
 44

Received 19/2/2021; Accepted 29/4/2021

 Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021

DOI: https://doi.org/10.33103/uot.ijccce.21.2.4

An Optimal Path Planning Algorithms for a Mobile

Robot
Omar Abdul Razzaq Abdul Wahhab

1
, Ahmed Sabah Al-Araji

2

1, 2
Computer Engineering Dept, University of Technology, Baghdad, Iraq
1
ce.19.08@grad.uotechnology.edu.iq,

2
60166@uotechnology.edu.iq

Abstract- The goal of navigating a mobile robot is to find the optimal path to direct its

movement, so path planning is the best solution to find the optimal path. Therefore, the

two most important problems of path planning must be solved; the first is that the path

must avoid collision with obstacles, and second it must reduce the length of the path to a

minimum. This paper will discuss finding the shortest path with the optimum cost function

by using the Chaotic Particle Swarm Optimization (CPSO), and A*, compare the results

between them and the proposed hybrid algorithm that combines A* and Chaotic Particle

Swarm Optimization (ACPSO) algorithms to enhance A* algorithm to find the optimal

path and velocities of the wheeled mobile robot. These algorithms are simulated by

MATLAB in a fixed obstacles environment to show the effectiveness of the proposed

algorithm in terms of minimum number of an evaluation function and the shortest path

length as well as to obtain the optimal or near optimal wheel velocities.

Index Terms—Mobile robot, Path planning, Chaotic Particle Swarm Optimization (CPSO), A*

algorithm, Fixed obstacles.

I. INTRODUCTION

Path planning can be defined as the task of a mobile robot for finding the optimal or shortest path

between two points while avoiding collision with obstacles. Its mechanism should be established by

decreasing the number of the bends as well as the rotation amount, which reduces the amount of

braking, resulting in the shortest path between the start and the final target point [1], [2]. This is the

reason why, the movement of mobile robot management must follow and implement path planning

since mobile robots serve many practical purposes in real world applications such as industry, weather

forecasting, mining, science, education, entertainment, security, and the military [3], [4], [5].

Recently, many types of wonderful technologies have been invented such as: Daniel et al. in [6]

developed an accurate mapping of the trajectory of a moving robot using PSO with radial foundation

functions. Its diagram describes the working area of the moving robot. The suboptimal path is

obtained with Dijkstra's algorithm and the optimal path is obtained with PSO with radial foundation

functions. Only fixed obstacles are considered. It provides a smooth, crash-free trajectory that a

moving robot should follow regardless of the obstacle’s geometry. Panda and Choudhury [7]

proposed genetic algorithm that gives a particular form of solution to the complex motion preparation

problems of mobile robots in uncertain dynamic conditions depending on action dynamics. Also,

Contreras-Cruz et al. [8] presented the Ant and Bee colony optimizations that used these algorithms

in the local search technique and the proposed solution incorporates the artificial bee colony algorithm

and the evolutionary programming algorithm to optimize the feasible path discovered by a series of

local procedures. These pathways can generate a route for a robot depending on different optimization

algorithms inspired by the organism's attitudes, fitness functions, and various constraints in the

workspace. Duguleana and Mogan [9] explained the neural network technique with Q-learning to

address route planning issues in the generated solution and it addresses the Radial Basis Function

Neural Network (RBFNN). Ghosh et al. [10] demonstrated the Wavelet Neural Network (WNN)

architecture of smart controllers for mobile robot route planning in an uncertain area and compared it

https://doi.org/10.33103/uot.ijccce.21.2.4
mailto:ce.19.08@
mailto:60166@uotechnology.edu.iq

 45

Received 19/2/2021; Accepted 29/4/2021

 Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021

DOI: https://doi.org/10.33103/uot.ijccce.21.2.4

with other methods to show the efficiency of the poroposed method. However, Tang et al. [11] used a

Random-Disturbance Self-Adaptive Particle Swarm Optimization (RDSAPSO) to fine-tune the three

control parameters in RDSAPSO to dynamically change RDSAPSO's discovery and extraction

capability because of PSO convergence was paramount and affects the quality of the route produced.

Liu et al. [12] explained Ant Colony Optimization (ACO) that are used in the search process for the

globally optimal direction, pheromone diffusion and geometric local optimization are combined.

During the ant scanning process, the present path pheromone diffuses in the direction of the possible

field power, so ants prefer to aim for a higher fitness subspace, and the search space of the test pattern

becomes smaller. Also, firefly algorithm is discussed as swarm intelligence by Hidalgo-Paniagua [13]

in order to achieve detailed and effective solutions, the current MO-FA deals with three separate aims.

These aims are as follows: protection of the road, length of the path and smoothness of the route

(related to the energy consumption).

In this paper, to solve the path planning problem, a hybrid swarm algorithm A* and Chaotic

Particle Swarm Optimization (ACPSO) has been proposed and compared to A* and Chaotic Particle

Swarm Optimization (CPSO0) algorithms that generate a shorter path in a static environment with a

better distance cost function and found the better wheel velocities of the mobile robot that can be

applied to path planning in a fixed environment.

This paper is structured as follows: Section 2 describes the kinematic mobile robot model.

