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Abstract- The goal of navigating a mobile robot is to find the optimal path to direct its 

movement, so path planning is the best solution to find the optimal path. Therefore, the 

two most important problems of path planning must be solved; the first is that the path 

must avoid collision with obstacles, and second it must reduce the length of the path to a 

minimum. This paper will discuss finding the shortest path with the optimum cost function 

by using the Chaotic Particle Swarm Optimization (CPSO), and A*, compare the results 

between them and the proposed hybrid algorithm that combines A* and Chaotic Particle 

Swarm Optimization (ACPSO) algorithms to enhance A* algorithm to find the optimal 

path and velocities of the wheeled mobile robot. These algorithms are simulated by 

MATLAB in a fixed obstacles environment to show the effectiveness of the proposed 

algorithm in terms of minimum number of an evaluation function and the shortest path 

length as well as to obtain the optimal or near optimal wheel velocities. 

Index Terms—Mobile robot, Path planning, Chaotic Particle Swarm Optimization (CPSO), A* 

algorithm, Fixed obstacles. 

I. INTRODUCTION 

Path planning can be defined as the task of a mobile robot for finding the optimal or shortest path 

between two points while avoiding collision with obstacles. Its mechanism should be established by 

decreasing the number of the bends as well as the rotation amount, which reduces the amount of 

braking, resulting in the shortest path between the start and the final target point [1], [2]. This is the 

reason why, the movement of mobile robot management must follow and implement path planning 

since mobile robots serve many practical purposes in real world applications such as industry, weather 

forecasting, mining, science, education, entertainment, security, and the military [3], [4], [5]. 

Recently, many types of wonderful technologies have been invented such as: Daniel et al. in [6]  

developed an accurate mapping of the trajectory of a moving robot using PSO with radial foundation 

functions. Its diagram describes the working area of the moving robot. The suboptimal path is 

obtained with Dijkstra's algorithm and the optimal path is obtained with PSO with radial foundation 

functions. Only fixed obstacles are considered. It provides a smooth, crash-free trajectory that a 

moving robot should follow regardless of the obstacle’s geometry. Panda and Choudhury [7]  

proposed genetic algorithm that gives a particular form of solution to the complex motion preparation 

problems of mobile robots in uncertain dynamic conditions depending on action dynamics. Also, 

Contreras-Cruz  et al. [8]  presented the Ant and Bee colony optimizations that used these algorithms 

in the local search technique and the proposed solution incorporates the artificial bee colony algorithm 

and the evolutionary programming algorithm to optimize the feasible path discovered by a series of 

local procedures. These pathways can generate a route for a robot depending on different optimization 

algorithms inspired by the organism's attitudes, fitness functions, and various constraints in the 

workspace. Duguleana and Mogan [9]  explained the neural network technique with Q-learning to 

address route planning issues in the generated solution and it addresses the Radial Basis Function 

Neural Network (RBFNN). Ghosh et al. [10]  demonstrated the Wavelet Neural Network (WNN) 

architecture of smart controllers for mobile robot route planning in an uncertain area and compared it 
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with other methods to show the efficiency of the poroposed method. However, Tang et al. [11]  used a 

Random-Disturbance Self-Adaptive Particle Swarm Optimization (RDSAPSO) to fine-tune the three 

control parameters in RDSAPSO to dynamically change RDSAPSO's discovery and extraction 

capability because of PSO convergence was paramount and affects the quality of the route produced. 

Liu et al. [12]  explained Ant Colony Optimization (ACO) that are used in the search process for the 

globally optimal direction, pheromone diffusion and geometric local optimization are combined. 

During the ant scanning process, the present path pheromone diffuses in the direction of the possible 

field power, so ants prefer to aim for a higher fitness subspace, and the search space of the test pattern 

becomes smaller. Also, firefly algorithm is discussed as swarm intelligence by Hidalgo-Paniagua [13] 

in order to achieve detailed and effective solutions, the current MO-FA deals with three separate aims. 

