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1.Abstract 
The main purpose of this paper is to find Artin's characters table of the group (Q2m×D3)when 

m  is a prime number, which is denoted by Ar(Q2m×D3) where Q2m is denoted to Quaternion 

group and D3 is the Dihedral group of order 6 .Moreover we have found the cyclic 

decomposition of Artin's cokernel AC(Q2m×D3) when m is a prime number . 
 

 :الملخص
  D3                Q2m للسمرة ارتن شىاخص جدول ايجاد هى للبحث الرئيسي الهدف

  Dihedral زمرة تمثل D3و  Quaternion زمرة تمثل Q2mعندما   )D3) Q2m  Arعدد اولي, ويرمس له  m عندما

  D3  Q2m للسمرة الدائريت التجسئت ايجاد الى بالاضافت 6 الرتبت من

 عدد اولي .  mعندما 

                                                                                                                                                            

2.Introduction  
let G be a finite group ,two elements of G are said to be Г-conjugate if the cyclic subgroups they 

generate are conjugate in G and this defines an equivalence relation on G and its classes are called 

Г-classes.            

let H be a subgroup of G and let ø be a class function on H,the induced class function on G is given 

by:                            

∅ ( )  
 

   
∑ ∅ (     )                                                                                                                 

when ø
°
 is  defined by: 

                                                           

°∅ ( )  {  
∅( )              
                       

          

}                          

∅ be a character of H ,then ø´ is a character of G and it is called the induced charater on G.all the 

characters of G induced from a principale Artin's character.                                                                                       

Let   ̅(G) denotes an abelian group generated by Z-valued characters of G under the pointwise 

addition . Inside this group there is a subgroup generated by Artin's characters ,which will be 

denoted by T(G) the factor group 
 ̅( )

 ( )
 is called the Artin Cokernel of G and denoted by Ac(G).         

 

3.Preliminaries  
3.1The Generalized Quaternion Group Q2m [5 ] 

For each positive integer m,the generalized Quaternion Group Q2m of order 4m with two generators 

x and y satisfies Q2m={x
h
 y

k
 ,0        ,k=0,1} which has the following properties 

{x
2m

=y
4
=I,

 
yx

m
y

-1
=x

-m
}. 
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3.2The Dihedral Group D3 [6 ] 

     The Dihedrael Group D3 is generate by a rotation r of order 3 and reflection s of order 2 then 6 

elements of D3 can be written as: {1,r,r
2
,s,sr,sr

2
} . 

 

3.3The Rational valued characters table: 

Definition(3.3.1) [3 ] 

     A rational valued character θ of G is a character whose values are in Z,which is θ(g) Z for all 

g  G. 

Theorem (3.3.2)[6 ] 

    Every  rational valued character of G be written as a linear combination of Artin's characters with 

coefficient rational numbers. 

Corollary (3.3.3)[3 ] 

    The rational valued characters     ∑  (       (  (  )  ) )Form a basis for  ̅( ) ,where   are the 

irreducible characters of G and their numbers are equal to the number of conjugacy  classes of a 

cyclic subgroup of G. 

Proposition(3.3.4)[6 ] 

    The number of all rational valued characters of finite G is equal to the number of all distinct Γ-

classis. 

Definition (3.3.5)[3 ] 

    The information about rational valued characters of a finite group G is displayed in a table called 

a rational valued characters table of G.We denote it by ≡⃰(G)which is      matrix whose columns 

are Γ-classes and   rows are the valuses of all rational valued characters where    is the number of Γ-

classes. 