Section 3 explains the proposed hybrid path planning algorithm. Section 4 shows the numerical results

and analysis of the simulation of MATLAB in a static environment, and in Section 5 the conclusions

are discussed.

II. THE MODEL OF KINEMATIC MOBILE ROBOT

The platform of the Wheeled Mobility Robot (WMR) is shown in Fig. 1, which has two wheels

mounted on a parabolic shaft, and two multi-directional wheels are installed in the front and end of

the platform. The two castor wheels are carried by the mechanical structure and keep the body stable.

Two independent analog Direct Current (DC) motors are actuated as the right and left wheel actuators

of the wheeled robot for movement and platform steer. The point 𝑂𝑚 is the location of the WMR

center mass, the two drive wheels are connected to the center of the axis [14].

FIG. 1. WHEELED MOBILE ROBOT PLATFORM.

The kinematic equation of the mobile robot platform based on its position in the global

coordinate frame  AAA YXO ,, and the pose surface are Posex and Posey are the coordinates of a point

mO . Pose is the mobile robot’s direction angle measured from the AX axis and these three

X -

axis

Y -

axis

θ

r
L

V

r

V

l

X

robot Y

robot

c

https://doi.org/10.33103/uot.ijccce.21.2.4

 46

Received 19/2/2021; Accepted 29/4/2021

 Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021

DOI: https://doi.org/10.33103/uot.ijccce.21.2.4

generalized coordinates can describe the configuration of the mobile robot. So, the computer

simulation equation can be represented as follows [15]:

𝑥𝑝𝑜𝑠𝑒(𝑘𝑇) = 𝑥𝑝𝑜𝑠𝑒((𝑘 − 1)𝑇)) +
((𝑉𝑅(𝑘𝑇)+𝑉𝐿 (𝑘𝑇))×cos(𝜃(𝑘𝑇)𝑝𝑜𝑠𝑒))

2
 × 𝑇 (1)

𝑦𝑝𝑜𝑠𝑒(𝑘𝑇) = 𝑦𝑝𝑜𝑠𝑒((𝑘 − 1)𝑇)) +
𝑉𝑅(𝑘𝑇)+𝑉𝐿(𝑘𝑇))×sin (𝜃(𝑘𝑇)𝑝𝑜𝑠𝑒)

2
 × 𝑇 (2)

𝜃(𝑘𝑇)𝑝𝑜𝑠𝑒 = 𝜃((𝑘 − 1)𝑇)𝑝𝑜𝑠𝑒 +
((𝑉𝑅(𝑘𝑇)−𝑉𝐿 (𝑘𝑇))

𝐿
 × 𝑇 (3)

Where, Vr(k) is denoted as right wheel velocity of the platform. Vl(k) is denoted as left wheel

velocity of the platform. L is denoted as the length between the driving wheels of the platform. Ts is

denoted as the sampling time of the numerical calculation.

III. PATH PLANNING ALGORITHMS

When we want to move a robot between two nodes, it is useful to use the local map to calculate a

global path. Planning the route is an engineering issue because it is defined as constructing an

engineering path, without mentioning any specific time law. Many researchers have been working

extensively to develop efficient methods to avoid collision with obstacles and obtain a smooth path. A

briefl review of path planning algorithms is presented in the section below.

A. A* Path-Planning Algorithm

The A* Algorithm is known as a heuristic search algorithm, finds the optimal path by checking

among all possible routes of a solution to problems with the minimal cost. It visits the nodes in the

graph from the starting node to the target node. The prescriptive information about the properties of

the issue is applied to guide its performance [16]. It is based on two standards algorithms, the first is

the Dijkstra’s algorithm, and the second is Greedy Best-First-Search’s algorithm.

Dijkstra’s algorithm is designed to find the shortest path in a graph between two nodes. The

algorithm visits the nodes in a graph one by one beginning from the starting point of the object [17].

The Greedy Best-First-Search’s algorithm also keeps track of a frontier to locate the target. This

algorithm makes use of a heuristic function which determines approximately how far from the goal a

particular node is. The Dijkstra’s algorithm selects the node nearest to the starting point, while here

the node closest to the goal is selected and given higher priority than those nodes which are far away.

A* balances between Dijkstra's algorithm by finding the shortest path without fail, g(n) and the Best-

First-Search’s algorithm by estimating the distance to the target, h(n).

In the main loop, the algorithm repeatedly checks which (n) vertex has the lowest value of f(n) as

in the evaluation (4) and (5). Fig. 2 shows a flowchart of the algorithm [18]. Dijkstra's algorithm

consumes time and resources to explore unsafe directions, while Greedy Best-First-Search always

fails to find the shortest path to reach a goal. Therefore, Algorithm A* uses both distances from the

starting point and approximate distance to the target point to remove the limitations of these

traditional algorithms by combining these two algorithms [19].

 f (n) = g (n) + h (n) (4)

 h (n) = √(𝑥𝑛+1 − 𝑥𝑛)2 + (𝑦𝑛+1 − 𝑦𝑛)2 (5)

where, n is denoted by the current node, g (n) is denoted by the cost distance function from

starting point to the current node n, and h (n) is denoted by the estimation minimum cost

distance function from the current node to end point that is calculated by (5).

https://doi.org/10.33103/uot.ijccce.21.2.4

 47

Received 19/2/2021; Accepted 29/4/2021

 Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021

DOI: https://doi.org/10.33103/uot.ijccce.21.2.4

Start

End

Initialize map borders with obstacles

Initialize start and target points

Generate random nodes in the map

Initialize open list

Initialize closed list

Put start point into open list and calculate the cost
function f(n) = g(n) + h(n)

Move the first node in open list and the cost of the
node f(n) into closed list

Is current node in closed
list same the end point?