These aims are as follows: protection of the road, length of the path and smoothness of the route 

(related to the energy consumption).  

In this paper, to solve the path  planning problem, a hybrid swarm algorithm A* and Chaotic 

Particle Swarm Optimization (ACPSO) has been proposed and compared to A* and Chaotic Particle 

Swarm Optimization (CPSO0) algorithms that generate a shorter path in a static environment with a 

better distance cost function and found the better wheel velocities of the mobile robot that can be 

applied to path planning in a fixed environment.  

This paper is structured as follows: Section 2 describes the kinematic mobile robot model. 

Section 3 explains the proposed hybrid path planning algorithm. Section 4 shows the numerical results 

and analysis of the simulation of MATLAB in a static environment, and in Section 5 the conclusions 

are discussed. 

II. THE MODEL OF KINEMATIC MOBILE ROBOT 

The platform of the Wheeled Mobility Robot (WMR) is shown in Fig. 1, which has two wheels 

mounted on a parabolic shaft, and two multi-directional wheels are installed in the front and end of 

the platform. The two castor wheels are carried by the mechanical structure and keep the body stable. 

Two independent analog Direct Current (DC) motors are actuated as the right and left wheel actuators 

of the wheeled robot for movement and platform steer. The point 𝑂𝑚 is the location of the WMR 

center mass, the two drive wheels are connected to the center of the axis [14]. 

 

 

 

 

 

 

 

 

FIG. 1. WHEELED MOBILE ROBOT PLATFORM. 

 

The kinematic equation of the mobile robot platform based on its position in the global 

coordinate frame  AAA YXO ,,  and the pose surface are Posex  and Posey  are the coordinates of a point

mO . Pose  is the mobile robot’s direction angle measured from the AX axis and these three 
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generalized coordinates can describe the configuration of the mobile robot. So, the computer 

simulation equation can be represented as follows [15]:  

𝑥𝑝𝑜𝑠𝑒(𝑘𝑇) = 𝑥𝑝𝑜𝑠𝑒((𝑘 − 1)𝑇)) +
((𝑉𝑅(𝑘𝑇)+𝑉𝐿 (𝑘𝑇))×cos(𝜃(𝑘𝑇)𝑝𝑜𝑠𝑒))

2
 × 𝑇                           (1) 

𝑦𝑝𝑜𝑠𝑒(𝑘𝑇) = 𝑦𝑝𝑜𝑠𝑒((𝑘 − 1)𝑇)) +
𝑉𝑅(𝑘𝑇)+𝑉𝐿(𝑘𝑇))×sin (𝜃(𝑘𝑇)𝑝𝑜𝑠𝑒)

2
 × 𝑇                                (2) 

𝜃(𝑘𝑇)𝑝𝑜𝑠𝑒 = 𝜃((𝑘 − 1)𝑇)𝑝𝑜𝑠𝑒 +
((𝑉𝑅(𝑘𝑇)−𝑉𝐿 (𝑘𝑇))

𝐿
 × 𝑇                                                     (3) 

 

Where, Vr(k) is denoted as right wheel velocity of the platform. Vl(k) is denoted as left wheel 

velocity of the platform. L is denoted as the length between the driving wheels of the platform. Ts is 

denoted as the sampling time of the numerical calculation. 

III. PATH PLANNING ALGORITHMS 

When we want to move a robot between two nodes, it is useful to use the local map to calculate a 

global path. Planning the route is an engineering issue because it is defined as constructing an 

engineering path, without mentioning any specific time law. Many researchers have been working 

extensively to develop efficient methods to avoid collision with obstacles and obtain a smooth path. A 

briefl review of path planning algorithms is presented in the section below. 

A. A* Path-Planning Algorithm 

The A* Algorithm is known as a heuristic search algorithm, finds the optimal path by checking 

among all possible routes of a solution to problems with the minimal cost. It visits the nodes in the 

graph from the starting node to the target node. The prescriptive information about the properties of 

the issue is applied to guide its performance [16]. It is based on two standards algorithms, the first is 

the Dijkstra’s algorithm, and the second is Greedy Best-First-Search’s algorithm. 

