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Abstract: Parameter identification techniques 
for linear and nonlinear dynamic systems 
currently show a clear orientation toward black 
box models, with Artificial Neural Networks 
occupying a prominent place there. This paper 
presents a procedure for identifying linear 
dynamic systems parameters in two stages: in 
the first, a regressive model is fitted from the 
excitation and response time records, and in 
the second, its parameters are identified 
(matrixes of stiffness and damping) and 
dynamic characteristics (vibration frequencies 
and modes) based on the previous model. 
Artificial Neural Networks of the Adaline type 
and multilayer Perceptions are used for the first 
stage. The second stage is fully formulated 
through matrix algebra, which facilitates its 
systematic implementation and makes it 
independent of the complexity or dimension of 
the studied system. The proposed procedure is 
intended to operate from experimental records, 
so special attention is paid to the sensitivity of 
the results to the data interval and noise in the 
input signals. For the latter, various noise levels 
were incorporated into the correct responses 
obtained under ideal conditions, which respond 
to Gaussian distribution functions with a null 
mean and specified standard deviation. The 
proposed procedure justification, the results 
with the regressive models, and a study of the 
sensitivity of the results to the variation in the 
available data quality are presented. 
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تحدید معلمات الأنظمة الدینامیكیة من خلال الشبكات العصبیة  
 الاصطناعیة 

   M Lellis Thivagar  3,   2 فدعم متعب عبدون  ، 1  مأمون فتاح خلف  ، 1عبدالستار عبدالله حمد
 . العراق - سامراء /جامعة سامراء /تربیة كلیة ال  /قسم الفیزیاء 1
 . العراق - تكریت /جامعة تكریت /كلیة العلوم /قسم الكیمیاء 2
 . الھند - تامیل نادو  /مادوراي /جامعة مادوراي كاماراج /كلیة الریاضیات 3

 الخلاصة 
الدینامیكیة الخطیة وغیر الخطیة حالیاً اتجاھًا واضحًا نحو نماذج الصندوق الأسود، مع احتلال   الشبكات  تظُھر تقنیات تحدید المعلمات للأنظمة 

ى، یتم تركیب  العصبیة الاصطناعیة مكانًا بارزًا ھناك. یعرض ھذا البحث إجراءً لتحدید معلمات الأنظمة الدینامیكیة الخطیة على مرحلتین: في الأول
الخصائص  والدینامیكیة.  والتخمید)  الصلابة  (مصفوفات  معلماتھ  تحدید  یتم  الثانیة،  وفي  والاستجابة،  الإثارة  وقت  من سجلات  تراجعي    نموذج 

ددة الطبقات  والتصورات متع  Adaline(ترددات وأوضاع الاھتزاز) بناءً على النموذج السابق. تم استخدام الشبكات العصبیة الاصطناعیة من نوع  
قلة عن  في المرحلة الأولى. أما المرحلة الثانیة فقد تمت صیاغتھا بالكامل من خلال الجبر المصفوفي مما یسھل تنفیذھا بشكل منھجي ویجعلھا مست

ساسیة النتائج لفاصل  تعقید أو أبعاد النظام المدروس. یھدف الإجراء المقترح إلى العمل من السجلات التجریبیة، لذلك یتم إیلاء اھتمام خاص لح 
یھا  البیانات والضوضاء في إشارات الإدخال. بالنسبة للأخیرة، تم دمج مستویات الضوضاء المختلفة في الاستجابات الصحیحة التي تم الحصول عل

راء المقترح،  في ظل ظروف مثالیة، والتي تستجیب لوظائف التوزیع الغوسیة بمتوسط فارغ وانحراف معیاري محدد. یتم عرض مبررات الإج
 والنتائج مع النماذج التراجعیة، ودراسة حساسیة النتائج للتغیر في جودة البیانات المتاحة. 

شبكات أدالین؛ الشبكات العصبیة الاصطناعیة؛ الأنظمة الدینامیكیة؛ شبكات بیرسبترون متعددة الطبقات؛ تحدید المعلمة؛ النماذج  كلمات الدالة:  ال
 . الرجعیة

 

