequence of chromatograms. The obtained 
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sequences were meticulously deposited in the GenBank 

database with the following accession numbers: OP620911, 

OP620912, OP620913, OQ513936, and OQ513937. To 

discern the genetic variations, the DNA sequences obtained 

in this study were systematically compared with the 

reference sheep genome (Oar_v3.1) sourced from the 

Ensembl Genome Database, thereby facilitating the precise 

identification of SNP positions. 

 

Table 1: PCR conditions for CAST loci 

 

Reaction phase 
Intron 1 Intron 5 Intron 12 

H T C H T C H T C 

First denaturation 95 5 1 94 2 1 94 2 1 

Denaturation 94 1  94 0,5  94 0,5  

Annealing 51 1 33 55 0,5 35 55 0,5 35 

Extension  72 2  72 0,5  72 0,5  

Final extension 72 8 1 72 5 1 72 5 1 

H: Heat (°C); T: Time (min); C: Cycle. 

 

Live weight and ultrasonographic muscle measurements  

In the study's initial stages, lambs' birth weights were 

meticulously documented within the first 12 hours 

postpartum. Subsequent assessments involved carefully 

recording live weights (LW) and precise ultrasonographic 

measurements on the research period's 90th, 180th, and 360th 

days. To ensure accuracy and reliability, lambs were 

weighed before their morning feeding, thus mitigating 

potential inaccuracies arising from the presence of stomach 

content. The ultrasonographic evaluations were conducted 

by a skilled technician employing a real-time ultrasound 

system (Mindray DP-20) integrated with a linear veterinary 

ultrasound transducer (Mindray 75L50EAV) operating at a 

frequency of 7.5 MHz, as detailed in the work of Esen (34). 

The ultrasonographic analysis focused on monitoring the 

Musculus longissimus dorsi depth (MLDD), fat thickness 

(FT), and skin thickness (ST) located between the 12th and 

13th ribs. These assessments were conducted after recording 

live weights at predetermined intervals, as stipulated in the 

research protocol elucidated by Kader Esen and Elmaci (1). 

 

Statistical analysis  

The Hardy-Weinberg equilibrium (HWE) was assessed 

for each SNP by comparing observed (HetOb) and predicted 

(HetPre) heterozygosities. A threshold of 5 percent was 

defined for HWE. Haploview software (Version 4.2) was 

utilized to ascertain haplotypes and assess the linkage 

disequilibrium (LD) between SNPs. SNPs were considered 

eligible for inclusion in the linkage disequilibrium analysis 

if they exhibited a p-value greater than 0.05 in the HWE test 

and possessed a minor allele frequency (MAF) of at least 1% 

(27). The dataset underwent rigorous analysis to explore the 

relationship between the response variables (LW, MLDD, 

FT, and ST) and various explanatory factors, including 

breed, gender, birth type, dam age, and haplotype. An 

analysis of variance (ANOVA) was performed using a mixed 

model approach. This method, executed in the R 

programming language using the 'lmer' function from the 

'lme4' package, was chosen to account for potential data 

correlations arising from the hierarchical structure. Post hoc 

analysis was conducted using Tukey's test on the mixed 

model to discern differences among the variables (35). 

 

Results 

 

Four lambs were omitted from the study due to indistinct 

genotyping results, ensuring the integrity of the dataset. 

Fifteen distinct SNPs were identified within three specific 

regions of the CAST gene, as depicted in figure 1. Notably, 

SNPs 1 to 8 were located in intron 1, 9 to 11 were in intron 

5, and SNPs 12 to 15 were positioned in intron 12. Seven 

SNPs detected in our study had been previously documented 

in the reference genome (Sheep_texel Oar_v3.1), 

underlining their relevance and consistency with existing 

genetic data.  

Genetic parameters, including observed heterozygosity, 

predicted heterozygosity, and the assessment of HWE, were 

calculated for all SNPs, as detailed in table 2. Notably, HWE 

was only observed for some SNPs under consideration. 