Dijkstra’s algorithm is designed to find the shortest path in a graph between two nodes. The 

algorithm visits the nodes in a graph one by one beginning from the starting point of the object [17]. 

The Greedy Best-First-Search’s algorithm also keeps track of a frontier to locate the target. This 

algorithm makes use of a heuristic function which determines approximately how far from the goal a 

particular node is. The Dijkstra’s algorithm selects the node nearest to the starting point, while here 

the node closest to the goal is selected and given higher priority than those nodes which are far away. 

A* balances between Dijkstra's algorithm by finding the shortest path without fail, g(n) and the Best-

First-Search’s algorithm by estimating the distance to the target, h(n).  

In the main loop, the algorithm repeatedly checks which (n) vertex has the lowest value of f(n) as 

in the evaluation (4) and (5). Fig. 2 shows a flowchart of the algorithm [18]. Dijkstra's algorithm 

consumes time and resources to explore unsafe directions, while Greedy Best-First-Search always 

fails to find the shortest path to reach a goal.  Therefore, Algorithm A* uses both distances from the 

starting point and approximate distance to the target point to remove the limitations of these 

traditional algorithms by combining these two algorithms [19]. 

 

        f (n)  =  g (n)  +  h (n)                                                                                             (4) 

                 h (n) = √(𝑥𝑛+1 − 𝑥𝑛)2 + (𝑦𝑛+1 − 𝑦𝑛)2                                                                                      (5) 

where, n is denoted by the current node, g (n) is denoted by the cost distance function from 

starting point to the current node n, and h (n) is denoted by the estimation minimum cost 

distance function from the current node to end point that is calculated by (5). 
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FIG. 2. THE FLOWCHART OF THE A* ALGORITHM [18]. 

B. Chaotic Particle Swarm Optimization Path-Planning Algorithm 

The problem of robot path planning is treated as a minimization problem and is considered on the 

transformed search space limited by constraints. PSO is an experimental community based on multi-

point research technology that simulates the social behavior of a flock of birds, a school of fish, etc. 

[20]. Research begins with a set of research points called molecules because particles have a memory 

and they save part of their previous condition. The particles maintain their individuality in all cases, 

although they share the same point in the belief of space without limitations. The individuality and 

sociality are two randomly weighted factors that influenced the particle’s movement. The definition of 

individuality is "the tendency to return to the particles best past situation" while sociality is defined as 

"the tendency to move towards the neighborhood’s best previous situation". Each particle is encoded 

by a location vector (initially randomly chosen) and the position is updated using its velocity 

(randomly chosen at the beginning) in successive iterations. At each time step, PSO changes the speed 

of each particle to its optimum positions. Acceleration is measured in random terms, with separate 

random numbers are generated to accelerate to the best positions. The search by PSO algorithm is 

subjected to stagnation due to early convergence so the search process should be diversified [21]-[24]. 

Chaos is introduced into the PSO to induce more randomness in the search for PSO [25]-[26]. A small 

error in particle position may make a big difference to their behavior for a long time and prevent them 

from getting trapped in some local optimal solution.  
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After applying chaotic (6), (7) and (8), each particle updates its velocity and position by using the (9) 

and (10) [27]. 

 

𝛽𝑏+1 =  µ ×  𝛽𝑏 (1 −  𝛽𝑏)           0 ≤  𝛽1  ≤  1                                                  (6) 

𝑊 = 𝑊𝑚𝑎𝑥 − [(𝑊𝑚𝑎𝑥 −  𝑊𝑚𝑖𝑛) ∗ (
𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
)]                                                       (7) 

𝑊𝑛𝑒𝑤 = 𝑊 ×  𝛽𝑏+1   
                                                                                             (8) 