Resort open list according to f(n)

Expand neighbors� nodes by one step

Get shortest path

Draw the path

Yes

No

FIG. 2. THE FLOWCHART OF THE A* ALGORITHM [18].

B. Chaotic Particle Swarm Optimization Path-Planning Algorithm

The problem of robot path planning is treated as a minimization problem and is considered on the

transformed search space limited by constraints. PSO is an experimental community based on multi-

point research technology that simulates the social behavior of a flock of birds, a school of fish, etc.

[20]. Research begins with a set of research points called molecules because particles have a memory

and they save part of their previous condition. The particles maintain their individuality in all cases,

although they share the same point in the belief of space without limitations. The individuality and

sociality are two randomly weighted factors that influenced the particle’s movement. The definition of

individuality is "the tendency to return to the particles best past situation" while sociality is defined as

"the tendency to move towards the neighborhood’s best previous situation". Each particle is encoded

by a location vector (initially randomly chosen) and the position is updated using its velocity

(randomly chosen at the beginning) in successive iterations. At each time step, PSO changes the speed

of each particle to its optimum positions. Acceleration is measured in random terms, with separate

random numbers are generated to accelerate to the best positions. The search by PSO algorithm is

subjected to stagnation due to early convergence so the search process should be diversified [21]-[24].

Chaos is introduced into the PSO to induce more randomness in the search for PSO [25]-[26]. A small

error in particle position may make a big difference to their behavior for a long time and prevent them

from getting trapped in some local optimal solution.

https://doi.org/10.33103/uot.ijccce.21.2.4

 48

Received 19/2/2021; Accepted 29/4/2021

 Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021

DOI: https://doi.org/10.33103/uot.ijccce.21.2.4

After applying chaotic (6), (7) and (8), each particle updates its velocity and position by using the (9)

and (10) [27].

𝛽𝑏+1 = µ × 𝛽𝑏 (1 − 𝛽𝑏) 0 ≤ 𝛽1 ≤ 1 (6)

𝑊 = 𝑊𝑚𝑎𝑥 − [(𝑊𝑚𝑎𝑥 − 𝑊𝑚𝑖𝑛) ∗ (
𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
)] (7)

𝑊𝑛𝑒𝑤 = 𝑊 × 𝛽𝑏+1
 (8)

 [𝑣(𝑖, 𝑗)]𝑎
𝑏+1 = [

𝑊𝑛𝑒𝑤 × 𝑣(𝑖, 𝑗) + 𝑐1 × 𝑟𝑎𝑛𝑑() × (𝑝𝑏𝑒𝑠𝑡(𝑖, 𝑗) − 𝑥𝑦(𝑖, 𝑗)) …

+𝑐2 × 𝑟𝑎𝑛𝑑()(𝑔𝑏𝑒𝑠𝑡(𝑖, 𝑗) − 𝑥𝑦(𝑖, 𝑗))
]

𝑎

𝑏

 (9)

[𝑥(𝑖, 𝑗)]𝑎
𝑏+1=[𝑥𝑦(𝑖, 𝑗)]𝑎

𝑏 + [𝑣(𝑖, 𝑗)]𝑎
𝑏+1 (10)

where, a is denoted as the particle number in the total population, b is denoted as the iteration

number, and (i, j) is denoted as co-ordinates number in x and y axis, respectively.

 Table I shows the parameters of CPSO that will be used in the simulation results and Fig. 3.

shows the proposed pseudocode of the CPSO algorithm.

TABLE I. THE FINAL CHOICE OF A PARAMETER WAS CONSIDERED TO BE THE OPTIMAL CHOICE

Parameter Definition with value

𝛽0 The initial value of deterministic β = 0.3

µ The control parameter with a real value µ = 4

W Inertia Weight

𝑊𝑚𝑖𝑛 Minimum W = 0.3

𝑊𝑚𝑎𝑥 Maximum W = 0.9

𝑖𝑡𝑒𝑟 Current iteration number

𝑖𝑡𝑒𝑟𝑚𝑎𝑥 Maximum number of iterations

𝑐1, 𝑐2 Coefficient of acceleration (1.25, 1.25)

𝑉𝑖
𝑡 The velocity of particle ith in iteration tth

𝑥𝑦𝑖
𝑡 The position of particle ith in iteration tth

pbest𝑖 Best fitness values for particle ith

Gbest Best fitness values for the whole swarm

FIG. 3. THE PROPOSED PSEUDOCODE OF CPSO ALGORITHM.