Specifically, SNPs 1, 9, 10, 11, 12, 13, and 15 exhibited p-

values exceeding 0.05. Additionally, except for SNPs 9 and 

10, the minimal allelic frequencies of these SNPs were more 

significant than 0.01. 

SNP3, SNP4, SNP5, SNP6, SNP8, and SNP14 displayed 

subpar performance and failed in one or more tests, as 

delineated in figure 2. Examination of linkage disequilibrium 

(LD) coefficients, encompassing D’ and r2 values, 

demonstrated strong genetic associations between SNP1 and 

SNP2 (D’= 1.0, LOD=20.61, r2=0.17), SNP2 and SNP7 (D’= 

1.0, LOD=57.03, r2=1.0), SNP9 and SNP10 (D’= 1.0, 

LOD=4.95, r2=1.0), SNP12 and SNP13 (D’= 1.0, 

LOD=22.73, r2=1.0), and SNP13 and SNP15 (D’= 1.0, 

LOD=22.73, r2=1.0). Conversely, a weak linkage was 

observed between SNP10, SNP11, and SNP12 (LOD<2). It 

is important to note that, despite their high LOD scores 

represented by red diamonds, not all of these SNPs formed 

haplotype blocks due to their placement outside Gabriel’s 

confidence interval, as depicted in figure 2. Specifically, a 
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haplotype block was established by SNP1, SNP2, and SNP7. 

Through haplotype analysis, three distinct haplotype groups 

were identified within the population, each with frequencies 

exceeding 1%. The H1 (-AGG-) haplotype group was 

prevalent, with a frequency of 0.52, while the H2 (-TGG-) 

and H3 (-TAA-) haplotype groups exhibited frequencies of 

0.35 and 0.13, respectively. 

 

 
 

Figure 1: Nucleotide variants in introns 1, 5, and 12 of the 

CAST gene.  

 
 

Figure 2: Linkage disequilibrium (LD) plot of calpastatin 

SNPs. The D' coefficient is depicted in graph (a), whereas 

graph (b) represents the r² coefficient. LD is represented 

through standard color codes: red signifies strong LD with 

LOD > 2 and D′ = 1), blue denotes intermediate LD with 

LOD < 2 and D′ = 1, while white signifies no LD with LOD 

< 2 and D′ <1. 

 

Table 3 presents the findings on the effect of CAST 

haplotypes on lambs' live weight and ultrasonographic 

muscle features. Neither live weight nor ultrasound 

measurements were statistically significant among the three 

haplotype groups (P>0.05). Although there were no 

statistically significant differences between haplotypes in 

LW and MLDD, notable patterns were observed. Compared 

to other haplotype groups, lambs of haplotype H2 had higher 

birth weights and adult weights. Furthermore, lambs in the 

H1 haplotype group exhibited higher MLDD at both 

weaning (LW90) and 180 days, while no significant 

differences were observed in ST and FT among the 

haplotypes. 

 

 

 

Table 2: Hardy-Weinberg equilibrium, minor allele frequency, and heterozygosity of CAST SNPs in meat-type sheep breeds 

 