   [𝑣(𝑖, 𝑗)]𝑎
𝑏+1 = [

𝑊𝑛𝑒𝑤 × 𝑣(𝑖, 𝑗) + 𝑐1 × 𝑟𝑎𝑛𝑑( ) × (𝑝𝑏𝑒𝑠𝑡(𝑖, 𝑗) − 𝑥𝑦(𝑖, 𝑗)) …

+𝑐2 × 𝑟𝑎𝑛𝑑( )(𝑔𝑏𝑒𝑠𝑡(𝑖, 𝑗) − 𝑥𝑦(𝑖, 𝑗))
]

𝑎

𝑏

        (9) 

[𝑥(𝑖, 𝑗)]𝑎
𝑏+1=[𝑥𝑦(𝑖, 𝑗)]𝑎

𝑏 + [𝑣(𝑖, 𝑗)]𝑎
𝑏+1                                                                (10) 

 

where, a is denoted as the particle number in the total population, b is denoted as the iteration 

number, and (i, j) is denoted as co-ordinates number in x and y axis, respectively. 

 Table I shows the parameters of CPSO that will be used in the simulation results and Fig. 3. 

shows the proposed pseudocode of the CPSO algorithm.  

 

TABLE I. THE FINAL CHOICE OF A PARAMETER WAS CONSIDERED TO BE THE OPTIMAL CHOICE 

Parameter Definition with value 

𝛽0 The initial value of deterministic β = 0.3 

µ The control parameter with a real value µ = 4 

W Inertia Weight 

𝑊𝑚𝑖𝑛 Minimum W = 0.3 

𝑊𝑚𝑎𝑥 Maximum W = 0.9 

𝑖𝑡𝑒𝑟 Current iteration number 

𝑖𝑡𝑒𝑟𝑚𝑎𝑥 Maximum number of iterations 

𝑐1, 𝑐2 Coefficient of acceleration (1.25, 1.25) 

𝑉𝑖
𝑡 The velocity of particle ith in iteration tth 

𝑥𝑦𝑖
𝑡 The position of particle ith in iteration tth 

pbest𝑖 Best fitness values for particle ith 

Gbest Best fitness values for the whole swarm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 3. THE PROPOSED PSEUDOCODE OF CPSO ALGORITHM. 

Basic CPSO Procedure:  

Step 1: Maximum iterations   

Step 2: Initialize particle. 

Step 3: Each particle, checking fitness value, if the fitness value is better than the best fitness   

value (pbest) then set current value as new pbest  

Step 4: Each particle 

- Find the particle with the best fitness (gbest) in the particle neighborhood  

- Apply Chaotic optimization algorithm eq. (5, 6, and 7) 

- According to the velocity equation (8) calculate particle velocity 𝑣(𝑖, 𝑗)  

- Apply the new velocity 

- According to the position equation (9), update the particle position 𝑥(𝑖, 𝑗)  

- Apply the new position  

Step 5: Repeat Step 3 until stop 
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C. Hybrid A* with chaotic particle swarm optimization (ACPSO) 

The key to finding the optimal solution (the shortest path) in the A* algorithm is to choose the 

evaluation function f(n): the value of h(n) is less than the real distance value from n to the target node.  

In this case, while there are several search points, which means that the search range is wide and 

the efficiency is limited, the optimal solution can be found if the approximate distance h(n) is equal to 

the shortest distance. Therefore, the search will strictly follow the shortest path and the performance 

of the search is the maximum at this time. The number of search points is limited if the expected value 

is higher than the real value, which means that the search range is small and the search efficiency is 

high, but the optimum solution cannot be assured.  

In fact, there is a need to create the function closer to the actual shortest path if we want to 

correctly obtain the optimal path, i.e., there is a need to relate to more heuristic facts, such as the 

relationship between the selected node and the end point as the weight from the selected node to the 

end point, etc., but more weaknesses will occur so h(n) should be quantified. This implies that the 

optimal solution can technically be obtained by the A* algorithm, but its greatest downside is that it 

takes so much space. For example, by selecting a better evaluation function to minimize the solution 

space,  certain time-for-space approaches can be used to increase efficiency.  