1.INTRODUCTION
Parameter identification aims to develop and 
improve the mathematical representation of a 
physical system using experimental data. It is 
the way to establish a bridge between the 
domain of reality and the models that claim to 
represent it, contributing to a better 
understanding of the former and improving the 
latter. In this work, attention is focused on 
identifying the parameters of mechanical 
systems and determining the characteristic 
values of their models from their response to 
the action of loads that vary with time [1]. This 
approach constitutes an inverse approach to the 
usual one, the analytical one, which occurs 
when determining the response of a specific 
structure to applied loads. On the other hand, 
there is a second form of inverse approach, 
which aims to identify the loads necessary for a 
particular system to behave according to a 
previously established response, representing a 
classic control theory problem. It is worth 
clarifying here that when talking about inverse 
statements, it is not done with a strictly 
mathematical sense but rather with a 
conceptual understanding. Naturally, to 
identify the parameters of a dynamic system 
[2], it must first be dimensionally delimited, 
which is why this process implies the definition 
of an equivalent system, which is usually more 
straightforward than the system or structure it 
is expected to represent. Thus, identifying 
parameters is an appropriate means for 
obtaining equivalent systems, and the 
characteristic values obtained represent 
properties that could be called condensed, both 
mass, dissipative and elastic. The condensed 
qualifier originates in the problem’s direct 
statement, where through the finite element 
method, the inertia, damping, and rigidity 
matrices of the model are obtained, and later, 

the number of degrees of freedom is reduced by 
the required study type. There is a growing 
number of lines of research that focus their 
attention on the modeling and identifying 
parameters of dynamic systems. In addition, 
recent developments in computer technology, 
such as data acquisition, signal processing, and 
massively parallel data processing, accentuate 
this trend. These parameter identification 
techniques recognize a first classification 
according to whether the physical models of the 
represented systems support them. The above 
finite element method is used for the first case, 
and for the second, models are called "black 
box" [3]. In the last case, defining the model is 
based on the system's dynamic behavior, i.e., on 
the temporal records of the excitations and 
their responses, regardless of the mathematical 
formulation of the phenomenon studied. 
Within these "black box" approaches, 
autoregressive models and artificial neural 
networks occupy a prominent place. Three 
aspects justify the increasing use of different 
variants of neural networks in the modeling of 
dynamic systems: 

1) Its aptitude to approximate complex 
and highly nonlinear functions, 
developing models that will be used to 
identify parameters. 

2) Its learning capacity, which makes it 
possible to adjust the model through 
processes that, with the algorithms 
Currently available, have significantly 
reduced the classic convergence 
problems. 

3) The tolerance of neural networks to 
imprecise or incomplete data makes 
them especially appropriate for 
applications with data originating from 
measurements on the same system. 

https://tj-es.com/
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Concerning the first aspect, Kolmogorov 
demonstrated that any network that has at least 
one hidden layer and contains an adequate 
number of suitably trained units will acquire 
the character of a universal approximator [4], 
i.e., it can reproduce any continuous and 
nonlinear function that can be defined in some 
hyperspace. Secondly, it should be noted that 
artificial neural networks are massively parallel 
systems materialize their learning capacity by 
modifying the interconnection weights between 
their neurons. Furthermore, there is the 
possibility of dynamically altering the topology 
of a network, i.e., its number of layers, the 
number of neurons in each layer, or how they 
are interconnected, which offers other less 
conventional ways of learning and gives great 
flexibility to this process. All these techniques 
have their antecedent in the Backpropagation 
method [5, 6], which stimulated a veritable 
revolution in the neural networks and became a 
classic. The last aspect pointed out is the 
tolerance to imprecise or incomplete data. In 
effect, neural networks can recognize patterns 
from noisy, distorted, or incomplete signals 
because the information is distributed in the 
connections between neurons. Also, this type of 
storage has a certain degree of redundancy. 
Recent studies [7] have shown that redundancy 
is the conditioning factor of noise tolerance and 
generalization capacity and are mutually 
related properties. When the good 
performances exhibited by artificial neural 
networks as approximators of unknown 
functions are mentioned, their weaknesses 
must also be recognized. Mainly, these refer to 
specific aspects of its configuration and 
training, where multiple possibilities are 
presented, and there needs to be more 
definitive recommendations that allow the 
most convenient ones for each case to be 
selected. Here, the following must be 
mentioned: 
a) The architecture of the network, in terms 

of the number of layers, the units per layer, 
and the links between them. 

b) The activation functions, which can be 
linear, hyperbolic, sigmoidal, or a 
combination of them. 

c) The most appropriate initial weights. 
d) The training process techniques. Even 

though these aspects are the subject of 
intense study, for the moment, an 
exploration task can only be avoided once 
the most convenient combination is found 
for each case. 