SNP # Chromosome Location rs ID Alleles HetOb HetPre HWE MAF 

SNP1 5:93448534 rs421197310 A: T 0.432 0.499 0.0569 0.480 

SNP2 5:93448548 - G: A 0.264 0.229 0.0261 0.132 

SNP3 5:93448577 rs399966367 A: G 0.432 0.339 4.1339E-6 0.216 

SNP4 5:93448621 rs407174907 G: A 0.432 0.339 4.1339E-6 0.216 

SNP5 5:93448696 rs412475054 G: A 0.432 0.339 4.1339E-6 0.216 

SNP6 5:93448734 rs398259427 G: T 0.432 0.339 4.1339E-6 0.216 

SNP7 5:93448760 - G: A 0.264 0.229 0.0261 0.132 

SNP8 5:93448820 rs161885148 A: G 0.432 0.339 4.1339E-6 0.216 

SNP9 5:102025584 - G: C 0.009 0.009 1.0 0.005 

SNP10 5:102025590 - C: T 0.009 0.009 1.0 0.005 

SNP11 5:102025594 - G: A 0.027 0.027 1.0 0.014 

SNP12 5:102036450 - C: T 0.064 0.062 1.0 0.032 

SNP13 5:102036487 - T: C 0.064 0.062 1.0 0.032 

SNP14 5:102036502 rs422618244 G: C 0.936 0.498 2.1698E-47 0.468 

SNP15 5:102036646 - C: G 0.064 0.062 1.0 0.032 

HetOb: observed heterozygosity; HetPre: predicted heterozygosity; HWE: Hardy-Weinberg equilibrium p-value; MAF: minor 

allele frequency. 
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Table 3: Effects of CAST haplotypes on live weight and ultrasonographic muscle measurements  

 

Trait Day N 
H1 (-AGG-) 

N 
H2 (-TGG-) 

N 
H3 (-TAA-) 

P value 
Mean SE Mean SE Mean SE 

LW 

0 66 4.27 0.25 83 4.51 0.14 49 4.29 0.19 NS 

90 66 32.87 1.36 83 30.52 0.76 49 31.74 1,04 NS 

180 58 41.16 2.12 66 40.93 1.08 24 40.90 1.88 NS 

360 57 58.14 2.80 63 62.87 1.33 21 62.49 2.55 NS 

MLDD 

90 66 2.37 0.14 83 2.34 0.08 49 2.33 0.11 NS 

180 58 2.63 0.14 66 2.39 0.06 24 2.24 0.12 NS 

360 57 2.79 0.17 63 2.96 0.08 21 2.76 0.15 NS 

FT 

90 66 0.45 0.05 83 0.38 0.03 49 0.50 0.04 NS 

180 58 0.43 0.06 66 0.39 0.03 24 0.36 0.05 NS 

360 57 0.38 0.07 63 0.46 0.03 21 0.49 0.06 NS 

ST 

90 66 0.22 0.01 83 0.23 0.01 49 0.21 0.01 NS 

180 58 0.18 0.02 66 0.18 0.01 24 0.16 0.01 NS 

360 57 0.23 0.03 63 0.22 0.01 21 0.25 0.03 NS 

LW: live weight; MLDD: Musculus longissimus dorsi depth; FT: fat thickness; ST: skin thickness; N: sample size; SE: standard 

error of the mean.  

 

Figure 3 illustrates the effect of CAST haplotypes on LW 

at various time intervals in meat-type sheep breeds. Male 

lambs were absent in the studied populations from both H1 

and H2 groups. Furthermore, the absence of H1 and H3 

haplotypes in HM and R breeds and the complete lack of H3 

haplotypes in the R breed was notable. Similarly, GBK 

breeds displayed a complete absence of H2 haplotypes. 

While H1 and H3 haplotypes demonstrated no significant 

influence on the breeds, the H2 haplotype emerged as a 

pivotal factor. Significant birth weight differences were 

observed between KM and R (P<0.05). During the weaning 

period, substantial variations were identified among K and 

KM (P<0.05), K and R (P<0.001), and KM and R (P<0.05) 

H2 haplotype lambs. By the 180th day, noteworthy 

differences in LW were evident between HM and R 

(P<0.01), K and R (P<0.01), and KM and R (P<0.01) H2 

haplotype lambs. Moreover, on the 360th day, notable 

differences in the live weights of H2 haplotype lambs were 

observed, with significant distinctions between HM and R 

(P<0.05) and KM and R (P<0.01). 