The rational character table of Q2m where m is an odd number( 3.3.6) [5 ] 

 

 

Table(1)          

Where 0≤r≤ᶩ ,ᶩ is the number of Γ-classes C2m ,θj such that 1≤j≤ᶩ+1 are the rational valued characters 

of group Q2m and if we denote Cij the elements of ≡⃰(Cm) and hij the elements of H as defined by: 

Hij={
                

                
 

 

 

 

 

 

[y] Γ-classes of c2m  

X
2r+1 

X
2r

 

1 1          1                                                   

1 

 

≡⃰(Cm) 

1   1                                                  

1 

 

≡⃰(Cm) 

   

0    

    
0      

-1 1          1                                                   

1 

 

H 

1    1                                                  

1 

 

≡⃰(Cm) 

 (   )   

0   
       

0    

0 -2   -2 -

2 

2   2 2      
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The rational character table of Q2m when m=p,  p is a prime  number(3.3.7)[5] 

 ≡⃰(Q2p) 

 

 

Table(2) 

 

The rational character table of D3(3.3.8)[4]  

≡⃰(D3) 

   

Table(4)  

 

 

 

 

4.Artin's Character Tables: 
Theorem(4.1):[3] 

    Let H be a cyclic subgroup of G and h1,h2,…,hm are chosen representatives for the m-conjugate 

classes of H contained in CL(g) in G,then: 

 ΄(g)={

   ( ) 

   ( ) 
∑  (  )             ( ) 

   

                                          ( )   
        

 

Propostion(4.2)[3 ] 

     The number of all distinct Artin's characters on a group G is equal to the number of Γ-classes on 

G.Furthermore , Artin's characters are constant on each Γ-classes. 
 

Theorem(4.3) [8 ] 

The Artin's characters table of the Quaternion group Q2m when m is odd number is given as follows: 

 

 

 

Table(5) 

                                   

[y] [x] [x
p
] [x

2
] [1] Γ-classes 

1 1 1 1 1    

0 -1 p-1 -1 p-1    

1 1 1 1 1    

0 1 1-p -1 p-1    

0 -2 -2 2 2    

 [s] [r] [I] classes -Γ  

3 2 1       

2 3 6     
(   )  

0 -1 2    

1 1 1    

1 1 1    

 Γ-classes of C2m  

Γ-classes X
2r

 X
2r+1

 [y] 

|     1 2   2 1 2    2m 

|    
(   )  4m 2m   2m 4m 2m    2 

     

 

2Ar(C2m) 

0 

   0 

    

   0 

     m 0   0 m 0   0 1 
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Where 0≤r≤m-1 , ᶩ is the number of Γ-classes of C2m and    are the Artin characters of the 

Quaternion group Q2m,for all 1≤j≤l+1. 

The Artin characters table of Q2m when m=p, p is prime number (4.4) 

The general form of Artin's characters of Q2m when m=p,p is prime number 

 

 

Table(6) 

 

 

 

 

 

 

 

The Artin characters of D3 (4.5)[6 ] 
 

 

Table(7) 

 

 

 

 

 

 

5.The main resulte  
Propostion(5.1) 

      If p is a prime number and, then The Artin's character table of the group (Q2p  D3) is given as: 

The general form of the Artin characters of the group(Q2p D3)when p is prime number 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table(8) 

which is (5   5) square matrix . 

 

Γ-classes [1] [x
2
] [x

p
] [x] [y] 

l   l 1 2 1 2 2p 

l    
(   )l 4p 2p 4p 2p 2 

   4p 0 0 0 0 

   4 4 0 0 0 

   2p 0 2p 0 0 

   2 2 2 2 0 

   P 0 P 0 1 

Γ-classes [I] [r] [s] 

l   l 1 2 3 

    
(   )l 6 3 2 

   6 0 0 

   2 2 0 

   3 0 1 

 

Γ-classes 
 

[1,I][x
2
,I][x

p
,I][x,I][y,I] 

 

[1,r][x
2
,r][x

p
,r][x,r][y,r] 

 

[1,s][x
2
,s][x

p
,s][x,s][y,s] 

      

 

1        2       1     2    2p 1        2       1     2    2p 1        2       1     2    2p 

        
(   )  24p      24p      12p    12                24p       12p        24p    12p    12 24p       12p        24p    12p    12 

 (   )
 

 (   )
 

  

 (     )
 

 

6Ar(Q2p) 
 

 

                 0 

 

 

                0 

 

 (   )
 

 (   )
 

  

 (     
 

 

 

        
2Ar(Q2p) 

