Classification of (k; 3)-arcs in PG(2, 13) for k = 5, 6, 7

Emad Bakr Abdulkareem Al-Zangana

Al-Mustansiriyah University College of Science / Department of Mathematics <u>E-mail:emad77_kaka@yahoo.com</u>

Abstract: An arc of size k and degreethree is a set of k points such that no four of them are collinear but some three of them are collinear. The aim of this paper is to determine the inequivalent (k; 3)-arcs in PG(2,13)for k = 5,6,7.

Key words and phrases: Projective plane, Arc.

Journal of Al Rafidain University College 78 ISSN (1681 – 6870)

Introduction

The study of (k; r)-arc for $r \ge 3$ in PG(2, q), the projective plane over Galois field GF(q), as begun by Barlotti [1] in 1956. The case r = 2 was considered previously by Segre [2], [3].Recently; the case r = 3 has been studied by Marcugini [4] for q = 7. For q = 11, a maximal (k; 3)-arcs has been found by Marcugini [5] and a full classification of (k; 3)-arcs are given by Cook [6]. For q = 13, in [7] the maximal arc has been found. In [8] some new arcs of higher degree are given in PG(2,13).

In this paper, the inequivalent, incomplete (k; 3)-arcsin PG(2,13) for k = 5,6,7 are classified and their stabilizer group type are determined.

Definition 1[9]: A(k; r)-arc K in the projective plane PG(2, q) is a set of k points of PG(2,q) such that no r+1 points are collinear and some r points are collinear. A (k; r)-arc is complete if there is no (k + 1; r)-arc containing it. If r = 2, then K is called ak-arc. The size of the largest (k; r)-arc in PG(2, q) is denoted $m_r(2, q)$.

Let Π denote any projective plane. A line ℓ of Π is an *i*-secant of a(k; r)-arc Kif $|\ell \cap K| = i$. Let \mathcal{T}_i denote the total number of *i*secants to Kin Π , let $m_i = m_i(P)$ the number of *i*-secants through a point P of K and $\sigma_i = \sigma_i(Q)$ then umber of *i*-secants through a point Qin $\Pi \setminus K$. Let K_{m_1,m_2,m_3} be set of points of K with parameters m_1, m_2 and m_3 .

Lemma 1[9]: For a (*k*; *r*)-arc *K*, the following equations hold:

- $\sum_{i=1}^{r} m_i = q + 1;$ (i)
- $\sum_{i=2}^{r} (i-1)m_i = k-1;$ (ii)
- $\sum_{i=0}^{r} \sigma_i = q + 1;$ (iii)
- (iv)
- $\sum_{i=1}^{r} i\sigma_i = k;$ $\sum_{i=0}^{r} \mathcal{T}_i = q^2 + q + 1;$ (v)

Journal of Al Rafidain University College 79 ISSN (1681 - 6870)

(vi)
$$\sum_{i=1}^{r} i\mathcal{T}_i = k(q+1);$$

Remark 1[9]: Let *K* be a (k; r)-arc in Π with stabilizer group G_K . The group G_K partitions the points of $\Pi \setminus K$ into different orbits. So, distinct (k + 1; r)-arcs formed by adding one point from each orbit to *K*.

(5; 3)-arcs

Let $S = \{x_1, x_2, x_3, x_4, x_5\}$ be a set of five points that is contained in a(k; 3)-arc, where $k \ge 5$. Then, some subset of four points in S is a 4-arc.Since a (k; 3)-arc contains a 4-arc if $k \ge 5$ and the standard frame

$$\Upsilon_4 = \{e_1 = [1; 0; 0], e_2 = [0; 1; 0], e_3 = [0; 0; 1], e_4 = [1; 1; 1]\}$$

is projectively equivalent to every 4-arc, so Υ_4 is used as the base on which all $(r \ge 5; 3)$ -arcs are constructed.

Let \mathcal{P} be a (5; 3)-arc in PG(2,13). Suppose that through a point P of \mathcal{P} there pass $m_i i$ -secant (i = 1,2,3). From equation (i)and (ii) in Lemma 1the following hold:

Let α , β , γ denote the number of points of \mathcal{P} with respective m_i . The possible solutions for equation (1) are the following:

Table 1: Kind points of \mathcal{P}

Kind	m_1	m_2	m_3
α	10	4	0
β	11	2	1
γ	12	0	2

80

Journal of Al Rafidain University College

ISSN (1681 – 6870)

To determined \mathcal{T}_i , from equation and Table 1, the following are satisfied.

(i)
$$T_3 = \frac{2\gamma + \beta}{3};$$

(ii) $T_2 = 2\alpha + \beta;$
(iii) $T_1 = 50 + (\beta + 2\gamma);$
(iv) $T_0 = 183 - (T_1 + T_2 + T_3)$

Since $\alpha + \beta + \gamma = 5$ and 3divided $2\gamma + \beta$, so the maximum value for $2\gamma + \beta$ is 10; that is, $2\gamma + \beta$ could be 0,3,6,9. According to this, the possible value of T_i are the following.