Basic CPSO Procedure:

Step 1: Maximum iterations

Step 2: Initialize particle.

Step 3: Each particle, checking fitness value, if the fitness value is better than the best fitness

value (pbest) then set current value as new pbest

Step 4: Each particle

- Find the particle with the best fitness (gbest) in the particle neighborhood

- Apply Chaotic optimization algorithm eq. (5, 6, and 7)

- According to the velocity equation (8) calculate particle velocity 𝑣(𝑖, 𝑗)

- Apply the new velocity

- According to the position equation (9), update the particle position 𝑥(𝑖, 𝑗)

- Apply the new position

Step 5: Repeat Step 3 until stop

https://doi.org/10.33103/uot.ijccce.21.2.4

 49

Received 19/2/2021; Accepted 29/4/2021

 Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021

DOI: https://doi.org/10.33103/uot.ijccce.21.2.4

C. Hybrid A* with chaotic particle swarm optimization (ACPSO)

The key to finding the optimal solution (the shortest path) in the A* algorithm is to choose the

evaluation function f(n): the value of h(n) is less than the real distance value from n to the target node.

In this case, while there are several search points, which means that the search range is wide and

the efficiency is limited, the optimal solution can be found if the approximate distance h(n) is equal to

the shortest distance. Therefore, the search will strictly follow the shortest path and the performance

of the search is the maximum at this time. The number of search points is limited if the expected value

is higher than the real value, which means that the search range is small and the search efficiency is

high, but the optimum solution cannot be assured.

In fact, there is a need to create the function closer to the actual shortest path if we want to

correctly obtain the optimal path, i.e., there is a need to relate to more heuristic facts, such as the

relationship between the selected node and the end point as the weight from the selected node to the

end point, etc., but more weaknesses will occur so h(n) should be quantified. This implies that the

optimal solution can technically be obtained by the A* algorithm, but its greatest downside is that it

takes so much space. For example, by selecting a better evaluation function to minimize the solution

space, certain time-for-space approaches can be used to increase efficiency.

A hybrid algorithm is proposed in the development of the search feature of the algorithm A* to

find the shortest path to reach the target point in less time using the chaotic particle swarm

optimization algorithm by the proposed hybrid flowchart algorithm as shown in in Fig. 4 comprising

of two steps:

 Initialization step: generating random nodes (n) and finding all possible routes (r) from source

to destination point, then calculating the cost distance function for each route with A* cost

distance function as shows in Equations (11) and (12), a dynamic weight has been proposed

and called enhanced factor (Ef) in the heuristic function which can minimize area search,

where Ef is a random number less than 1, and then saves the routes cost into matrix called

(Rc), after that sorting the matrix (Rc) to find the lowest cost and obtain its index; Finally, the

costs of the (Rc) will be saved into the initialized particles and will evaluate the local and

global cost distance function for best solution in the CPSO algorithm.

 Iteration step: after getting the minimum global cost distance function, the main iteration

starts and enforces all particles to update their velocity and position according to global cost

distance function till the end of the iteration.

H (n) = Ef(n) × h (n) (11)
f (n) = g (n) + H (n) (12)

where, H(n) is denoted the enhancement heuristic function. Ef(n) is denoted the enhancement

random factor < 1.

https://doi.org/10.33103/uot.ijccce.21.2.4

 50

Received 19/2/2021; Accepted 29/4/2021

 Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021

DOI: https://doi.org/10.33103/uot.ijccce.21.2.4

Start

End

Initialize map borders with obstacles

Initialize start and target points

Generate random nodes in the map

Initialize CPSO parameters (W, c1, c2, β, µ)

Initialize no. of Particles with random velocity (v) and

position (xy)

Initialize Ef(n)

Determine No. of Routs (r) from start to target point

Initialize Rc (r)

Calculate heuristic distance H (n) = Ef (n) × h (n)

Calculate min(g (n))

Calculate f (n) = g (n) + H (n)

If No. of Routes = 0

?

Update particles cost = Rc(r)

Sort Rc (r) costs and get the min cost with its index

 Particles cost
<= Global cost?

Global cost = Particles cost

Iter = Max Iter

Print the best cost

Plot the best cost from start to target points

Iter = Iter + 1

r = r - 1

Yes

Yes

No

No

Yes

No

Calculate the cost function for each particle for local
and global solution

Applying Chaotic equations and get new W

Update particles position and velocity by applying

equations:

Eq. 6, Eq. 7, Eq. 8, Eq. 9, and Eq. 10

FIG. 4. THE PROPOSED HYBRID ACPSO FLOWCHART.

https://doi.org/10.33103/uot.ijccce.21.2.4

 51

Received 19/2/2021; Accepted 29/4/2021

 Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021

DOI: https://doi.org/10.33103/uot.ijccce.21.2.4

IV. NUMERICAL RESULTS AND ANALYSIS

The mobile robot and the obstacle have a particular volume, and the actual obstacles are irregular

patterns. If the planned path is too close to obstacles, the mobile robot can easily collide with the

obstacles along the planned path. To avoid this, a map of the obstacle is proposed, where the black

grids represent the obstacles, and the white grids represent the area where the robot can pass. After the

standardization of the obstacle, even if the planned path is closed to the black grids, the robot is still

safe to run along the planned path due to the safety distance maintained between the robot and

obstacles.