 

 

 

2Ar(Q2p) 
 

 

 

 

0 

 

 (   )
 

 (   )
 

  

 (     )
 

 

       
3Ar(Q2p) 

 

 

 

 

0 

 

           
 Ar(Q2p)
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Proof:    Let g ( 2pˣD3); g=(q,d),q Q2p,d D3 

Case(I): 

If H is a cyclic subgroup of (Q2p {I}),then 1- H= (x,I)      2- H= (y,I)  

And   the principle character of H,   Artin's characters of Q2p,1≤j≤l+1, then by using theorem 

(4.1) 

  ( )  {

   ( ) 

   ( ) 
∑ (  )                    ( )

 

   

                                             ( )   

} 

1- H= (   )   

(i) If g=(1,I) 

 (j,1)(1,I)=
        ( ) 

   ( ) 
.    (g)=

   

   ( ) 
  =

    

   ( ) 
  =

      ( ) 

     ( ) 
  ( )=6.    (1)  since H   (   )  

*(   )+ 
(ii) If g=(x

p
,I),g    then 

 (j,1)(g)=
        ( ) 

   ( ) 
 ( )=

   

   ( ) 
  =

      (  ) 

     (  ) 
  (  )=6.   (  ) since H   ( )  * +  ( )         

(iii) If g=(x
2
,I) or g=(x,I) and g     then 

 (j,1)(g)=
|       

( )|

   ( ) 
( ( )   (   ))= 

   

   ( ) 
(1+1)= 

    

   ( ) 
.2=

      ( ) 

   ( )  
  =6.   ( )                                 

  since H   ( )  *     + and  (g)=ø(   )=1  and since g=(q,I),q Q2p,q x
m

 

 (iv)    if g H  then 

 (j,1)(g)=0  since H CL(g)=  

2- If H=˂(y,I)˃={(1,I),(y,I)(y
2
,I)(y

3
,I)}  then 

(i) If g=(1,I)   then 

  (l+1,1)(g)=
        ( ) 

   ( ) 
 ( )=

   

 
  =6.p=6. l+1(1)        since H CL(1,I)={(1,I)} 

(ii) If g=(x
p
,I)=(y

2
,I) and g    then 

 (l+1,1)(g)=
        ( ) 

   ( ) 
 ( )=

   

 
  =6.p=6. l+1(x

p
)     since H CL(g)={g}, (g)=1 

(iii) If g (x
p
,I) and g H ,i.e.{g=(y,I) or g=(y

3
,I)}   then 

 (l+1,1)(g)=
        ( ) 

   ( ) 
( ( )   ( -1

))=
  

 
(   )=3.2=6. l+1(y)since H CL(g)={g,g

-1
} and   

(g)=  (g
-1

)=1 

Otherwise 

 (l+1,I)(g)=0              since H CL(g)=   
 

 

 

Case(II): 

If H is a cyclic subgroup of (Q2px{r}) then: 

1- H=˂(x,r)˃   2- H=˂(y,r)˃ 

1-H=˂(x,r)˃ 

and   the principle character of H, then by using theorem (4.1) 

  ( )  {

   ( ) 

   ( ) 
∑ (  )                     ( )

 

   

                                             ( )   

} 

(i) If  g=(1,I),(1,r)  then 

 (j,2)(g)=
        ( ) 

   ( ) 
 ( )=

    

   (   ) 
  =

    

   (   ) 
  =

      ( ) 

      ( ) 
 ( )=2. j(1) 

 since  H CL(g)={(1,I),(1,r),(1,r
2
)} 
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(ii) g=(1,I),(x
p
,I),(x

p
,r),(1,r); g   

if g=(1,I),(1,r)  then 

    (j,2)(g)=
        ( ) 

   ( ) 
  (g)=

   

   ( ) 
       since H CL(g)={g} and  (g)=1 

                   =
    

   ( ) 
  =

      ( ) 

      ( ) 
 ( )=2 j(1) 

(iii) if g= (x
p
,I),(x

p
,r)   then 

 (j,2)(g)=
        ( ) 