Table 2: The possible values of \mathcal{T}_i

\mathcal{T}_0	\mathcal{T}_1	\mathcal{T}_2	\mathcal{T}_3
122	53	7	1
121	56	4	2
120	59	1	3

Remark2: The case $T_3 = 3$ is not satisfied, because in this case the minimum value of the size of \mathcal{P} is six.

For a point Q not on \mathcal{P} , the possible value of σ_i can be deduce from equations in Lemma 2[(iii),(iv)] is given in Table 3.

Table 3:	The	possible	values	of	σ _i
----------	-----	----------	--------	----	----------------

Туре	σ_0	σ_1	σ_2	σ_3
(i)	9	5	0	0
(ii)	10	3	1	0
(iii)	11	1	2	0
(iv)	11	2	0	1
(v)	12	0	1	1

Journal of Al Rafidain University College 81 ISSN (1681 – 6870)

Let $\mathcal{P}(s_1, s_2, s_3, s_4, s_5) = [s_1, s_2, s_3, s_4, s_5]$ where s_j denote the number of points in $\Pi \setminus \mathcal{P}$ of type (j), j= i, ii, iii, iv, v.

Inequivalent (5; 3)-arcs

Let $\mathcal{L}_1 = \mathcal{L}_1(x_0, x_1, x_2)$ be the line with equation $x_1 = x_2$ which pass through e_1, e_4 and $\mathcal{L}_2 = \mathcal{L}_2(x_0, x_1, x_2)$ be the line with equation $x_0 = 0$ which pass through e_2, e_3 . To construct a (5; 3)-arcs \mathcal{P}_i , the line \mathcal{L}_1 has been chosen to be the 3-secant of \mathcal{P}_i . So, there are twelve (5; 3)-arcs.

(i) A (5; 3)-arc with $\mathcal{T}_3 = 1$. Apart from the points e_1, e_4 and $P = \mathcal{L}_1 \cap \mathcal{L}_2$, there are eleven other points on \mathcal{L}_1 . Amongst these eleven (5; 3)-arcs with $\mathcal{T}_3 = 1$ there are only three inequivalent as given bellow.

$$\begin{aligned} \mathcal{P}_1 &= \{e_1, e_2, e_3, e_4, a_1 = [\nu^4; 1; 1]\}; \\ \mathcal{P}_2 &= \{e_1, e_2, e_3, e_4, a_2 = [\nu; 1; 1]\}; \\ \mathcal{P}_3 &= \{e_1, e_2, e_3, e_4, a_3 = [\nu^{10}; 1; 1]\}, \end{aligned}$$

Where ν is the primitive elements in the Galois field $GF(13) = F_{13}$.

Let partition \mathcal{P}_i , i = 1,2,3 into two subsets $\mathfrak{V}_1 = \{e_2, e_3\}$ and $\mathfrak{V}_2 = \{e_1, e_4, a_i\},\$

i = 1,2,3. Through each point of \mathfrak{V}_1 no 3-secant pass from it and through each point of \mathfrak{V}_2 pass one 3-secant, so $\mathcal{P}_{i_{10,4,0}} = \mathfrak{V}_1$ and $\mathcal{P}_{i_{11,2,1}} = \mathfrak{V}_2$, i = 1,2,3. The projective group $G_{\mathcal{P}_i}$ of \mathcal{P}_i , i = 1,2,3 is the group of projectivities fixing \mathfrak{V}_1 and \mathfrak{V}_2 .

(ii) The (5; 3)-arc with $\mathcal{T}_3 = 2$. From (i), the there is only one possibility of (5; 3)-arc with $\mathcal{T}_3 = 2$ which is form from Υ_4 with $a_4 = \mathcal{L}_1 \cap \mathcal{L}_2$; that is, $\mathcal{P}_4 = \{e_1, e_2, e_3, e_4, a_4 = [0; 1; 1]\}.$

Journal of Al Rafidain University College 82 ISSN (1681 – 6870)

Remark3 [9]: In the projective plane, any ordered set of four independent points no three are collinear they are projectively equivalent. So, the uniqueness of the (5; 3)-arc with $\mathcal{T}_3 = 2$ can be deduce. The points of the (5; 3)-arc \mathcal{P}_4 , partition into two kinds $\mathcal{P}_{4_{12,0,2}} = \{a_4\}$ and $\mathcal{P}_{4_{11,2,1}} = \{e_1, e_2, e_3, e_4\}$.

Theorem 1:In PG(2,13), there are four inequivalent, incomplete five arcs of degree three partition into two different types $\mathcal{P}_i(s_1, s_2, s_3, s_4, s_5)$, as summarized in Table 4.