 The path should display a smooth curvature to ensure its reliability. The controlled robot is to

traverse this workspace 500*500 (cm) as shown in Fig. 5.

FIG. 5. THE PROPOSED ENVIRONMENT WITH STATIC OBSTACLES.

The environment is populated by static obstacles and full information about the positions of all

objects in the workspace is available. The task of finding this collision-free path is the responsibility

of a path-generating algorithm, that three algorithms were applied (A*, CPSO, and Hybrid ACPSO)

and compared to find the optimum path with the best cost distance function. The program workflow

begins with the acquisition of the robot’s current position, its destination, and positions of obstacles.

The valuation of the world state is based on the collected data, which is earlier preprocessed and

transformed. If this condition is met the program checks whether the straight path is not closed due to

the obstacles. If the path is open, it becomes the new path. Moreover, two cases of starting and stop

point will be used to compare the results of each algorithm.

Case 1:

The initial position 50*250 cm (red point) to the destination point 400*200 cm (yellow point) as

shown in Fig. 6-a when it applied A* algorithm and obtained the cost distance function is equal to

374 cm as shows in Fig. 6-b.

a b

FIG. 6. THE A* PATH PLANNING ALGORITHM CASE1.

https://doi.org/10.33103/uot.ijccce.21.2.4

 52

Received 19/2/2021; Accepted 29/4/2021

 Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021

DOI: https://doi.org/10.33103/uot.ijccce.21.2.4

Secondly, applying CPSO algorithm to find the shortest path in any known environments

and using the number of iterations is 30 as shown in Fig. 7-a. Then the cost distance function

based on CPSO algorithm is obtained 367 cm as shown in Fig. 7-b.

a b

FIG. 7. THE CPSO PATH PLANNING ALGORITHM CASE 1.

Thirdly, applying the proposed hybrid ACPSO algorithm to find the shortest path in any

known environments with the number of iterations is equal to 15 as shown in Fig. 8-a. The

value of the proposed hybrid ACPSO cost distance function is equal to 357 cm as shown in

Fig. 8-b.

a b

FIG. 8. THE HYBRID ACPSO PATH PLANNING ALGORITHM CASE1.

Case 2:

The initial position of the mobile robot at 50*425 cm (red point) to the destination point 400*225

cm (yellow point) as shown in Fig. 9-a. Applying A* algorithm and the value of the cost distance

function is 459 cm, as shows in Fig. 9-b.

https://doi.org/10.33103/uot.ijccce.21.2.4

 53

Received 19/2/2021; Accepted 29/4/2021

 Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021

DOI: https://doi.org/10.33103/uot.ijccce.21.2.4

a b

FIG. 9. THE A* ALGORITHM PATH PLANNING CASE 2.

Secondly, Fig. 10-a shows the path planning of the mobile robot after applying CPSO algorithm.

We found CPSO cost distance function is equal to 443 cm, as shown in Fig. 10-b.

a b

FIG. 10. THE CPSO ALGORITHM PATH PLANNING CASE 2.

Finally, applying hybrid ACPSO algorithm to the same environment in case 2, the path planning

is generated as shown in Fig. 11-a with cost distance function is equal to 387 cm, as shown in Fig. 11-

b.

a b

FIG. 11. THE HYBRID ACPSO ALGORITHM PATH PLANNING CASE 2.

https://doi.org/10.33103/uot.ijccce.21.2.4

 54

Received 19/2/2021; Accepted 29/4/2021

 Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021

DOI: https://doi.org/10.33103/uot.ijccce.21.2.4

In order to invistigate the effectiveness of the hybrid swarm algorithm, the three algorithms (A*,

CPSO and ACPSO) are applied to the environment case 1 and case 2 as shown in the Fig. 12-a, b

respectivitly. The path planning that is generated from the proposed hybrid algorithm was smooth and

the shortest path from strating point to target point when compared with A* and CPSO algorthims.

a b

FIG. 12. ALL ALGORITHMS RESULT PATH PLANNING.

In addition, when comparing between A*, CPSO and ACPSO algorithms as in the Tables II, III

and IV respectivtly, in terms of the number of nodes, the number of the iteration, cost distance

function and the execution time, the hybrid ACPSO algorithm is much better than A* and CPSO

Algorithms for the two cases.

TABLE II: A* ALGORITHM RESULTS.

No. of Case No. of Nodes Nodes of the Route Cost (cm) Spent time (sec)

Case 1

Start (50,250)

End (400,200)

20 4 498 0.956

30 4 470 1.359

40 4 436 1.794

50 3 397 3.951

60 3 384 5.578

70 3 374 7.782

Case 2

Start (50,425)

End (400,225)

20 5 590 1.453

30 4 483 1.879

40 4 476 3.458

50 4 471 5.781

60 4 463 6.673

70 4 459 8.256

https://doi.org/10.33103/uot.ijccce.21.2.4

 55

Received 19/2/2021; Accepted 29/4/2021

 Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021

DOI: https://doi.org/10.33103/uot.ijccce.21.2.4

TABLE III: CPSO ALGORITHM RESULTS.