   ( ) 
  (g)=

   

   ( ) 
   =

    

   ( ) 
  =

      (  ) 

      (  ) 
 ( )=2 j(  ) 

(iv)   if g   (x
p
,I),(x

p
,r)  and g     then 

 (j,2)(g)=
        ( ) 

   ( ) 
( (g)+  (g

-1
))=

   

   ( ) 
(   )      since H CL(g)={g,g

-1
} and  (g)=  (g

-1
)=1 

 =
    

   ( ) 
(   )= 

      ( ) 

      ( ) 
      ( ) 

Since g=(q,r),q Q2p,q x
p
 

(v)         then 
 (j,2)(g)=0  =  j(q)          since H CL(g)=   

2- if H=˂(y,r)˃={(1,I),(y,I),(y
2
,I),(y

3
,I),(1,r),(y,r),(y

2
,r),(y

3
,r)} 

(i) if g=(1,I),(1,r)   then 

  (l+1,2)(g)=
        

( ) 

   ( ) 
 ( )=

   

  
  =2p=2 l+1(g) 

(ii) if g=(y
2
,I)=(x

p
,I),(y

2
,r) and  g     then 

  (l+1,2)(g)=
        

( ) 

   ( ) 
 ( )=

   

  
  =2p=2 l+1(g)  since H CL(g)={g} and  (g)=1 

(iii) if g   (x
p
,I)    and g    i.e. g={(y,I),(y,r)} or g={(y

3
,I),(y

3
,r)}   

then 

 (l+1,2)(g)=
        

( ) 

   ( ) 
( (g)+  (g

-1
))=

  

  
(   )= 2 l+1(g) 

since H CL(g)={g,g
-1

} and  (g)=  (g
-1

)=1 

otherwise   (l+1,2)(g)=0  since H CL(g)=   

 case(III): 

if H is a cyclic subgroup of (Q2px{s}) then                                

1- H=˂(x,s)˃, 2- H=˂(y,s)˃   

         and   the principle character of H, then by using theorem (4.1) 

  ( )  {

   ( ) 

   ( ) 
∑ (  )                     ( )

 

   

                                             ( )   

} 

1- H=˂(x,s)˃ 

  (i) If  g=(1,I)    then 

   (j,3)(g)=
|       

( )|

   ( ) 
  (g)=

   

   (   ) 
   

    

   (   ) 
                                                                                         

=
      ( ) 

      ( ) 
      ( )      since  H CL(g)={(1,I)}   

     If g={(1,s)}   then 

    (j,3)(g)=
|       

( )|

   ( ) 
  (g)=

  

   (   ) 
   

    

   (   ) 
                                                                                        

=
      ( ) 

      ( ) 
     ( )      since  H CL(g)={(1,s)}                                                            

   (ii) If g=(1,I),(x
p
,I),(x

p
,s),(1,s); g     then 

If g=(1,I)  then                                                                                       

 (j,3)(g)=
        ( ) 

   ( ) 
  (g)=

   

   ( ) 
        since H CL(g)={g} and  (g)=1 
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        =
    

   ( ) 
  =

      ( ) 

      ( ) 
 ( )=3 j(1) 

      If g={(1,s)}   then 

 (j,3)(g)=
|       

( )|

   ( ) 
  (g)=

  

   ( ) 
   

    

   ( ) 
                                                                                         

=
      ( ) 

      ( ) 
     ( )      since  H CL(g)={g}  and  (g)=1                                             

   (iii)If g= (x
p
,I)  then 

   (j,3)(g)=
        

( ) 

   ( ) 
  (g)=

   

   ( ) 
   =

    

   ( ) 
  =

      (  ) 

      (  ) 
 ( )=3 j(  ) 

      If g= (x
p
,s)   then 

  (j,3)(g)=
        

( ) 

   ( ) 
  (g)=

  

   ( ) 
  =

    

   ( ) 
  =

      (  ) 

      (  ) 
 ( )=  j(  )  