		Num	ber of			
		point	s of ${\mathcal F}$	of i		
		each	type			
	$[\mathcal{T}_0, \mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3]$	α	β	γ	$\mathcal{P}_{i}(s_{1}, s_{2}, s_{3}, s_{4}, s_{5})$	Stabilize
						r
\mathcal{P}_1	[122,53,7,1]	2	3	0	[90, 71, 6, 10, 1]	Z ₂
\mathcal{P}_2	[122,53,7,1]	2	3	0	[90, 71, 6, 10, 1]	$Z_2 \times Z_2$
\mathcal{P}_3	[122,53,7,1]	2	3	0	[90, 71, 6,10, 1]	Z ₆
\mathcal{P}_4	[121,56,4,2]	0	4	1	[110,44, 2,22, 0]	D ₄

Table 4: Full details of (5; 3)-arcs in PG(2, 13)

Inequivalent(6; 3)-arcs

Let \mathcal{H} be a (6; 3)-arc in PG(2,13) and P be a point in \mathcal{H} . From equations (i) and (ii) in Lemma 2 the following are satisfied.

$m_1 + m_2 + m_3 = 14$	(2)
$m_2 + 2m_3 = 5$ }	(2)

Let α, β, γ denote the number of points of \mathcal{H} with respective m_i . The possible solutions for equation (2) are the following:

Kind	m_1	m_2	m_3
α	9	5	0
β	10	3	1
γ	11	1	2

Table 5: Kind points of \mathcal{H}

The possible value of \mathcal{T}_i and σ_i , i = 0,1,2,3 is in Table 6 and 7.

Table 6: The possible values of \mathcal{T}_i Table 7: The possible values of σ_i

\mathcal{T}_0	\mathcal{T}_1	\mathcal{T}_2	\mathcal{T}_3
113	57	12	1
112	60	9	2
111	63	6	3
110	66	3	4

Туре	σ_0	σ_1	σ_2	σ_3
(i)	8	6	0	0
(ii)	9	4	1	0
(iii)	10	2	2	0
(iv)	10	3	0	1
(v)	11	1	1	1
(vi)	11	0	3	0
(vii)	12	0	0	2

Theorem 2: In PG(2,13), there are 62 inequivalent, incomplete six arcs of degree three. These 62 arcs \mathcal{H}_i are partition into 14 different types $\mathcal{H}_i(s_1, s_2, s_3, s_4, s_5, s_6, s_7)$ as given in Table 8.

No	$\mathcal{H}_i(s_1, s_2, s_3, s_4, s_5, s_6, s_7)$	ñ	$[\mathcal{T}_0, \mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3]$	n: G	α β γ
1	[48, 99, 15, 8, 4, 3, 0]	1	[113, 57, 12, 1]	1: S ₃	3 3 0
2	[49, 96, 18, 8, 3, 3, 0]	1	[113, 57, 12, 1]	1: Z 3	3 3 0
3	[50, 93, 21, 8, 2, 3, 0]	4	[113, 57, 12, 1]	4: Z ₂	3 3 0
4	[51, 90, 24, 8, 1, 3, 0]	11	[113, 57, 12, 1]	11: <i>I</i>	3 3 0
5	[52, 87, 27, 8, 0, 3, 0]	14	[113, 57, 12, 1]	14: <i>I</i>	3 3 0
6	[63, 81, 9, 20, 3, 0, 1]	1	[112, 60, 9, 2]	1: S ₃ × Z ₃	0 6 0
7	[64, 78, 12, 20, 2, 0, 1]	1	[112, 60, 9, 2]	1: D 4	0 6 0
8	[64, 79, 11, 18, 1, 4, 0]	5	[112, 60, 9, 2]	5: Z ₂	1 4 1
9	[65,75,15,20,1,0,1]	1	[112, 60, 9, 2]	1: Z 2	0 6 0
10	[65, 76, 14, 18, 0, 4, 0]	13	[112, 60, 9, 2]	10: I 2: Z ₂ 1: Z ₄	1 4 1
11	[66, 72, 18, 20, 0, 0, 1]	3	[112, 60, 9, 2]	1: Z ₂ 1: Z ₃ 1: Z ₆	0 6 0
12	[80, 60, 3, 30, 1, 3, 0]	1	[111, 63, 6, 3]	1: S ₃	0 3 3
13	[81, 57, 6, 30, 0, 3, 0]	5	[111, 63, 6, 3]	5: Z ₃	0 3 3
14	[100, 30, 3, 44, 0, 0, 0]	1	[110, 66, 3, 4]	1: S 4	0 0 6

Table 8: Details of inequivalent (6; 3)-arcs

In Table 8, a cell n: G means that n is the number of (6; 3)-arcs of stabilizer group isomorphic to G and a symbol \hat{n} means the number (6; 3)-arc of type $\mathcal{H}_i(s_1, s_2, s_3, s_4, s_5, s_6, s_7)$.

Corollary1: From the five different kinds of α , β , γ as given in Table 8 the following holds.

1- If = 3,
$$\beta$$
 = 3, γ = 0, then $\mathcal{H}_i = \mathcal{H}_{i_{9,5,0}} \cup \mathcal{H}_{i_{10,3,1}}$.

2- If
$$\alpha = 0$$
, $\beta = 6$, $\gamma = 0$, then $\mathcal{H}_i = \mathcal{H}_{i_{10,3,1}}$.