Figure 4 depicts the effects of CAST haplotypes on 

ultrasonographic muscle measurements in meat-type sheep 

breeds at different time intervals. Particularly, on the 90th 

day, noteworthy distinctions in MLDD were evident among 

lambs with H2 haplotypes, with significant differences 

observed between HM and K (P<0.05) and HM and R 

(P<0.05). Moreover, substantial differences in ST were 

noted among H2 haplotype lambs, with significant 

disparities between K and KM lambs (P<0.01) and K and R 

lambs (P<0.05). Notably, K lambs exhibited greater ST than 

their counterparts, while the influence of CAST haplotypes 

on FT on the 90th day did not yield a statistically significant 

difference. Concerning the impact of H2 haplotype in lambs 

on MLDD on the 180th day, significant differences were 

noted between HM and K lambs (P<0.05) and between KM 

and K lambs (P<0.05). Likewise, the impact of the H2 

haplotype on ST on the 180th day showed statistical 

significance, specifically between K and R lambs (P<0.05). 

In contrast, no statistically significant FT differences existed 

among haplotype groups at 180 days (P>0.05). In adulthood 

(on the 360th day), there were no statistically significant 

differences in MLDD or ST among the haplotype groups 

(P>0.05). However, in H2 haplotype lambs, a significant 

difference was observed between HM and K (P<0.05) as 

well as between K and R (P<0.05) in terms of FT. 

 

 
 

Figure 3: Effects of CAST haplotypes on live weights over 

time in meat-type sheep breeds. BW: birth weight; LW90: 

live weight on the 90th day LW180: live weight on the 180th 

day; LW360: live weight on the 360th day; F: female; M: 

male; GBK: German Black‐Head Mutton × Kivircik; HM: 

Hampshire Down × Merino; K: Kivircik; KM: Karacabey 

Merino; R: Ramlic; ns: not significant; *: P<0.05; **: 

P<0.01; ***: P<0.001. 
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Figure 4: Effects of CAST haplotypes on ultrasonographic 

muscle measurements over time in meat-type sheep breeds 

MLDD: Musculus longissimus dorsi depth; ST: skin 

thickness; FT: fat thickness; F: female; M: male; GBK: 

German Black‐Head Mutton × Kivircik; HM: Hampshire 

Down × Merino; K: Kivircik; KM: Karacabey Merino; R: 

Ramlic; ns: not significant; *: P<0.05; **: P<0.01; ***: 

P<0.001. 

 

Discussion 

 

The effectiveness of MAS lies in its ability to curtail the 

generation interval, thereby expediting genetic progress and 

facilitating targeted improvements (15,36,37). Notably, 

previous research has underscored the pivotal role of the 

CAST gene as a prime candidate in meat quality selection 

initiatives. This importance is attributed to inhibiting the 

calpain system, a vital mechanism governing muscle 

development, growth, and postmortem meat tenderness 

(10,38,39). Combining this gene with ultrasonographic 

muscle measurements has proven to enhance the precision of 

genetic parameters, indicating its potential in genetic 

selection strategies. Various studies have elucidated genetic 

variations within the CAST gene, spanning both coding and 

non-coding regions across diverse sheep breeds (11,32,40). 

Integrating this gene with ultrasonographic muscle 

measurements significantly augments the accuracy of 

genetic parameters, underscoring its substantial promise in 

genetic selection tactics (26,28).  

Prior research has established that introns can influence 

mRNA stability and transcriptional efficiency, eliciting 

distinct biological effects on genes (41). Recent research has 

revealed that introns also significantly impact growth, 

carcass, and meat quality traits in sheep and cattle, with 

specific effects on genes (42,43). The current study focused 

on the intron 1, 5, and 12 regions of the CAST gene, believed 

to influence LW and ultrasonographic muscle 

measurements, to identify SNPs within these critical regions. 

A comprehensive analysis uncovered 15 SNPs in total: 8 

within intron 1 (SNP 1 to 8), three within intron 5 (SNP 9 to 

11), and four within intron 12 (SNP 12 to 15). Notably, seven 

of these SNPs identified in the current study had been 

previously documented in existing literature, highlighting 

their significance in genetic research (rs421197310, 

rs399966367, rs407174907, rs412475054, rs398259427, 

rs161885148, and rs422618244). Numerous SNPs within the 

ovine CAST gene have been extensively explored in prior 

studies, aligning with the present investigation's outcomes. 