However, in cases where it is possible to 
anticipate the general form of the differential 

expressions that govern the problem, as occurs 
here, this knowledge can be applied to define 
models that are as specific as possible. In this 
way, when representing known phenomena, 
the options presented by the neural model are 
drastically reduced. The idea that the 
architecture of neural networks should be 
inspired by knowledge about the nature of the 
phenomena represented was postulated by 
numerous authors [8], who assured that this is 
the way to obtain simple, efficient, and accurate 
models. The aforementioned allows the authors 
to affirm that artificial neural networks offer a 
valid option to implement inverse models of 
dynamic systems. In the procedure presented 
here, they are adopted as a basis for the 
subsequent identification of their parameters. 
In this case, the type of networks used is called 
"forward" or "feedforward" because they 
establish a direct relationship between input 
and output that emulates the represented 
system behavior without feedback loops or 
recurring processes. In particular, Adaline 
units, Madeline networks, and Perceptions are 
used. This paper establishes a bridge between 
the realm of reality and that of the models that 
purport to represent it toward better 
understanding the former and improving the 
latter. It is helpful to understand parameter 
identification to improve the mathematical 
representation of a physical system using 
experimental data. This work emphasizes 
detecting mechanical system parameters and 
figuring out the model parameters based on 
how the mechanical systems react to time-
varying loads. This paper proposes a procedure 
for identifying parameters of dynamic systems 
that recognize two stages, as shown in Fig. 1. 
The first stage is intended to fit a regressive 
model from excitation time records and the 
response of the natural system. This model 
aims to filter the noise of the response signals 
and reproduce the system's behaviors under 
initial conditions that would not be feasible to 
impose in the natural system. It is a model 
implemented with some of the types of neural 
networks already mentioned. In the second 
stage, the system parameters (stiffness and 
damping matrices) and their dynamic 
characteristics (vibration frequencies and 
modes) were identified from the response 
(displacements) obtained with the regressive 
model. To do this, the velocity and acceleration 
of the reaction were obtained, which were then 
incorporated into a matrix algebra procedure. 
The complete system block diagram is shown in 
Fig. 2. 

https://tj-es.com/
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Fig. 1 Modelling and Identification of Parameters. 

 

Fig. 2 Block Diagram of the Complete System. 
 

2.REGRESSIVE MODELS 
As already mentioned, in the first stage, the 
behaviors of an unknown function were 
emulated from the values of its response to the 
action of a specific excitation condition. This 
method is usually called ARX (Auto Regressive 
and Exogenous) the fact that 1) each response 
value "y" is determined from other values 
obtained by the same model, 2) these 
correspond to previous instants, and 3) 
represents the response of a system to an 
external action "u." The general expression for 
the response is as follows: 
𝑦𝑦𝑘𝑘 =  ∑ ∝𝑗𝑗 𝑦𝑦𝑘𝑘−𝑗𝑗   + ∑ 𝛽𝛽𝑗𝑗  𝜇𝜇𝑘𝑘−𝑗𝑗𝑚𝑚

𝑖𝑖=1
𝑛𝑛
𝑗𝑗=1  + ℯ𝑘𝑘 (1) 

Where "n" is the number of response values 
corresponding to previous instants, and "m" is 
the number of excitation values. Note that ek 
represents the model’s error, and "n" means its 
order. It must also be borne in mind that 
matters of m ≤ n are commonly used and that 
in the case of a system with "q" degrees of 
freedom, with q > 1, the response "y" and the 
action "u" are represented by vectors, while 

matrices represent a and β. In literature, it is 
common to find references about the 
impossibility of predicting the number of values 
of "n" and "m" most convenient to solve each 
specific problem [9]. However, the two cases 
are essentially different in representing 
functions, such as representing completely 
unknown phenomena and modeling systems 
that respond to clearly established physical 
principles. In the first case, these are accurate 
black box models, only expressible through 
their input-output relations. In contrast, in the 
second, it is possible to anticipate, at least, the 
general form of the differential expressions that 
govern the problem. As already expected, it is 
advisable to apply this knowledge to guide the 
definition of the model and make it as specific 
as possible. Considering the linear elastic 
system case with several degrees of freedom, its 
dynamic equilibrium is represented by a system 
of differential equations that have the following 
general form: 

𝑀𝑀𝑦𝑦 + 𝐶𝐶𝑦𝑦 + 𝐾𝐾𝑦𝑦 = 𝑢𝑢  (2) 

https://tj-es.com/
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Where M, C, and K represent the inertia, 
damping, and stiffness matrices. To solve this 
problem numerically, 4th-order finite 
difference formulas were used to express the 
velocity and acceleration as a function of the 
displacements in four previous intervals: 
𝑦𝑦′𝑡𝑡+△𝑡𝑡 = (11𝑦𝑦𝑡𝑡+△𝑡𝑡 − 18𝑦𝑦 + 9𝑦𝑦𝑡𝑡−△𝑡𝑡 −
2𝑦𝑦𝑡𝑡−2△𝑡𝑡 )/(6 △ 𝑡𝑡)|  
𝑦𝑦𝑡𝑡+△𝑡𝑡=( 2 𝑦𝑦𝑡𝑡+△𝑡𝑡 – 5𝑦𝑦𝑡𝑡  + 4 𝑦𝑦𝑡𝑡−△𝑡𝑡 – 
𝑦𝑦𝑡𝑡−2△𝑡𝑡)(△ 𝑡𝑡2)  (3) 