3- If $\alpha = 1$, $\beta = 4$, $\gamma = 1$, then $\mathcal{H}_i = \mathcal{H}_{i_{9,5,0}} \cup \mathcal{H}_{i_{10,3,1}} \cup \mathcal{H}_{i_{11,1,2}}$.

4- If $\alpha = 0$, $\beta = 3$, $\gamma = 3$, then $\mathcal{H}_i = \mathcal{H}_{i_{10,3,1}} \cup \mathcal{H}_{i_{11,1,2}}$.

Journal of Al Rafidain University College 85 ISSN (1681 – 6870)

5- If $\alpha = 0$, $\beta = 0$, $\gamma = 6$, then $\mathcal{H}_i = \mathcal{H}_{i_{11,1,2}}$.

Inequivalent(7; 3)-arcs

Let \mathcal{I} be a (7; 3)-arc in PG(2,13) and P be a point in \mathcal{I} . From equations (i) and (ii) in Lemma 2 the following are satisfied.

$$\begin{array}{c} m_1 + m_2 + m_3 = 14 \\ m_2 + 2m_3 = 6 \end{array} \right\}$$
(3)

Let $\alpha, \beta, \gamma, \delta$ denote the number of points of \mathcal{I} with respective m_i . The possible solutions for equation (3) are the following:

Table 9: Kind points of \mathcal{I}

Kind	m_1	m_2	m_3
α	8	6	0
β	9	4	1
γ	10	2	2
δ	11	0	3

The possible value of \mathcal{T}_i and σ_i , i = 0,1,2,3 is in Table 10 and 11.

Table 10: The possible values of \mathcal{T}_i					
\mathcal{T}_0	\mathcal{T}_1	\mathcal{T}_2	\mathcal{T}_3		
105	59	18	1		
104	62	15	2		
103	65	12	3		
102	68	9	4		
101	71	6	5		
100	74	3	6		

Table 11: The possible values of σ_i					
Туре	σ_0	σ_1	σ_2	σ_3	
(i)	7	7	0	0	
(ii)	8	5	1	0	
(iii)	9	3	2	0	
(iv)	9	4	0	1	
(v)	10	1	3	0	
(vi)	10	2	1	1	
(vii)	11	0	2	1	
(viii)	11	1	0	2	

Journal of Al Rafidain University College

86

ISSN (1681 – 6870)

Theorem 3: In*PG*(2,13), there are 1349 inequivalent, incomplete seven arcs of degree three. These 1349 arcs \mathcal{I}_i are partition into 99 different types $\mathcal{I}_i(s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8)$ as given in Table 12.