  (iv)If g   (x
p
,I),(x

p
,s)  and g   

     If  g   (x
p
,I)  then 

  (j,3)(g)=
        ( ) 

   ( ) 
( (g)+  (g

-1
))                   

=
   

   ( ) 
(   )     since H CL(g)={g,g

-1
} and  (g)=  (g

-1
)=1 

=
    

   ( ) 
(   )= 

      ( ) 

      ( ) 
       j( )       

                          Since g=(q,I),q Q2p ,         q x
p
               

     If  g   (x
p
,s)   then 

     (j,3)(g)=
        ( ) 

   ( ) 
( (g)+  (g

-1
))                   

=
  

   ( ) 
(   )     since H CL(g)={g,g

-1
} and  (g)=  (g

-1
)=1 

=
    

   ( ) 
(   )= 

      ( ) 

      ( ) 
      j( )                  

                          Since g=(q,s),q Q2p ,         q x
p
               

  ( )        then  
 (j,3)(g)=0  =  j(q)          since H CL(g)=                               

   2-if H=˂(y,s)˃={(1,I),(y,I),(y
2
,I),(y

3
,I),(1,s),(y,s),(y

2
,s),(y

3
,s)}   then 

  (i)If g=(1,I)  then 

  (l+1,3)(g)=
        ( ) 

   ( ) 
 ( )=

   

 
  =3.p=3 l+1(g) 

                 If g=(1,s)   then 

 (l+1,3)(g)=
        ( ) 

   ( ) 
 ( )=

  

 
  =p= l+1(g) 

 (ii)If g=(y
2
,I)=(x

p
,I) and  g      then 

 (l+1,3)(g)=
        ( ) 

   ( ) 
 ( )=

   

 
  =                                         

3.m=3 l+1(g)    since H CL(g)={g} and   (g)=1 

                 If g=(y
2
,s)  and  g     then 

 (l+1,3)(g)=
        ( ) 

   ( ) 
 ( )=

  

 
  =p= l+1(g)   since H CL(g)={g} and   (g)=1 

(iii)If g   (x
p
,I)    and g    i.e. g={(y,I),(y,s)} or g={(y

3
,I),(y

3
,s)}    then 

 (l+1,3)(g)=
        ( ) 

   ( ) 
( (g)+  (g

-1
))=

  

 
(   )= 3 l+1(g)       

since H CL(g)={g,g
-1

} and  (g)=  (g
-1

)=1 

 (iv)If g=(y
2
,s), g H   then 

 (l+1,3)(g)=
        ( ) 

   ( ) 
 (g)=

  

   ( ) 
  =

  

 
   =   l+1(g) 

  (v)If g=(y,s)   then 
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 (l+1,3)(g)=
        ( ) 

   ( ) 
( (g)+  (g

-1
))=

 

   ( ) 
 (   )=

 

 
   =      

                        since H CL(g)={g,g
-1

} and  (g)=  (g
-1

)=1  

       otherwise   (l+1,3)(g)=0  sinceH CL(g)=                              

 
 

 Example (5.2):  To find  Artine's character table of the group (Q14xD3) when p=7 is a prime 

number . 

Ar(Q14xD3)= 
Γ-classes [1,I] [x2,I] [x7,I] [x,I] [y,I] [1,r] [x2,r] [x7,r] [x,r] [y,r] [1,s] [x2,s] [x7,s] [x,s] [y,s] 

|   | 1 2 1 2 2p 2 2 2 2 2p 3 3 3 3 6p 

|       
(   )   168 84 168 84 12 84 84 84 84 12 56 56 56 56 4 

 (1,1) 168 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 (2,1) 24 24 0 0 0 0 0 0 0 0 0 0 0 0 0 