No. of Case Iteration
No. of

particles
Cost (cm) Spent time (sec)

Case 1

Start (50,250)

End (400,200)

5 20 495 1.502282

10 20 453 2.608352

15 20 377 3.775457

20 20 373 5.070203

25 20 370 6.272335

30 20 367 7.377480

Case 2

Start (50,425)

End (400,225)

5 20 2504 1.482984

10 20 977 2.616973

15 20 847 3.790400

20 20 760 4.911652

25 20 550 6.335959

30 20 443 7.82001

TABLE IV: ACPSO ALGORITHM RESULTS.

No. of Case Iteration
Nodes of

the Route

No. of

particles
Cost (cm) Spent time (sec)

Case 1

Start (50,250)

End (400,200)

5 3 20 470 2.747106

10 3 20 406 3.829279

15 3 20 357 4.985177

20 3 20 357 -

25 3 20 357 -

30 3 20 357 -

Case 2

Start (50,425)

End (400,225)

5 4 20 530 2.364813

10 4 20 420 3.516424

15 4 20 389 5.050381

20 4 20 387 6.230725

25 4 20 387 -

30 4 20 387 -

 Based on the fitting function, the reference path equation is obtained as in Equation (13) for the

case 1 as the optimal path that depends on the hybrid ACPSO algorithm.

y(x) = 2.0857e − 10 × 𝑥5 − 2.3731e − 07 × 𝑥4 + 9.5165e − 05 × 𝑥3 − 0.01435 × 𝑥2 +

 0.19859 × x + 266.410 (13)

 In order to find the reference linear velocity vr and the reference angular velocity wr of the

platform mobile robot, these equations will bw used as in (14) and (15) [28] depending on the

reference path equation.

22)()(rrr yxv   (14)

22)()(rr

rrrr
r

yx

yxxy
w








 (15)

So, the right and left wheels linear velocities VR , VL respectively and right and left wheels angular

velocities WR, WL respectively can be determined as follows [29]:

𝑉𝑅 = 0.5(2𝑣𝑟 + 𝐿𝑤𝑟) (16)

𝑉𝐿 = 0.5(2𝑣𝑟 − 𝐿𝑤𝑟) (17)

𝑊𝐿 = 0.5(2𝑣𝑟 − 𝐿𝑤𝑟)/𝑟 (18)

𝑊𝑅 = 0.5(2𝑣𝑟 + 𝐿𝑤𝑟)/𝑟 (19)

https://doi.org/10.33103/uot.ijccce.21.2.4

 56

Received 19/2/2021; Accepted 29/4/2021

 Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021

DOI: https://doi.org/10.33103/uot.ijccce.21.2.4

Where, r is denoted the radius of the wheel of the mobile robot platform.

Fig. 13-a shows the optimal hybrid ACPSO path for case 1, Fig. 13-b shows the reference linear

and reference angular velocities. The right and left wheels linear velocities are shown in Fig. 13-c that

have smooth responses without sharp spikes. Fig. 13-d shows the response of the right and left wheels

angular velocities.

FIG. 13. CASE 1: A) THE OPTIMAL PATH, B) THE REFERENCE LINEAR VELOCITY AND REFERENCE ANGULAR VELOCITY, C) THE RIGHT

AND LEFT WHEELS LINEAR VELOCITIES, D) THE RIGHT AND LEFT WHEELS ANGULAR VELOCITIES.

For case 2, the reference path equation is obtained as follows:

y(x) = −3.1151e − 10 × 𝑥5 + 2.6975e − 07 × 𝑥4 − 9.2761e − 05 × 𝑥3 + 0.018262 ×
 𝑥2 − 2.4557 × x + 510.79 (20)

Fig. 14-a shows the optimal hybrid ACPSO path for case 2, Fig. 14-b shows the reference linear

and reference angular velocities. The right and left wheels linear velocities are shown in Fig. 14-c that

have smooth responses without sharp spikes. Fig. 14-d shows the response of the right and left wheels

angular velocities.

a b

c d

https://doi.org/10.33103/uot.ijccce.21.2.4

 57

Received 19/2/2021; Accepted 29/4/2021

 Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021

DOI: https://doi.org/10.33103/uot.ijccce.21.2.4

FIG. 14. CASE 2: A) THE OPTIMAL PATH, B) THE REFERENCE LINEAR VELOCITY AND REFERENCE ANGULAR VELOCITY, C) THE

RIGHT AND LEFT WHEELS LINEAR VELOCITIES, D) THE RIGHT AND LEFT WHEELS ANGULAR VELOCITIES.

V. CONCLUSIONS

In this paper, a hybrid swarm ACPSO algorithm has been proposed and simulated for path planning of

the mobile robot using MATLAB package. The proposed path planning algorithm is based on A* and

CPSO algorithms. Therefore, the proposed hybrid swarm algorithm has excellent ability in term of the

following:

 Minimizing the number of nodes that are used.

 Reducing the number of the iterations and the evaluation function.

 The value of the cost distance function is less than A* and CPSO Algorithms for the two cases.