Table 12: Details of inequivalent (7; 3)-arcs					
	$\mathcal{I}_i(s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8)$	î	$[\mathcal{T}_0, \mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3]$	n: G	α β γ δ
1	[18, 94, 43, 7, 10, 2, 2, 0]	1	[105, 59, 18, 1]	1: Z ₂	4 3 0 0
2	[18, 95, 41, 6, 11, 4, 1, 0]	1	[105, 59, 18, 1]	1: <i>I</i>	4 3 0 0
3	[19, 92, 44, 6, 10, 4, 1, 0]	3	[105, 59, 18, 1]	2: <i>I</i> 1: <i>Z</i> ₂	4 3 0 0
4	[19, 93, 42, 5, 11, 6, 0, 0]	1	[105, 59, 18, 1]	1: <i>I</i>	4 3 0 0
5	[20, 88, 49, 7, 8, 2, 2, 0]	14	[105, 59, 18, 1]	$12:Z_2 \ 2:Z_4$	4 3 0 0
6	[20, 89, 47, 6, 9, 4, 1, 0]	10	[105, 59, 18, 1]	9: <i>I</i> 1: <i>Z</i> ₂	4 3 0 0
7	[20, 90, 45, 5, 10, 6, 0, 0]	3	[105, 59, 18, 1]	3:1	4 3 0 0
8	[21, 86, 50, 6, 8, 4, 1, 0]	14	[105, 59, 18, 1]	14: <i>I</i>	4 3 0 0
9	[21, 87, 48, 5, 9, 6, 0, 0]	21	[105, 59, 18, 1]	21: <i>I</i>	4 3 0 0
10	[22, 82, 55, 7, 6, 2, 2, 0]	5	[105, 59, 18, 1]	5: Z ₂	4 3 0 0
11	[22, 83, 53, 6, 7, 4, 1, 0]	18	[105, 59, 18, 1]	18: Ī	4 3 0 0
12	[22, 84, 51, 5, 8, 6, 0, 0]	34	[105, 59, 18, 1]	34: <i>I</i>	4 3 0 0
13	[23, 80, 56, 6, 6, 4, 1, 0]	28	[105, 59, 18, 1]	27: <i>I</i> 1: <i>Z</i> ₂	4 3 0 0
14	[23, 81, 54, 5, 7, 6, 0, 0]	49	[105, 59, 18, 1]	49 : <i>I</i>	4 3 0 0
15	[24, 76, 61, 7, 4, 2, 2, 0]	10	[105, 59, 18, 1]	8: Z ₂ 2: Z ₄	4 3 0 0
16	[24, 77, 59, 6, 5, 4, 1, 0]	17	[105, 59, 18, 1]	16 : <i>I</i> 1 : <i>Z</i> ₂	4 3 0 0
17	[24, 78, 57, 5, 6, 6, 0, 0]	62	[105, 59, 18, 1]	62: <i>I</i>	4 3 0 0
18	[24, 96, 28, 16, 6, 2, 4, 0]	1	[104, 62, 15, 2]	1: $\mathbf{Z}_2 \times \mathbf{Z}_2$	2 4 1 0
19	[25,74,62,6,4,4,1,0]	11	[105, 59, 18, 1]	8: <i>I</i> 3: <i>Z</i> ₂	4 3 0 0
20	[25,75,60,5,5,6,0,0]	44	[105, 59, 18, 1]	44: I	4 3 0 0
21	[26, 70, 67, 7, 2, 2, 2, 0]	2	[105, 59, 18, 1]	2: Z ₂	4 3 0 0
22	[26, 71, 65, 6, 3, 4, 1, 0]	7	[105, 59, 18, 1]	5: <i>I</i> 2: <i>Z</i> ₂	4 3 0 0
23	[26, 72, 63, 5, 4, 6, 0, 0]	14	[105, 59, 18, 1]	14: <i>I</i>	4 3 0 0
24	[26, 92, 30, 14, 6, 6, 2, 0]	3	[104, 62, 15, 2]	1: <i>I</i> 2: <i>Z</i> ₂	2 4 1 0
25	[27, 68, 68, 6, 2, 4, 1, 0]	1	[105, 59, 18, 1]	1: Z ₂	4 3 0 0
26	[27, 69, 66, 5, 3, 6, 0, 0]	6	[105, 59, 18, 1]	5: <i>I</i> 2: <i>Z</i> ₃	4 3 0 0
27	[27, 89, 33, 14, 5, 6, 2, 0]	4	[104, 62, 15, 2]	4: <i>I</i>	2 4 1 0
28	[27, 90, 30, 14, 8, 6, 0, 1]	2	[104, 62, 15, 2]	2: <i>I</i>	1 6 0 0
29	[27, 90, 31, 13, 6, 8, 1, 0]	3	[104, 62, 15, 2]	3: <i>I</i>	2 4 1 0
30	[28, 84, 40, 16, 2, 2, 4, 0]	2	[104, 62, 15, 2]	1: Z ₂ × Z ₂ 1: D ₄	2 4 1 0
31	[28, 86, 36, 14, 4, 6, 2, 0]	17	[104, 62, 15, 2]	6: <i>I</i> 11: <i>Z</i> ₂	2 4 1 0
32	[28, 87, 33, 14, 7, 6, 0, 1]	5	[104, 62, 15, 2]	4: <i>I</i> 1: <i>Z</i> ₂	1 6 0 0
33	[28, 87, 34, 13, 5, 8, 1, 0]	8	[104, 62, 15, 2]	8: <i>1</i>	2 4 1 0

Table 12: Details of inequivalent (7; 3)-arcs

Journal of Al Rafidain University College

87

ISSN (1681 - 6870)