Notably, Roberts (43) delineated nine SNPs within intron 12, 

forming distinctive haplotypes, a discovery later 

corroborated by Byun (33), who identified a novel haplotype 

encompassing previously reported ones. The genetic 

variations within intron 12, as highlighted by Greguła-Kania 

(44), exhibited robust correlations with growth rates, 

underscoring the genetic significance in the context of ovine 

development. Furthermore, Palmer (40) revealed three 

unique haplotypes within the intron region spanning exons 

1C and 1D, marked by nine SNPs, and established their 

significant relationships with lamb growth and meat 

tenderness. In a parallel vein, Chung and Davis (25) made a 

groundbreaking discovery of a novel SNP (A/G) within 

intron 25, establishing significant associations with birth 

weight and average daily gain, illuminating critical genetic 

determinants of these traits. Moreover, Esteves (43) 

identified specific SNPs (c.679A>G; c.383A>G) within the 

CAST gene, leading to the substitution of glutamic acid with 

glycine and threonine with alanine, profoundly impacting pH 

values. However, in contrast, Zhou (45) found no significant 

links between tenderness in un-aged lamb and CAST 

haplotypes or genotypes within the region encompassing 

exon six and partial introns 5 and 6, emphasizing the nuanced 

nature of genetic associations in this specific genomic area. 

The intricate process of muscle growth and development 

is significantly influenced by the regulation of new protein 

degradation and synthesis within the calpain-calpastatin 

system. The suppression of CAST leads to increased μ-

calpain expression and controlling cell proliferation, 

survival, and apoptotic pathways, as demonstrated by Van 

Ba et al. (46), and it also results in reduced calpain activity. 

This reduction in calpain activity, in turn, decreases muscle 

fiber breakdown, thereby facilitating muscle mass 

accumulation. In this context, LW, employed to evaluate 

body growth and partial development, plays a crucial role, as 

highlighted by Greguła-Kania (44). Furthermore, grazing 

Texel ewes have observed an established association 

between an SNP in the CAST gene and birth weight and 

growth rate (6). Notably, the influence of the A allele on birth 

weight and pre-weaning daily gain was particularly 

discerned in animals of the simple lambing type among 

Romney lambs (10). 

Furthermore, Chung and Davis (25) highlighted the 

influence of the CAST gene on average daily gain and post-

weaning weight in Targhee sheep. This study observed no 

significant impact of CAST gene haplotypes on birth weight 
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and LW values recorded at various intervals. This outcome 

distinguishes the present study from previous research in this 

particular aspect. Nevertheless, the obtained results align 

with the findings reported by Nikmard (47), where no 

significant relationship was observed between SNPs and 

metrics such as birth weight, weaning weight, weight at 6 

and 9 months, as well as pre-and post-weaning weight gain 

characteristics in Afshari sheep. 

In previous studies, ultrasonographic muscle 

measurements have demonstrated optimal reliability when 

assessing muscling and fatness in live animals (28,42). The 

strong correlation between fat depth at the C-site of the 

carcass and its corresponding ultrasonic measurement was 

established in previous research (48). This study, however, 

found no statistically significant impact of the CAST gene 

haplotypes on ultrasound muscle measurements. 

Correspondingly, Knight (47) identified specific SNPs, 

CAPN2_28672486 (m-calpain) and CAPN3_38942291 

(calpain 3), associated with fat depth at the C-site of the 

carcass; yet, subsequent analysis using a Restricted 

Maximum Likelihood model revealed their lack of statistical 

significance. The present study's findings indicate a breed-

specific influence of CAST haplotypes on ultrasonographic 

muscle measurements in meat-type sheep breeds, with 

particular emphasis on the H2 haplotype. Notably, a previous 

study conducted on Lori-Bakhtiari (fat-tailed) and Zel (thin-

tailed) sheep highlighted polymorphic variations within the 

CAST gene specific to the breed and tail type (23). 