Then, the dynamic equilibrium Eq. (2) is 
considered at instant t+∆t. Acceleration and 
velocity were replaced by Eq. (3), the terms 
were finally grouped, and an equation is 
reached attributed to Houbolt (1950) [10], 
which has the following general form: 
𝑦𝑦𝑡𝑡+△𝑡𝑡  = 𝐴𝐴𝑦𝑦𝑡𝑡 + 𝐵𝐵𝑦𝑦𝑡𝑡−△𝑡𝑡 + 𝐷𝐷𝑦𝑦𝑡𝑡−2△𝑡𝑡 + 𝐸𝐸𝜇𝜇𝑡𝑡+△𝑡𝑡  (4) 
Where the matrices A, B, D, and E are expressed 
as a linear combination of the M, C, and K 
matrices, as shown in the following equations. 
𝐴𝐴 =  𝐻𝐻−1[(5/△ 𝑡𝑡2)𝑀𝑀 + � 3

△𝑡𝑡
� 𝐶𝐶] 

𝐵𝐵 =  𝐻𝐻−1[(4/△ 𝑡𝑡2)𝑀𝑀 + � 3
2△𝑡𝑡

� 𝐶𝐶]  

𝐷𝐷 =  𝐻𝐻−1[(1/△ 𝑡𝑡2)𝑀𝑀 + � 1
3△𝑡𝑡

� 𝐶𝐶]                                                                                                         
𝐸𝐸 =  𝐻𝐻−1 
𝐻𝐻 = [(2/△ 𝑡𝑡2)𝑀𝑀 + � 1

6△𝑡𝑡
� 𝐶𝐶]  (5) 

When adopting this approach, two objectives 
were pursued: the first was to delimit the 
number of terms of the general expression (1) 
based on a rational criterion, eliminating the 
uncertainty above regarding the most 
convenient values for "n" and "m," where m, are 
represent the inertia damping, and stiffness 
matrices, In this case, they are three and one, 
respectively. The second objective was to have 
information on the behavior that could be 
expected from a model of these characteristics. 
For the latter, some of the numerous works that 
evaluated Houbolt's proposal were used, 
several of which are summarized in a study by 
Yotov et al. [11], from which valuable 
information could be extracted, such as the 
following: 

a) This approach has proved to be one of 
the most efficient for integrating 
equations corresponding to initial value 
problems of dynamic elastoplastic 
systems. 

b) The numerical process is 
unconditionally stable in the resolution 
of linear systems. 

c) It introduces slight damping and 
distortion in the frequencies, as occurs 
with most numerical methods that 
integrate equations of motion. 

These considerations allowed the researchers to 
anticipate that the model proposed in Eq. (4) 
was apt to represent the solution of the system 
of differential equations shown in Eq. (2), 
provided that the elements of the matrices A, B, 
D, and E could be determined. Note that if it 
were a direct statement, the matrices M, C, and 
K would all be known, and the solution to the 
problem would be expressed by Eq. (5). On the 
contrary, this is an inverse approach in which 
M, C, and K are unknown. For this reason, 
artificial neural networks were used to develop 
a black box model that represents Eq. (4). As a 
linear problem, the most convenient option is a 
set of Adaline units (Adaptive Linear Element), 
or more precisely, as many Adaline units as 
degrees of freedom the represented system has. 
In other words, for a plan with "q" dynamic 
degrees of freedom, there will be "4q" inputs 
that will affect "q" Adaline units, as shown in 
Fig.3(a). The alternatives of a Madeline 
network (Multiple Adaline) or a Multilayer 
Perceptron network (shown in Fig.3 (b)) may 
offer some advantages, which will be discussed 
later, but prevent a direct relationship with Eq. 
(4). For the training of these networks, a 
process of successive adjustments of the 
synaptic weights, generically called 
"descending gradient," is used, for which it is 
necessary to have records of the system's 
responses to certain excitation conditions. In 
the case of multilayer networks, the output 
errors are projected backward with the already 
mentioned "backpropagation" method. These 
processes seek to find the minimum error 
function ε to determine the synaptic weights 𝑤𝑤𝑤𝑤 
of the networks, which in the case of the Adaline 
units are the elements of the matrices A, B, D, 
and E. To do this, ε is defined from Eq. (4): 