 (3,1) 84 0 84 0 0 0 0 0 0 0 0 0 0 0 0 

 (4,1) 12 12 12 12 0 0 0 0 0 0 0 0 0 0 0 

 (5,1) 42 0 42 0 6 0 0 0 0 0 0 0 0 0 0 

 (1,2) 56 0 0 0 0 56 0 0 0 0 0 0 0 0 0 

 (2,2) 8 8 0 0 0 8 8 0 0 0 0 0 0 0 0 

 (3,2) 28 0 28 0 0 28 0 28 0 0 0 0 0 0 0 

 (4,2) 4 4 4 4 0 4 4 4 4 0 0 0 0 0 0 

 (5,2) 14 0 14 0 2 14 0 14 0 2 0 0 0 0 0 

 (1,3) 84 0 0 0 0 0 0 0 0 0 28 0 0 0 0 

 (2,3) 12 12 0 0 0 0 0 0 0 0 4 4 0 0 0 

 (3,3) 42 0 42 0 0 0 0 0 0 0 14 0 14 0 0 

 (4,3) 6 6 6 6 0 0 0 0 0 0 2 2 2 2 0 

 (5,3) 21 0 21 0 3 0 0 0 0 0 7 0 7 0 1 

Table(9 ) 

 

6.To find Artin's cokernel of the group (Q2pxD3) when p is a prime number denoted by 

AC(Q2pxD3)  
Definition (6.1):[1] 

Let T(G) be the subgroup of  ̅( ) gererated by Artin's characters .T(G) is normal subgroup of 

 ̅( ),then the finite factor an a blain group 
 ̅( )

 ( ) 
 is called Artin cokernel of G,denoted by AC(G). 

Definition (6.2):[2] 

Let M be a matrix with entries in a principle ideal domain R.A K-minor of M is the determinate of 

KxK sub-matrix preserving row and column order. 

Proposition (6.3)[1 ] 

AC(G) is a finitely generated Z-modul.Let m be the number of all distinct Γ-classes then Ar(G) and 

≡*(G) are of the rank l.There exists an invertible matrix M(G) with entries in rational number such 

that : 

≡*(G)=M
-1

(G).Ar(G) and this implies  M(G)=Ar(G).(≡*(G))
-1
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Proposition (6.4) 

By proposition(6.3) then M(Q2pxD3)=Ar(Q2pxD3).(≡*( Q2pxD3))
-1

= 

 

     4     2     2     2     1     1     4     2     2     2     1     1     2     1     1   

     0     2     2     0     1     1     0     2     2     0     1     1     0     1     1 

     2     2     0     1     1     0     2     2     0     1     1     0     1     1     0 

     0     0     0     2     1     1     0     0     0     2     1     1     2     1     1 

     0     0     0     0     1     1     0     0     0     0     1     1     0     1     1 

     0     0     0     1     1     0     0     0     0     1     1     0     1     1     0 

     4     2     2     2     1     1     0     0     0     2     1     1     0     0     0 

     0     2     2     0     1     1     0     0     0     0     1     1     0     0     0 

     2     2     0     1     1     0     0     0     0     1     1     0     0     0     0 

     0     0     0     2     1     1     0     0     0     2     1     1     0     0     0 

     0     0     0     0     1     1     0     0     0     0     1     1     0     0     0 

     0     0     0     1     1     0     0     0     0     1     1     0     0     0     0 

 

Definition (6.5):[2] 

A k-th determinat divisor of M is the greatest common divisor (g.c.d)for all the k-minor ,this is 

denoted by Dk(M). 

 

Lemma(6.6):[2 ] 

Let M,P,W be matrices with entries in the principal  ideal domain R.Let P and W be invertible 

matrices then Dk(P,M,W)=DK(M) modulo the group of units of R. 

 

Proposition (6.7):[8 ] 

 

                    M(Q2p)=

[
 
 
 
 
               
              
              
              
              ]

 
 
 
 

 

 

Proposition (6.8):[7 ] 

              M(D3)=[
        
         
               

] 
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Proposition (6.9) :  M(Q2pxD3)=M(Q2p) M(D3)=  

                       

4    2     2     2     1     1     4     2     2     2     1     1     2     1     1 

0     2     2     0     1     1     0     2     2     0     1     1     0     1     1 

2     2     0     1     1     0     2     2     0     1     1     0     1     1     0 

0     0     0     2     1     1     0     0     0     2     1     1     2     1     1 