34	[28, 88, 32, 12, 6, 10, 0, 0]	10	[104, 62, 15, 2]	4: <i>I</i> 4: <i>Z</i> ₂ 1: <i>Z</i> ₄	2 4 1 0
				1: $\mathbf{Z}_2 \times \mathbf{Z}_2$	
35	[29, 83, 39, 14, 3, 6, 2, 0]	1	[104, 62, 15, 2]	1: <i>I</i>	2 4 1 0
36	[29, 84, 36, 14, 6, 6, 0, 1]	11	[104, 62, 15, 2]	9: <i>I</i> 1: <i>Z</i> ₂ 1: <i>Z</i> ₃	1 6 0 0
37	[29, 84, 37, 13, 4, 8, 1, 0]	27	[104, 62, 15, 2]	37: <i>I</i>	2 4 1 0
38	[29, 85, 35, 12, 5, 10, 0, 0]	35	[104, 62, 15, 2]	33: I 2: Z ₂	2 4 1 0
39	[30, 80, 42, 14, 2, 6, 2, 0]	13	[104, 62, 15, 2]	6: <i>I</i> 7: <i>Z</i> ₂	2 4 1 0
40	[30, 81, 39, 14, 5, 6, 0, 1]	28	[104, 62, 15, 2]	25: <i>I</i> 3: <i>Z</i> ₂	1 6 0 0
41	[30, 81, 40, 13, 3, 8, 1, 0]	50	[104, 62, 15, 2]	50: <i>I</i>	2 4 1 0
42	[30, 82, 38, 12, 4, 10, 0, 0]	69	[104, 62, 15, 2]	25: <i>I</i> 8: <i>Z</i> ₂	2 4 1 0
				1: $\mathbf{Z}_2 \times \mathbf{Z}_2$	
43	[31, 77, 45, 14, 1, 6, 2, 0]	1	[104, 62, 15, 2]	1: <i>I</i>	2 4 1 0
44	[31, 78, 42, 14, 4, 6, 0, 1]	33	[104, 62, 15, 2]	31: <i>I</i> 2: <i>Z</i> ₂	1 6 0 0
45	[31, 78, 43, 13, 2, 8, 1, 0]	33	[104, 62, 15, 2]	33: <i>I</i>	2 4 1 0
46	[31, 79, 41, 12, 3, 10, 0, 0]	95	[104, 62, 15, 2]	87: <i>I</i> 8: <i>Z</i> ₂	2 4 1 0
47	[32, 74, 48, 14, 0, 6, 2, 0]	3	[104, 62, 15, 2]	3: Z ₂	2 4 1 0
48	[32, 75, 45, 14, 3, 6, 0, 1]	26	[104, 62, 15, 2]	21: <i>I</i> 4: <i>Z</i> ₂ 1: <i>Z</i> ₆	1 6 0 0
49	[32, 75, 46, 13, 1, 8, 1, 0]	14	[104, 62, 15, 2]	14: <i>I</i>	2 4 1 0
50	[32, 76, 44, 12, 2, 10, 0, 0]	64	[104, 62, 15, 2]	62: <i>I</i> 1: <i>Z</i> ₂ 1: <i>Z</i> ₄	2 4 1 0
51	[33, 72, 48, 14, 2, 6, 0, 1]	11	[104, 62, 15, 2]	10: <i>I</i> 1: <i>Z</i> ₂	1 6 0 0
52	[33, 72, 49, 13, 0, 8, 1, 0]	4	[104, 62, 15, 2]	4: I	2 4 1 0
53	[33, 73, 47, 12, 1, 10, 0, 0]	17	[104, 62, 15, 2]	15: <i>I</i> 2: <i>Z</i> ₂	2 4 1 0
54	[34, 69, 51, 14, 1, 6, 0, 1]	2	[104, 62, 15, 2]	1: I 1: Z_2	1 6 0 0
55	[34, 70, 50, 12, 0, 10, 0, 0]	1	[104, 62, 15, 2]	1: <i>I</i>	2 4 1 0
56	[35, 87, 18, 24, 3, 6, 3, 0]	1	[103, 65, 12, 3]	1: Z ₃	1 3 3 0
57	[36, 84, 21, 24, 2, 6, 3, 0]	1	[103, 65, 12, 3]	1: <i>S</i> ₃	0 6 0 1
58	[36, 85, 19, 23, 3, 8, 2, 0]	1	[103, 65, 12, 3]	1: <i>I</i>	1 3 3 0
59	[36, 86, 17, 22, 4, 10, 1, 0]	3	[103, 65, 12, 3]	2: \mathbf{Z}_2 1: $\mathbf{Z}_2 \times \mathbf{Z}_2$	0 6 0 1
60	[37, 82, 21, 24, 4, 6, 1, 1]	5	[103, 65, 12, 3]	$1:I \ 1:Z_2$	0 5 2 0
61	[37, 83, 20, 22, 3, 10, 1, 0]	2	[103, 65, 12, 3]	2: <i>I</i>	1 3 3 0
62	[38, 78, 26, 25, 2, 4, 2, 1]	2	[103, 65, 12, 3]	2: Z ₂	0 5 2 0
63	[38, 78, 27, 24, 0, 6, 3, 0]	4	[103, 65, 12, 3]	$3: S_3 1: D_6$	0 6 0 1
64	[38, 79, 24, 24, 3, 6, 1, 1]	3	[103, 65, 12, 3]	$2:I \ 1:Z_2$	0 5 2 0
65	[38, 79, 25, 23, 1, 8, 2, 0]	2	[103, 65, 12, 3]	2: <i>I</i>	1 3 3 0
66	[38, 80, 22, 23, 4, 8, 0, 1]	6	[103, 65, 12, 3]	6: <i>I</i>	0 5 2 0
67	[38, 80, 23, 22, 2, 10, 1, 0]	12	[103, 65, 12, 3]	8: <i>I</i> 3: <i>Z</i> ₂	1 3 3 0
				1: $\mathbf{Z}_2 \times \mathbf{Z}_2$	0 6 0 1
68	[38, 81, 21, 21, 3, 12, 0, 0]	11	[103, 65, 12, 3]	11: <i>I</i>	1 3 3 0
69	[39, 76, 27, 24, 2, 6, 1, 1]	9	[103, 65, 12, 3]	7: I 2: Z ₂	0 5 2 0
70	[39, 77, 25, 23, 3, 8, 0, 1]	20	[103, 65, 12, 3]	20: <i>I</i>	0 5 2 0
71	[39, 77, 26, 22, 1, 10, 1, 0]	19	[103, 65, 12, 3]	20: I	1 3 3 0
72	[39, 78, 24, 21, 2, 12, 0, 0]	39	[103, 65, 12, 3]	39: I	1 3 3 0
			,,,]		

Journal of Al Rafidain University College

88

ISSN (1681 – 6870)