ℰ =  𝑦𝑦′𝑡𝑡+△𝑡𝑡 − (𝐴𝐴𝑦𝑦′𝑡𝑡 + 𝐵𝐵𝑦𝑦′𝑡𝑡−△𝑡𝑡 +
𝐷𝐷𝑦𝑦′𝑡𝑡−2△𝑡𝑡 + 𝐸𝐸𝒰𝒰′

𝑡𝑡+△𝑡𝑡)  (6) 

 

                     (a)                                                                                                  (b) 
Fig. 3 (a) Schematics of an Adaline Unit Array and (b) a Perceptron Network.

https://tj-es.com/
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The sets of training pairs {u', y'} are formed by 
the vectors of known values of the excitation 
and the response vectors of the system. Then, 
the scalar J that represents the global error of 
the network is defined as follows: 

𝐽𝐽 =  ℰ𝒯𝒯ℰ  ,          𝜕𝜕 𝐽𝐽
𝜕𝜕 𝑊𝑊

 = 0  (7) 
Whose minimum is searched in the hyperspace 
𝑤𝑤 of the synaptic weights of the neural network 
through the descending gradient method. 

3.IDENTIFICATIONS OF PARAMETERS 
3.1.Lack of a Single Solution 
In the case of using Adaline units, the problem 
has been solved. Once the matrices 𝐴𝐴,𝐵𝐵,𝐷𝐷, and 
E are known, there should be no major 
drawbacks in deducing the parameters 
represented by the matrices 𝑀𝑀, 𝐶𝐶, and 𝐾𝐾 since 
both groups of matrices are linked by Eq. (5). 
However, there is an unexpected difficulty here. 
𝐴𝐴,𝐵𝐵,𝐷𝐷, and 𝐸𝐸 do not represent a unique solution 
for the problem formulated in Eqs. (6) and (7). 
In other words, there are many different 
matrices 𝐴𝐴, 𝐵𝐵,𝐷𝐷, and E that can represent the 
unknown function with very good 
approximation via Eq. (4) but whose values will 
not lead to correct values for the matrices 𝑀𝑀, 𝐶𝐶, 
and 𝐾𝐾 because the functional 𝐽𝐽 that is to be 
minimized presents multiple local minima, 
which have their origin in the inappropriate 
excitation used to determine the response of the 
system. Jha and An [12,13] introduced the 
concept of persistent excitation to typify the 
requirements that excitation signals must meet 
for a system to be identifiable. This condition 
establishes that the excitation signals must 
have a sufficiently broad spectrum of 
frequencies to perturb the system 
appropriately, and it is recognized as an 
indispensable requirement for the absolute 
minimum to be possible by minimizing 𝐽𝐽. 
However, it is not easy to ensure such a 
condition, much less when dealing with the 
excitation of natural structures, so the practical 
feasibility of identifying the parameters in this 
way had to be discarded. 
3.2.Determination of Characteristic 
Values 
As a result of the inconvenience above, it was 
necessary to look for other alternatives to 
identify the system parameters. For this 
purpose, the procedure described below was 
developed. Using the regressive neural model 
obtained in the previous stage, it is subjected to 
carefully chosen initial conditions to obtain a 
"y" response in which its main natural vibration 
modes are present. Once the response vector 
"y" is known, Eq. (3) is used to calculate the 
vectors of velocity y˙ and acceleration ̇ y˙, all of 
them of dimension "q." These displacements 
and velocities are grouped into a 2q-
dimensional state vector called z: 

𝒵𝒵 = �𝑦𝑦
′

𝑦𝑦 �   (8) 

Then, Eq. (2) is reformulated as a function of z: 
𝑧𝑧 , = 𝐹𝐹𝑧𝑧 + 𝐺𝐺𝑢𝑢  (9) 

Where 

𝐹𝐹 =  �−𝑀𝑀
−1𝐶𝐶 𝑀𝑀−1𝐾𝐾

1 0
� , G = [−𝑀𝑀

−1

0
]  (10) 

The "p" column vectors z and u, corresponding 
to as many instants "p" of the response of the 
system, can be grouped in the matrices Z and U 
in such a way that: 

𝑍𝑍 = [ 𝑍𝑍1 𝑍𝑍2 𝑍𝑍3 … … .𝑍𝑍𝑃𝑃 ] , ‘𝑈𝑈 =
[ 𝑈𝑈1 𝑈𝑈2 𝑈𝑈3 … … .𝑈𝑈𝑃𝑃 ] (11) 

From Eqs. (9) and (11), the following expression 
is obtained that considers the behavior of the 
system at all times "p": 

𝑍𝑍′ = 𝐹𝐹𝑍𝑍 + 𝐺𝐺𝑈𝑈 (12) 
Rearranging and post-multiplying both 
members by the pseudoinverse of the Z matrix, 
an expression is obtained that determines F: 