Moreover, consistent evidence demonstrates the additive 

effects of the CAST gene variants on both FT and carcass fat 

scores. In their study, Machado (27) identified six CAST 

variants (rs423099226, rs428213368, rs400315475, 

rs415186098, rs430517308, and rs418818682) with 

significant additive impacts on carcass fat scores in Santa 

Ines sheep, showing differences ranging from 0.170 

(rs415186098) to 0.246 (rs418818682) between 

homozygotes. Additionally, the CAST variant rs403339381 

exhibited a 0.038 cm difference between homozygotes in 

ultrasound images of FT. 

 

Conclusion 

 

To conclude, this study examined the intricate genetic 

landscape of the CAST gene within specific meat-type sheep 

breeds, revealing how genetic variations influence critical 

characteristics like live weight and ultrasonographic muscle 

measurements by shedding light on the complexity of 

genetic variation. This study identifies 15 distinct SNPs 

within the CAST gene's introns 1, 5, and 12, some of which 

have been previously reported. While extensive exploration 

was conducted, no significant associations were found 

between the CAST gene haplotype and live weight or 

ultrasonographic muscle measurements during various 

periods. In light of this nuanced result, it is evident that 

genetic influences on complex traits are multifaceted, and 

comprehensive investigations across different breeds and 

environments are necessary. 
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تأثير الكالبستاتين على صفات جودة اللحوم في سلالات 

 الأغنام التركية
 

 فاسفييا قادر إيسن
 

 اوالوراثة، معهد بحوث تربية الأغنام، باليكسير، تركيقسم التربية 

 

 الخلاصة

 

هدف هذا البحث إلى فحص تأثيرات مجموعات النمط الفرداني التي 

لوحظت في ثلاثة مواقع مختلفة من جين الكالبستاتين على قياسات 

والوزن الحي الموسمي لخمسة أنواع  MLDالموجات فوق الصوتية للـ  

(.  في الكالبستاتين Rو  KMو  Kو  HMو  GBK) مختلفة من الأغنام

. كانت SNPs 15و  intron 12و  intron 5و  intron 1وجدت مواقع 

 SNP5و  SNP3و  SNP2قيمة الاحتمالية لتوازن هاردي واينبرغ في 

، وباستثناء 0.05أقل من  SNP14و  SNP8و  SNP7و  SNP6و 

SNP9  وSNP10 تحتوي جميعSNPs  على تردد أليل طفيف أكثر من

من كتلة واحدة من النمط  SNP7و  SNP2و  SNP1. يتكون 0.01

مجموعات فردانية. كانت  3الفرداني. تحتوي الكتلة الفردانية على 

التي كان  H1 (-AGG-)مجموعة النمط الفرداني الأكثر شيوعا هي 

و  0.35لها معدلات  H3 (-TAA-)و H2 (-TGG-)،  0.52ترددها 

على التوالي. استنادا إلى قراءات الموجات فوق الصوتية للـ  0.13

MLD  والأوزان الحية، لم تكن هناك فروق معنوية بين النمط الفرداني

H1 وH3 ولكن كانت هناك فروق معنوية بين الحملان ذات النمط ،

في  MLDعلى عمق الـ  H2.  كشف تأثير النمط الفرداني H2الفرداني 

. KMو  Kو  KMو  HMلاف معنوي بين سلالات يوما عن اخت 90

من العمر قبل أن يختفي في مرحلة  180استمر هذا التمييز حتى اليوم 

على سمك الجلد في  H2البلوغ. ومشابها" لذلك كان تأثير النمط الفرداني 

، في حين أظهر تأثير النمط  Rو Kوبين  KMو  Kكبيرا بين  90اليوم 

في عمر  KMو  HMن فرقا كبيرا بين على سمك الدهو H2الفرداني 

 سنة واحدة.

 
 

 