A hybrid algorithm is proposed in the development of the search feature of the algorithm A* to 

find the shortest path to reach the target point in less time using the chaotic particle swarm 

optimization algorithm by the proposed hybrid flowchart algorithm as shown in in Fig. 4 comprising 

of two steps: 

 Initialization step: generating random nodes (n) and finding all possible routes (r) from source 

to destination point, then calculating the cost distance function for each route with A* cost 

distance function as shows in Equations (11) and (12), a dynamic weight has been proposed 

and called enhanced factor (Ef) in the heuristic function which can minimize area search, 

where Ef is a random number less than 1, and then saves the routes cost into matrix called 

(Rc), after that sorting the matrix (Rc) to find the lowest cost and obtain its index; Finally, the 

costs of the (Rc) will be saved into the initialized particles and will evaluate the local and 

global cost distance function for best solution in the CPSO algorithm. 

 Iteration step: after getting the minimum global cost distance function, the main iteration 

starts and enforces all particles to update their velocity and position according to global cost 

distance function till the end of the iteration. 

 
H (n)  =  Ef(n)  ×  h (n)                                                                                                (11) 
f (n)  =  g (n)  +  H (n)                                                                                                 (12) 

  

where, H(n) is denoted the enhancement heuristic function. Ef(n) is denoted the enhancement 

random factor < 1. 
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Calculate min( g (n))

Calculate f (n) = g (n) + H (n)
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FIG. 4. THE PROPOSED HYBRID ACPSO FLOWCHART. 
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IV. NUMERICAL RESULTS AND ANALYSIS 

The mobile robot and the obstacle have a particular volume, and the actual obstacles are irregular 

patterns. If the planned path is too close to obstacles, the mobile robot can easily collide with the 

obstacles along the planned path. To avoid this, a map of the obstacle is proposed, where the black 

grids represent the obstacles, and the white grids represent the area where the robot can pass. After the 

standardization of the obstacle, even if the planned path is closed to the black grids, the robot is still 

safe to run along the planned path due to the safety distance maintained between the robot and 

obstacles. 

 The path should display a smooth curvature to ensure its reliability. The controlled robot is to 

traverse this workspace 500*500 (cm) as shown in Fig. 5.  

 

 

 

 

 

 

 

 

 

 

 
FIG. 5. THE PROPOSED ENVIRONMENT WITH STATIC OBSTACLES. 

 

The environment is populated by static obstacles and full information about the positions of all 

objects in the workspace is available. The task of finding this collision-free path is the responsibility 

of a path-generating algorithm, that three algorithms were applied (A*, CPSO, and Hybrid ACPSO) 

and compared to find the optimum path with the best cost distance function. The program workflow 

begins with the acquisition of the robot’s current position, its destination, and positions of obstacles. 

The valuation of the world state is based on the collected data, which is earlier preprocessed and 

transformed. If this condition is met the program checks whether the straight path is not closed due to 

the obstacles. If the path is open, it becomes the new path. Moreover, two cases of starting and stop 

point will be used to compare the results of each algorithm. 

Case 1: 

The initial position 50*250 cm (red point) to the destination point 400*200 cm (yellow point) as 

shown in Fig. 6-a when it applied A* algorithm and obtained the cost distance function is equal to 

374 cm as shows in Fig. 6-b. 

 

 

a b 

FIG. 6. THE A* PATH PLANNING ALGORITHM CASE1. 
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Secondly, applying CPSO algorithm to find the shortest path in any known environments 

and using the number of iterations is 30 as shown in Fig. 7-a. Then the cost distance function 

based on CPSO algorithm is obtained 367 cm as shown in Fig. 7-b. 

  

a b 

FIG. 7. THE CPSO PATH PLANNING ALGORITHM CASE 1. 

 

Thirdly, applying the proposed hybrid ACPSO algorithm to find the shortest path in any 

known environments with the number of iterations is equal to 15 as shown in Fig. 8-a. The 

value of the proposed hybrid ACPSO cost distance function is equal to 357 cm as shown in 

Fig. 8-b. 