𝐹𝐹 = (𝑍𝑍′ − 𝐺𝐺𝑈𝑈)𝑍𝑍+ (13) 
Where 

𝑍𝑍′ = (𝑍𝑍𝑍𝑍′)𝑍𝑍𝑇𝑇  (14) 
Considering that the excitation 𝑈𝑈 is null, the 
system only responds to certain initial 
conditions in the absence of external charges, 
yielding: 

𝐹𝐹   = 𝑍𝑍′𝑍𝑍+ (15) 
Moreover, considering the definition of F from 
Eq. (10), it follows that: 

𝐹𝐹11 = −𝑀𝑀−1𝐶𝐶 
𝐹𝐹12 = −𝑀𝑀−1𝐾𝐾 (16) 

Here, it can be verified that to implement the 
calculation of matrix F, it is not convenient to 
use Eq. (15) but to carry out a similar analysis 
from the transpose of Eq. (12), which leads to 
an equivalent expression: 

𝐹𝐹𝑇𝑇 = (𝑍𝑍𝑇𝑇)+ 𝑍𝑍′𝑇𝑇  (17) 
Note that although Eqs. (15) and (17) are 
algebraically equivalent. The latter is 
numerically advantageous. Indeed, calculating 
the pseudoinverse of the first equation involves 
the inversion of a matrix of order "p." In 
contrast, determining the pseudoinverse of Eq. 
(17) involves inversing a matrix of order 2q, and 
always q << p since the number of degrees of 
freedom "q" of the model is always much less 
than the number of time intervals "p" in which 
the response of the system is considered. Thus, 
determining the F12 submatrix is reached, 
which opens the doors to calculating the 
system's frequencies and normal vibration 
modes. In effect, going back to Eq. (2), omitting 
the damping forces and assuming a harmonic 
response, the classic eigenvalue problem is 
posed, which is expressed as: 

(𝑀𝑀−1𝐾𝐾 −λΙ) 𝑌𝑌− = 0, where λ = ω2 (18) 
which is equivalent to say that  

(−𝐹𝐹12 − ω2𝐼𝐼) 𝑦𝑦� = 0, (19) 
where ω represents the normal frequencies and 
modes of vibration. For cases where the inertia 
matrix 𝑀𝑀 is known, which is usually diagonal, 
the stiffness 𝐾𝐾 and damping 𝐶𝐶 matrices can be 
determined from the equations below. 
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𝐶𝐶 = −𝑀𝑀 𝐹𝐹11 
𝐾𝐾 = −𝑀𝑀 𝐹𝐹12 (20) 

Furthermore, when it is possible to assume that 
the damping is proportional to the inertia and 
stiffness of the system (Rayleigh damping), a 
matrix ϕ contains the vibration modes as its 
columns, and the generalized damping matrix Γ 
of the system is determined by the system. 
Thus, the damping factors ξi corresponding to 
each vibration mode can be known: 

Γ = ϕ𝑇𝑇 C ϕ = −ϕ MA11𝜙𝜙 (21) 
Where 

Γ = �
2𝜉𝜉1𝜔𝜔1 … 0
⋯ ⋱ …
0 … 2𝜉𝜉𝑛𝑛𝜔𝜔𝑛𝑛

� 
(22) 

3.3.Procedure 
Once the solution to the problem has been 
formulated, the proposed procedure is 
summarized: 

a) Develop a neural model capable of 
reproducing the studied system’s 
behavior in a specific time interval. This 
model will consist of as many Adaline 
units as degrees of freedom "q" has the 
system, with a total of 4q inputs and "q" 
outputs. The inputs corresponding to 
each degree of freedom are the 
displacements in three successive time 
intervals and the external action in the 
last interval, as indicated by Eq. (4). The 
output of each unit will be displacement 
in the following time interval. 

b) Use the previous model to determine the 
response "y" of the system to certain 
initial conditions in the absence of 
external charges, which ensures that 
there will be components of all the 
frequencies of interest in this response.  

c) Using Eq. (3), obtain the velocity and 
acceleration vectors in the same intervals 
in which the displacements were 
determined. 

d) Select displacements, speeds, and 
accelerations corresponding to a certain 
number of points "p," representing the 
system's response. 

e) With these vectors, build the matrices 𝑍𝑍 
and �̇�𝑍 .̇ Then, calculate the matrix F 
according to Eq. (17). 

f) Formulate the eigenvalue problem, Eq. 
(19), and calculate frequencies and 
normal vibration modes. 

g) Calculate K and C with Eq. (20) if the 
inertia matrix 𝑀𝑀 can be known. 

h) Determine the damping factors with 
Eqs. (21) and (22) in cases where the 
Rayleigh damping model is valid. 