 The execution time of the processor unit is reduced.

 Optimal or near optimal smooth path is generated.

 The best response of the reference linear and angular velocities of the mobile robot are obtainned.

REFERENCES

[1] M. S. Alam, M. U. Rafique, and M. U. Khan, "Autonomous Robot Path Planning Using Particle Swarm Optimization in

Static and Obstacle Environment," International Journal of Computer Science and Electronics Engineering (IJCSEE)

vol 3, No. 3, pp. 253-257, 2015.

[2] K. Kumar and A. K. Dewangan, “Survey Paper on Robotic Path Planning Algorithms,” IJSTE - International Journal of

Science Technology & Engineering, vol. 2, No. 12, pp.1-4, 2016.

[3] S. K. Malu, and J. Majumdar, “Kinematics, Localization and Control of Differential Drive Mobile Robot,” Global

Journal of Researches in Engineering: Robotics & Nano-Tech, vol. 14, No.1, 2014.

[4] M. Asif, M. J. Khan, M. Rehan, and M. Safwan,” Feedforward and Feedback Kinematics Controller for Wheeled

Mobile robot Trajectory Tracking,” Journal of Automation and Control Engineering, vol. 3, No.3, pp.178–182, 2015.

c d

a b

https://doi.org/10.33103/uot.ijccce.21.2.4

 58

Received 19/2/2021; Accepted 29/4/2021

 Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021

DOI: https://doi.org/10.33103/uot.ijccce.21.2.4

[5] T. Mac, C. Copot, T. T. Duc., and R. D. Keyser, “Heuristic Approaches in Robot Path Planning: A Survey,” Robotics

and Autonomous Systems, vol. 86, pp. 13–28, 2016.

[6] N. A. Daniel, A. A. Gallegos, C. Lopez-Franco, and A. Y. Alanis, “Smooth Path Planning for a Mobile Robot using

Particle Swarm Optimization and Radial Basis Functions, Splines, and Bezier Curves,” IEEE Congress on Evolutionary

Computation, pp. 175-182, 2014.

[7] R. k. Panda and B.B. Choudhury, “An Effective Path Planning of Mobile Robot using Genetic Algorithm,” Proceeding

of the IEEE International Conference on Computational Intelligence & Communication Technology, pp. 287-291,

2015.

[8] M. A. Contreras-Cruz, V. Ayala-Ramirez, and U. H. Hernandez-Belmonte, “Mobile Robot Path Planning using

Artificial Bee Colony and Evolutionary Programming,” Applied Soft Computing, vol. 30, pp. 319-328, 2015.

[9] M. Duguleana and G. Mogan, ‘‘Neural Networks-Based Reinforcement Learning for Mobile Robot’s Obstacle

Avoidance,’’ Expert Systems with Applications, vol. 62, pp. 104–115, Nov. 2016.

[10] S. Ghosh, P. P. Kumar, and D. R. Parhi, ‘‘Performance Comparison of Novel WNN Approach with RBFNN in the

Navigation of Autonomous Mobile Robotic Agent,’’ Serbian Journal of Electrical Engineering, vol. 13, No. 2, pp. 239–

263, 2016.

[11] B. Tang, Z. Zhanxia, and J. Luo, ‘‘A Convergence-Guaranteed Particle Swarm Optimization Method for Mobile Robot

Global Path Planning,’’ Assembly Automation. vol. 37, No. 1, pp. 114–129, 2017

[12] J. Liu, J. Yang, H. Liu, X. Tian, and M. Gao, ‘‘An Improved Ant Colony Algorithm for Robot Path Planning,’’ Soft

Computing., vol. 21, No. 19, pp. 5829–5839, 2017.

[13] A. Hidalgo-Paniagua, M. A. Vega-Rodríguez, J. Ferruz, and N. Pavón, ‘‘Solving the Multi-Objective Path Planning

Problem in Mobile Robotics with A Firefly-Based Approach,’’ Soft Computing, vol. 21, No. 4, pp. 949–964, 2017.

[14] F. Arvin, K.Samsudin and M. A. Nasseri, “Design of Differential-Drive Wheeled Robot Controller with Pulse-Width

Modulation,” Conference on Innovative Technologies in Intelligent Systems and Industrial Applications, pp. 143-147,

25th & 26th July 2009.

[15] A. Al-Araji, “Design of On-Line Nonlinear Kinematic Trajectory Tracking Controller for Mobile Robot based on

Optimal Back-Stepping Technique,” Iraqi Journal of Computers, Communication and Control & Systems Engineering,

vol. 14, No. 2, pp. 25-36, 2014.

[16] S.M. Persson, I. Sharf, “Sampling-Based A* Algorithm for Robot Path-Planning,” International Journal of Robotics

Research, vol. 33(13), pp. 1683-1708, 2014.

[17] S. Broumi, A. Bakali, M. Talea, F. Smarandache, and L. Vladareanu, “Applying the Dijkstra Algorithm for Solving

Neutrosophic Shortest Path Problem,” In International Conference on Advanced Mechatronic Systems (ICAMechS),

IEEE, pp. 412-416, November 2016.