  

a b 

FIG. 8. THE HYBRID ACPSO PATH PLANNING ALGORITHM CASE1. 

 

 

Case 2:  

The initial position of the mobile robot at 50*425 cm (red point) to the destination point 400*225 

cm (yellow point) as shown in Fig. 9-a. Applying A* algorithm and the value of the cost distance 

function is 459 cm, as shows in Fig. 9-b. 

 

 

 

 

 

 

 

 

https://doi.org/10.33103/uot.ijccce.21.2.4


            53 

 

Received 19/2/2021; Accepted 29/4/2021 

 

     Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021            

DOI: https://doi.org/10.33103/uot.ijccce.21.2.4 

 

 

 

 

  

a b 

FIG. 9. THE A* ALGORITHM PATH PLANNING CASE 2.  
 

Secondly, Fig. 10-a shows the path planning of the mobile robot after applying CPSO algorithm. 

We found CPSO cost distance function is equal to 443 cm, as shown in Fig. 10-b.  

 
 

a b 

FIG. 10. THE CPSO ALGORITHM PATH PLANNING CASE 2. 
 

Finally, applying hybrid ACPSO algorithm to the same environment in case 2, the path planning 

is generated as shown in Fig. 11-a with cost distance function is equal to 387 cm, as shown in Fig. 11-

b. 

  

a b 

FIG. 11. THE HYBRID ACPSO ALGORITHM PATH PLANNING CASE 2. 
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In order to invistigate the effectiveness of the hybrid swarm algorithm, the three algorithms (A*, 

CPSO and ACPSO) are applied to the environment case 1 and case 2 as shown in the Fig. 12-a, b 

respectivitly. The path planning that is generated from the proposed hybrid algorithm was smooth and 

the shortest path from strating point to target point when compared with A* and CPSO algorthims. 

  
a b 

FIG. 12. ALL ALGORITHMS RESULT PATH PLANNING. 

 

In addition, when comparing between A*, CPSO and ACPSO algorithms as in the Tables II, III 

and IV respectivtly, in terms of the number of nodes, the number of the iteration, cost distance 

function and the execution time, the hybrid ACPSO algorithm is much better than A* and CPSO 

Algorithms for the two cases. 

 
TABLE II: A* ALGORITHM RESULTS.  

No. of Case No. of Nodes Nodes of the Route Cost (cm) Spent time (sec) 

Case 1 

Start (50,250) 

End (400,200) 

20 4 498 0.956 

30 4 470 1.359 

40 4 436 1.794 

50 3 397 3.951 

60 3 384 5.578 

70 3 374 7.782 

Case 2 

Start (50,425) 

End (400,225) 

20 5 590 1.453 

30 4 483 1.879 

40 4 476 3.458 

50 4 471 5.781 

60 4 463 6.673 

70 4 459 8.256 
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TABLE III: CPSO ALGORITHM RESULTS.  

No. of Case Iteration 
No. of 

particles 
Cost (cm) Spent time (sec) 

Case 1 

Start (50,250) 

End (400,200) 

5 20 495 1.502282 

10 20 453 2.608352 

15 20 377 3.775457 

20 20 373 5.070203 

25 20 370 6.272335 

30 20 367 7.377480 

Case 2 

Start (50,425) 

End (400,225) 

5 20 2504 1.482984 

10 20 977 2.616973 

15 20 847 3.790400 

20 20 760 4.911652 

25 20 550 6.335959 

30 20 443 7.82001 

 

TABLE IV: ACPSO ALGORITHM RESULTS.  

No. of Case Iteration 
Nodes of 

the Route 

No. of 

particles 
Cost (cm) Spent time (sec) 

Case 1 

Start (50,250) 

End (400,200) 

5 3 20 470 2.747106 

10 3 20 406 3.829279 

15 3 20 357 4.985177 

20 3 20 357 - 

25 3 20 357 - 

30 3 20 357 - 

Case 2 

Start (50,425) 

End (400,225) 

5 4 20 530 2.364813 

10 4 20 420 3.516424 

15 4 20 389 5.050381 

20 4 20 387 6.230725 

25 4 20 387 - 

30 4 20 387 - 

 

   Based on the fitting function, the reference path equation is obtained as in Equation (13) for the 

case 1 as the optimal path that depends on the hybrid ACPSO algorithm. 