4.RESULTS 
4.1.Neural Models 
For adjusting the neural models, a basic 
version of the Backpropagation method 
was implemented, in which the use of more 

sophisticated algorithms to have the 
highest sensitivity to the different 
conditions of the input signals was avoided. 
The only improvement was to allow the 
adjustment of the learning factor η during 
the training process [14] while keeping the 
momentum factor θ constant. The 
regressive models reproduced the systems’ 
studied behavior through Adaline units and 
Perceptron networks with a hidden layer 
(the number of hidden-in-out layers is 
one). Although, in all cases, these networks 
demonstrated excellent performance, the 
results obtained confirmed the advisability 
of resorting to the simplest neural models 
since these allow for establishing 
parallelism with the numerical models that 
represent the problem studied, which was 
already the subject of a previous study by 
the same authors [15]. Models of linear 
mechanical systems with one and three 
degrees of freedom were used, with a single 
excitation signal and natural frequency 
periods greater than 0.2 seconds. The 
training sets corresponded to response 
segments of between 10 and 20 seconds, 
with intervals between ∆t=0.1 and ∆t=0.01 
seconds, which gave rise to several known 
arousal and response points of the brain 
system that varied between 100 and 2000. 
A load condition was used to train the 
model, and a different load condition was 
used for validation. Thus, it was possible to 
verify, as expected, that neural models are 
not limited to memorizing behavior 
patterns of the real system but capture its 
properties so that once trained, they 
correctly reproduce their response to any 
excitation condition and initial conditions. 
For this, ensuring that the system’s 
excitation causes all vibration modes in its 
response is necessary. 
4.2.Neural Models 
The same mechanical systems with which 
the neural models were developed were 
used to validate the presented procedure, 
from one to three degrees of freedom. The 
difference was that, in this case, the 
responses corresponded to initial 
displacement and speed conditions without 
external loads to make Eq. (17) applicable. 
As mentioned, these initial conditions had 
to be carefully defined to ensure all 
vibration modes in the system responses. 
Considering this critical condition, 
verifying that the proposed method 
allowed the researchers to obtain excellent 
results in all cases was possible. When 
studying the quality of the results, the 
inertia matrix was considered known, and 
the stiffness and damping matrices were 
determined with Eq. (20). Then, the mean 
square errors of the nonzero elements of 
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these matrices and the most significant 
individual errors in each were considered 
as comparison values. The results 
reproduced below correspond to a system 
with three degrees of freedom, with natural 
periods of vibration T = 1.708, 0.654, and 
0.293 sec, respectively. In one of the 
studies conducted, the sensitivity of the 
results to different △t intervals used in the 
training of the neural model and in the 
subsequent calculation of the velocity and 
acceleration vectors, based on the 
derivatives of their response, was 
evaluated. Fig. 4 shows evolving errors in 

the stiffness matrix with time intervals that 
increase values of ∆t/T between 0.035 and 
0.35 (blue line), considering T = 0.293 sec. 
Here, it was possible to verify that with a 
value ∆t/T of the order of 0.1 (value 
recommended by the literature for 
processes of numerical integration of 
differential equations), the errors reach 2% 
and that for ∆t/T > 0.1 grow steadily Mean 
square error is below 0.8 %, which is an 
acceptable range based on literature 
[McCormick and Salvadori (1976)]. 

 

Fig. 4 Evolution of the Error of the Stiffness Matrix when Increasing △t/T.

Several options were explored to improve 
these results, which verified the need to 
increase the order of the numerical 
derivation formulas to obtain the velocity 
and acceleration vectors. Thus, Eq. (23) 
proposed by [16-19] was adopted, which 
produced a drastic improvement in the 
results (red line). It can be observed in 
Fig.3 that with values of ∆t/T as high as 0.2, 
the maximum error in the stiffness matrix 
is of the order of 2%, and its mean square 
error is below 0.8 %. Thus, the sensitivity 
of the method to the quality of the velocity 
and acceleration vectors is recognized, and 
the new numerical derivation formulas are: 
𝑦𝑦′𝑡𝑡+△𝑡𝑡 = (25𝑦𝑦𝑡𝑡+△𝑡𝑡 − 48𝑦𝑦 + 36𝑦𝑦𝑡𝑡−△𝑡𝑡 −
16𝑦𝑦𝑡𝑡−2△𝑡𝑡 + 3𝑦𝑦𝑡𝑡−3△𝑡𝑡)/(12 △ 𝑡𝑡)|  
𝑦𝑦𝑡𝑡+△𝑡𝑡 = ( 35 𝑦𝑦𝑡𝑡+△𝑡𝑡 – 104𝑦𝑦𝑡𝑡  +11 4 𝑦𝑦𝑡𝑡−△𝑡𝑡 –