[18] F. Duchoň, A. Babinec, M. Kajan, P. Beňo, M. Florek, T. Fico, and L. Jurišica, “Path Planning with Modified A Star

Algorithm for A Mobile Robot,” Procedia Engineering, vol 96, pp. 59-69, 2014.

[19] Z. Zhang and Z. Zhao, “A Multiple Mobile Robots Path Planning Algorithm Based on A-Star and Dijkstra Algorithm,”

International Journal of Smart Home, vol 8, No 3, pp. 75-86, 2014.

[20] J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” Proceedings of ICNN'95 - International Conference on

Neural Networks, pp.1942-1948, 1995.

[21] A. Khatami, S. Mirghasemi, A. Khosravi, C. P. Lim, and S. Nahavandi, “A New PSO-Based Approach to Fire Flame

Detection Using K-Medoids Clustering,” Expert Systems with Applications, vol. 68, pp. 69–80, 2017.

[22] C.W. Lin, L. Yang, P. Fournier-Viger, T. P. Hong, and M. Voznak, “A Binary PSO Approach to Mine High-Utility

Itemset,” Soft Computing, vol. 21, pp. 5103–5121, 2017.

[23] Y. Zhou, N. Wang, and W. Xiang, “Clustering Hierarchy Protocol in Wireless Sensor Networks Using an Improved

PSO Algorithm,” IEEE Access, vol. 5, pp. 2241–2253, 2017.

[24] N. Chouikhi, B. Ammar, N. Rokbani, and A. M. Alimi, “PSO-Based Analysis of Echo State Network Parameters for

Time Series Forecasting,” Applied Soft Computing, vol. 55, pp. 211–225, 2017.

[25] B. Li and W. S. Jiang, “Optimizing Complex Functions by Chaos Search”, Cybernetics and Systems., vol. 29, no. 4, pp.

409–419, 1998.

[26] B. Liu, L.Wang, and Y. H. Jin, “Improved Particle Swarm Optimization Combined With Chaos,” Chaos, Solitons

Fractals, vol. 25, no. 5, pp. 1261–1271, 2005.

[27] E. A. Jaber, A. S. Al-Araji, and H. A. Dhahad, “Predictive Nonlinear PID Neural Voltage-Tracking Controller Design

for Fuel Cell based on Optimization Algorithm,” Iraqi Journal of Computers, Communications and Control & Systems

Engineering, vol. 19, No. 4, pp. 47-60, 2019.

[28] A. S. Al-Araji and K. E. Dagher, “Cognitive Neural Controller for Mobile Robot,” Iraqi Journal of Computers,

Communication and Control & Systems Engineering, vol. 15, No. 1, pp. 46-60, 2015.

[29] A. S. Al-Araji, M. F. Abbod, and H. S. Al-Raweshidy, “Design of A Neural Predictive Controller For Nonholonomic

Mobile Robot Based On Posture Identifier,” Proceedings of the IASTED International Conference Intelligent Systems

and Control (ISC 2011), Cambridge, United Kingdom, pp. 198-207, 2011.

https://doi.org/10.33103/uot.ijccce.21.2.4
http://scindeks.ceon.rs/JournalDetails.aspx?issn=1451-4869
javascript:void(0)
javascript:void(0)
https://ieeexplore.ieee.org/xpl/conhome/3505/proceeding
https://ieeexplore.ieee.org/xpl/conhome/3505/proceeding
https://www.researchgate.net/profile/Ahmed_Al-Araji/publication/338901400_Predictive_Nonlinear_PID_Neural_Voltage-Tracking_Controller_Design_for_Fuel_Cell_based_on_Optimization_Algorithm/links/5eb07004299bf18b9594feb4/Predictive-Nonlinear-PID-Neural-Voltage-Tracking-Controller-Design-for-Fuel-Cell-based-on-Optimization-Algorithm.pdf
https://www.researchgate.net/profile/Ahmed_Al-Araji/publication/338901400_Predictive_Nonlinear_PID_Neural_Voltage-Tracking_Controller_Design_for_Fuel_Cell_based_on_Optimization_Algorithm/links/5eb07004299bf18b9594feb4/Predictive-Nonlinear-PID-Neural-Voltage-Tracking-Controller-Design-for-Fuel-Cell-based-on-Optimization-Algorithm.pdf
https://www.uotechnology.edu.iq/ijccce/issues/2015/vol15/no.01/full-text/04.pdf
https://www.researchgate.net/profile/Ahmed_Al-Araji/publication/260362578_Design_of_Neural_Predictive_Controller_for_Nonholonomic_Mobile_Robot_based_on_Posture_Identifier/links/0c960530e036ad727e000000/Design-of-Neural-Predictive-Controller-for-Nonholonomic-Mobile-Robot-based-on-Posture-Identifier.pdf
https://www.researchgate.net/profile/Ahmed_Al-Araji/publication/260362578_Design_of_Neural_Predictive_Controller_for_Nonholonomic_Mobile_Robot_based_on_Posture_Identifier/links/0c960530e036ad727e000000/Design-of-Neural-Predictive-Controller-for-Nonholonomic-Mobile-Robot-based-on-Posture-Identifier.pdf