	ſ				0 (0 1
					0 6 0 1
73	[40, 72, 32, 25, 0, 4, 2, 1]	1	[103, 65, 12, 3]	1:Z ₄	0 5 2 0
74	[40, 73, 30, 24, 1, 6, 1, 1]	5	[103, 65, 12, 3]	5: <i>I</i>	0 5 2 0
75	[40, 74, 28, 23, 2, 8, 0, 1]	37	[103, 65, 12, 3]	37: I	0 5 2 0
76	[40, 74, 29, 22, 0, 10, 1, 0]	22	[103, 65, 12, 3]	10: <i>I</i> 11: <i>Z</i> ₂	1 3 3 0
				$2: \mathbf{Z}_2 \times \mathbf{Z}_2$	0 6 0 1
77	[40, 75, 27, 21, 1, 12, 0, 0]	40	[103, 65, 12, 3	39: <i>I</i> 1: <i>Z</i> ₃	1 3 3 0
78	[41, 70, 33, 24, 0, 6, 1, 1]	3	[103, 65, 12, 3]	2: <i>I</i> 1: <i>Z</i> ₂	0 5 2 0
79	[41, 71, 31, 23, 1, 8, 0, 1]	29	[103, 65, 12, 3]	29: I	0 5 2 0
80	[41, 72, 30, 21, 0, 12, 0, 0]	29	[103, 65, 12, 3]	25: <i>I</i> 2: <i>Z</i> ₂ 2: <i>Z</i> ₃	1 3 3 0
					0 6 0 1
81	[42, 68, 34, 23, 0, 8, 0, 1]	8	[103, 65, 12, 3]	8: <i>1</i>	0 5 2 0
82	[48, 72, 12, 35, 0, 6, 3, 0]	1	[102, 68, 9, 4]	1: S ₃	0 3 3 1
83	[48, 74, 8, 33, 2, 10, 1, 0]	1	[102, 68, 9, 4]	1: Z ₂	0 3 3 1
84	[48, 75, 6, 32, 3, 12, 0, 0]	1	[102, 68, 9, 4]	1: S ₃	1 0 6 0
85	[49, 69, 14, 36, 1, 4, 2, 1]	1	[102, 68, 9, 4]	1: Z ₂	0 2 5 0
86	[49, 70, 12, 35, 2, 6, 1, 1]	1	[102, 68, 9, 4]	1: <i>I</i>	0 2 5 0
87	[49, 72, 9, 32, 2, 12, 0, 0]	1	[102, 68, 9, 4]	1: <i>I</i>	0 3 3 1
88	[50, 68, 13, 34, 2, 8, 0, 1]	5	[102, 68, 9, 4]	4: <i>I</i> 1: <i>Z</i> ₂	0 2 5 0
89	[50, 68, 14, 33, 0, 10, 1, 0]	8	[102, 68, 9, 4]	8: Z ₂	0 3 3 1
90	[50, 69, 12, 32, 1, 12, 0, 0]	4	[102, 68, 9, 4]	4: Z ₂	1 0 6 0
91	[51, 64, 18, 35, 0, 6, 1, 1]	3	[102, 68, 9, 4]	3: <i>I</i>	0 2 5 0
92	[51, 65, 16, 34, 1, 8, 0, 1]	12	[102, 68, 9, 4]	9: <i>I</i> 3: <i>Z</i> ₂	0 2 5 0
93	[51, 66, 15, 32, 0, 12, 0, 0]	13	[102, 68, 9, 4]	13: <i>I</i>	1 3 3 0
1					0 6 0 1
94	[52, 62, 19, 34, 0, 8, 0, 1]	8	[102, 68, 9, 4]	8: <i>I</i>	0 2 5 0
95	[63, 54, 3, 47, 2, 6, 0, 1]	1	[101, 71, 6, 5]	1: Z ₆	0 0 6 1
96	[64, 50, 8, 48, 0, 4, 1, 1]	1	[101, 71, 6, 5]	$1: \mathbf{Z}_2 \times \mathbf{Z}_2$	0 0 6 1
97	[64, 52, 5, 45, 0, 10, 0, 0]	3	[101, 71, 6, 5]	$2:Z_2$ $1:Z_4$	0 1 4 2
98	[65, 48, 9, 47, 0, 6, 0, 1]	1	[101, 71, 6, 5]	$1:Z_2$	0 0 6 1
99	[80, 30, 0, 60, 0, 6, 0, 0]	1	[100, 74, 3, 6]	1: <i>S</i> ₄	0 0 3 4

Classification of (k; 3)-arcs in PG(2, 13).... Emad Bakr. Issue No. 31/2013

Corollary 2: There are twelve different kinds of α , β , γ , δ as given in Table 12. So, the following holds.

1- If $\alpha = 0$, $\beta = 0$, $\gamma = 3$, $\delta = 4$ or $\alpha = 0$, $\beta = 0$, $\gamma = 6$, $\delta = 1$, then $\mathcal{I}_i = \mathcal{I}_{i_{10,2,2}} \cup \mathcal{I}_{i_{11,0,3}}$.