56 𝑦𝑦𝑡𝑡−2△𝑡𝑡 + 11𝑦𝑦𝑡𝑡−3△𝑡𝑡)/(12 △ 𝑡𝑡2) (23) 
Here, it is necessary to highlight that the 
number of points "p" of the response of a 
system used in this stage of parameter 
identification bears no relation to the issues 
used in the previous stage, model training. In 

this regard, studies were performed using 500, 
200, 100, and 50 points, consistently equally 
spaced, obtaining identical results. As the 
system’s complexity increases and the data 
quality used when training the neural model 
decreases, more "p" points will likely be 
beneficial. However, this has not yet been 
sufficiently studied to make recommendations 
in the user’s favor. Next, with the same stiffness 
matrices used to study the evolution of the 
errors, the natural vibration frequencies of the 
system were calculated, posing the eigenvalue 
problem represented by Eq. (19). Here, it was 
possible to verify that, even though the errors of 
the stiffness matrix show a significant 
difference depending on whether the numerical 
derivation formulas, Eq. (3) or Eq. (23) are 
used, and their incidence in determining the 
frequencies is significantly reduced. As shown 
in Fig. 5, the values of the natural periods of 
vibration remained practically stationary for 
values of △t/T between 0.05 and 0.35. The 
actual values are those that correspond to △t/T 
= 0. 
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Fig. 5 Evolution of the Natural Periods of Vibration when Increasing Δt/T

These results indicate that the elements of the 
stiffness matrix suffer distortions as the time 
interval between the data increases. Still, they 
do so in such a way that the dynamic 
characteristics of the model are preserved. The 
damping matrices of the system were also 
determined under the same conditions in which 
the stiffness matrices were determined. The 
results are presented in Fig. 6, and as can be 
seen, the quality of the results is very good for 
low values of △t/T, but the error proliferates as 
the time interval increases. It could also be 
verified that the quality of these results is 
susceptible to the initial conditions imposed on 
the system, much more than what the stiffness 
matrix proved to be. Higher-order numerical 
differentiation formulas were used in this 
study. Because this procedure will be used to 

identify parameters of natural systems from 
measurements of their response, it was very 
important to know their sensitivity to eventual 
errors in the input signals. Thus, responses 
obtained numerically were used to which 
random noise was added, with Gaussian 
distribution, null mean, and specified standard 
deviation. Thus, using different noise 
amplitudes in the network training data, the 
procedure's sensitivity to determine the 
stiffness and damping matrices was studied. 
Fig. 7 represents the evolution of the errors in 
the stiffness matrix as a function of the 
amplitude of the error in the training data of the 
network, expressed as a percentage of the 
oscillation maximum amplitude. 

 

Fig. 6 Evolution of the Error (Derivation of Eq. (23)) of the Damping Matrix when Increasing Δt/T 
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Fig. 7 Evolution of the Stiffness Matrix’s Error (Derivation of Eq. (23)) as the Input Error Increases. 

One aspect that deserves to be highlighted is 
that the procedure presented for the second 
stage is formulated through matrix algebra, 
which makes it independent of the complexity 
or dimension of the system studied, facilitating 
its systematic implementation, which 
distinguishes it from other procedures that 
have been presented for the same purpose, as is 
the case of the works by [20-25], Where it does 
not seem that the proposals are easily 
extensible to the treatment of more complex 
systems than those of the examples shown 
there. 
5.CONCLUSIONS AND FUTURE WORK 
This work presents a procedure that allows the 
parameters (stiffness and damping matrices) 
and dynamic characteristics (frequencies and 
modes of vibration) of linear mechanical 
systems to be obtained. The method recognizes 
two stages; in the first one, a model was 
adjusted using artificial neural networks; in the 
second, this neural model was used to identify 
the parameters of the real system. In this last 
stage, the procedure was fully formulated 
through matrix algebra, which makes it 
appropriate to address complex problems with 
many degrees of freedom. The results with 
simple systems allowed the researchers to 
confirm the presented procedure's advantages 
and robustness before relatively large time 
intervals and noisy input signals. This method 
will likely help predict structural damage and 
linearize and identify parameters of complex 
mechanisms in robotics. In future work, the 
sensitivity of the calculated parameters to 
different initial conditions and the quality of the 
input signals will continue to be studied. 
Progressively, larger and more complex 
problems will be dealt with. Variants in the 
neural models will also be analyzed to have a 

greater capacity to filter noise and other 
disturbances. 
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