 

y(x) =  2.0857e − 10 × 𝑥5  −  2.3731e − 07 ×  𝑥4  +  9.5165e − 05 × 𝑥3  −  0.01435 ×  𝑥2  +

 0.19859 ×  x +  266.410                                                                                                              (13) 

 

 In order to find the reference linear velocity vr and the reference angular velocity wr of the 

platform mobile robot, these equations will bw used as in (14) and (15) [28] depending on the 

reference path equation. 

22 )()( rrr yxv                                  (14) 

22 )()( rr

rrrr
r

yx

yxxy
w








                                 (15) 

So, the right and left wheels linear velocities VR , VL respectively and right and left wheels angular 

velocities WR, WL respectively can be determined as follows [29]: 

𝑉𝑅 = 0.5(2𝑣𝑟 + 𝐿𝑤𝑟)                                (16) 

𝑉𝐿 = 0.5(2𝑣𝑟 − 𝐿𝑤𝑟)                                (17) 

𝑊𝐿 = 0.5(2𝑣𝑟 − 𝐿𝑤𝑟)/𝑟                                                                               (18) 

𝑊𝑅 = 0.5(2𝑣𝑟 + 𝐿𝑤𝑟)/𝑟                                              (19) 
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Where, r is denoted the radius of the wheel of the mobile robot platform. 

 

Fig. 13-a shows the optimal hybrid ACPSO path for case 1, Fig. 13-b shows the reference linear 

and reference angular velocities. The right and left wheels linear velocities are shown in Fig. 13-c that 

have smooth responses without sharp spikes. Fig. 13-d shows the response of the right and left wheels 

angular velocities.  

 
FIG. 13. CASE 1: A) THE OPTIMAL PATH, B) THE REFERENCE LINEAR VELOCITY AND REFERENCE ANGULAR VELOCITY, C) THE RIGHT 

AND LEFT WHEELS LINEAR VELOCITIES, D) THE RIGHT AND LEFT WHEELS ANGULAR VELOCITIES. 
 

 

For case 2, the reference path equation is obtained as follows: 

 

y(x) =   −3.1151e − 10  × 𝑥5  +  2.6975e − 07 ×  𝑥4  −  9.2761e − 05 ×  𝑥3  +  0.018262 ×
 𝑥2  −  2.4557 ×  x +  510.79                                                                                                    (20) 

 

Fig. 14-a shows the optimal hybrid ACPSO path for case 2, Fig. 14-b shows the reference linear 

and reference angular velocities. The right and left wheels linear velocities are shown in Fig. 14-c that 

have smooth responses without sharp spikes. Fig. 14-d shows the response of the right and left wheels 

angular velocities.  

a b 

c d 
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FIG. 14. CASE 2: A) THE OPTIMAL PATH, B) THE REFERENCE LINEAR VELOCITY AND REFERENCE ANGULAR VELOCITY, C) THE 

RIGHT AND LEFT WHEELS LINEAR VELOCITIES, D) THE RIGHT AND LEFT WHEELS ANGULAR VELOCITIES.   

 

V. CONCLUSIONS 

In this paper, a hybrid swarm ACPSO algorithm has been proposed and simulated for path planning of 

the mobile robot using MATLAB package. The proposed path planning algorithm is based on A* and 

CPSO algorithms. Therefore, the proposed hybrid swarm algorithm has excellent ability in term of the 

following: 

 Minimizing the number of nodes that are used. 

 Reducing the number of the iterations and the evaluation function. 

 The value of the cost distance function is less than A* and CPSO Algorithms for the two cases. 

 The execution time of the processor unit is reduced. 

 Optimal or near optimal smooth path is generated. 

 The best response of the reference linear and angular velocities of the mobile robot are obtainned. 
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