Journal of Al Rafidain University College 89 ISSN (1681 – 6870)

2- If $\alpha = 0$, $\beta = 1$, $\gamma = 4$, $\delta = 2$ or $\alpha = 0$, $\beta = 3$, $\gamma = 3$, $\delta = 1$, then $\mathcal{I}_i = \mathcal{I}_{i_{9,4,1}} \cup \mathcal{I}_{i_{10,2,2}} \cup \mathcal{I}_{i_{11,0,3}}$.

3- If $\alpha = 0$, $\beta = 2$, $\gamma = 5$, $\delta = 0$ or $\alpha = 0$, $\beta = 5$, $\gamma = 2$, $\delta = 0$, then $\mathcal{I}_i = \mathcal{I}_{i_{9,4,1}} \cup \mathcal{I}_{i_{10,2,2}}$.

4- If $\alpha = 0$, $\beta = 6$, $\gamma = 0$, $\delta = 1$, then $\mathcal{I}_i = \mathcal{I}_{i_{9,4,1}} \cup \mathcal{I}_{i_{11,0,3}}$.

5- If $\alpha = 1$, $\beta = 0$, $\gamma = 6$, $\delta = 0$, then $\mathcal{I}_i = \mathcal{I}_{i_{8,6,0}} \cup \mathcal{I}_{i_{10,2,2}}$.

6- If $\alpha = 1$, $\beta = 3$, $\gamma = 3$, $\delta = 0$ or $\alpha = 2$, $\beta = 4$, $\gamma = 1$, $\delta = 0$, then $\mathcal{I}_i = \mathcal{I}_{i_{8,6,0}} \cup \mathcal{I}_{i_{9,4,1}} \cup \mathcal{I}_{i_{10,2,2}}$.

7- If $\alpha = 1$, $\beta = 6$, $\gamma = 0$, $\delta = 0$ or $\alpha = 4$, $\beta = 3$, $\gamma = 0$, $\delta = 0$, then $\mathcal{I}_i = \mathcal{I}_{i_{8,6,0}} \cup \mathcal{I}_{i_{9,4,1}}$.

Example 1: In PG(2,13), the unique (7;3)-arc with stabilizer group G_{χ} isomorphic to S_4 is:

$$\boldsymbol{\chi} = \{ \boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3, \boldsymbol{e}_4, [\boldsymbol{\nu}; \boldsymbol{1}; \boldsymbol{1}], [\boldsymbol{1}; \boldsymbol{0}; \boldsymbol{1}], [\boldsymbol{1}; \boldsymbol{1}; \boldsymbol{0}] \}.$$

The group G_{χ} is generated by the following two linear transformations:

$$\phi_1 = \begin{pmatrix} -1 & 0 & -1 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}, \phi_2 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 2 & 1 & 1 \end{pmatrix},$$

where $\phi_1^4 = \phi_2^2 = (\phi_1 \ \phi_2 \)^3 = 1.$

Journal of Al Rafidain University College 90 ISSN (1681 – 6870)

References

[1] Barlotti, A." Sui (k; n)-archi di un piao linear finite" Boll. Un. Mat. Ttal. (3), 11, 553-6, 1956.

[2] Segre, B." Lectures on modern geometry"EdizioniCremonese, Roma, 1961.

[3] Segre, B." Introduction to Galois geometries"Mem. Accad.Naz.Lincei (8), 8, 137-236, 1967.

[4] Marcugini, S., Milani, A and Pambianco, F." Classification of the (n; 3)-arcs in PG(2,7)"J. Geom. 80, 179-184, 2004.

[5] Marcugini, S., Milani, A and Pambianco, F." Maximal (n; 3)-arcs in PG(2,11)" Discrete Mathematics. 208/209, 421-426, 1999.

[6] Cook, G.R., Arcs in a finite projective plane, Ph.D. thesis, University of Sussex, United Kingdom, 2011.

[7]Marcugini, S., Milani, A. and Pambianco, F." Maximal(n; 3)-arcsin PG(2, 13)"Discrete Mathematics, 294, 139-145, 2005.

[8] Daskalov, R. N. and Contreras, M. E. J. "New (k; r)-arcs in the projective plane of order thirteen", J. Geom., 8, 10-122, 2004.

[9] Hirschfeld, J. W. P., Projective Geometries Over Finite Fields, 2nd edition, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998.

تصنيف الاقواس من النمط
$$(k; 3)$$
 في $PG(2, 13)$ عندما $k = 5, 6, 7$

المستخلص

القوس ذو سعة k ومن الدرجة الثالثة هو مجموعة مكونة من k من النقاط بحيث لايوجد اربعة من هذه النقاط على استقامة واحدة ولكن يوجد ثلاثة منها على استقامة واحدة. الهدف من هذا البحث هو تحديد الاقواس من النمط (k; 3) في المستوي الاسقاطي (k; 3) في المستوي الاسقاطي القوس.

Journal of Al Rafidain University College 92 ISSN (1681 – 6870)