0     0     0     0     1     1     0     0     0     0     1     1     0     1     1 

0     0     0     1     1     0     0     0     0     1     1     0     1     1     0 

4     2     2     2     1     1     0     0     0     2     1     1     0     0     0 

0     2     2     0     1     1     0     0     0     0     1     1     0     0     0 

2     2     0     1     1     0     0     0     0     1     1     0     0     0     0 

                              0     0     0     2     1     1     0     0     0     2     1      1     0     0    0     

          0     0     0      0     1     1    0      0     0     0     1      1     0     0    0 

          0     0     0     1      1    0     0      0     0     1     1      0     0     0    0 

          2     1     1     2      1    1     0      0     0     0     0      0     0     0    0 

             0     1     1     0      1    1     0      0     0     0     0      0     0     0    0 

         1    1     0     1      1     0     0     0      0     0     0     0      0     0    0 

 

 

Proposition (6.10)[8 ]: p(Q2p)=                1    -1    -1      1    0 

              0      1     0    -1    0                                                                                                                                     

             0      0     1    -1    0 

             0      0     0     1    0 

             0      0     0      0   1 

 

Proposition (6.11)[7 ] : p(D3)= 

[
      
            
               

] 

 

 

Proposition (6.12) :      p(Q2pxD3)=p(Q2p)  p(D3)= 

      

                              1    -1     0    -1     1     0    -1     1    0     1    -1    0      1   -1     0         

                              0     1     0     0    -1     0     0    -1    0     0     1     0      0     1     0 

                              0     0     1     0     0    -1     0     0   -1     0     0     1      0     0     1 

0     0     0     1    -1     0     0     0     0    -1     1     0     1    -1     0 

0     0     0     0     1     0     0     0     0     0    -1     0     0     1     0 

0     0     0     0     0     1     0     0     0     0     0    -1     0     0     1 

0     0     0     0     0     0     1    -1     0    -1     1     0     0     0     0 

0     0     0     0     0     0     0     1     0     0    -1     0     0     0     0 

0     0     0     0     0     0     0     0     1     0     0    -1     0     0     0 

0     0     0     0     0     0     0     0     0     1    -1     0     0     0     0 

0     0     0     0     0     0     0     0     0     0     1     0     0     0     0 

0     0     0     0     0     0     0     0     0     0     0     1     0     0     0 

0     0     0     0     0     0     0     0     0     0     0     0     1    -1     0 

0     0     0     0     0     0     0     0     0     0     0     0     0     1     0 

0     0     0     0     0     0     0     0     0     0     0     0     0     0     1 
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Proposition (6.13):[8 ] 

  

W(Q2p)=

[
 
 
 
 
 
 
                        

                    

                           

                      

                           ]
 
 
 
 
 
 

 

 

Proposition (6.14):[7 ] 
 

 

W(D3)= [

                  

          

              

] 

 

 Proposition (6.15): 

W(Q2pxD3)=W(Q2p) W(D3)= 

  

0     0     0     0     0     0     1     0     0     0     0     0     0     0     0 

 0     0     0     0     0     0    -1     0    -1     0     0     0     0     0     0 

0     0     0     0     0     0     1     1     1     0     0     0     0     0     0 

 0     0     0     0     0     0    -1     0     0     0     0     0     1     0     0 

 0     0     0     0     0     0     1     0     1     0     0     0    -1     0    -1 

 0     0     0     0     0     0    -1    -1    -1     0     0     0     1     1     1 

 1     0     0     0     0     0     0     0     0     0     0     0     0      0     0 

-1     0    -1     0     0     0     0     0     0     0     0     0     0     0     0 

 1     1     1     0     0     0     0     0     0     0     0     0     0     0     0 

 0     0     0     0     0     0     1     0     0     1     0     0    -1     0     0 

 0     0     0     0     0     0    -1     0    -1    -1    0    -1     1     0     1 

 0     0     0     0     0     0     1     1     1     1     1     1    -1    -1   -1 

 0     0     0     1     0     0     0     0     0     0     0     0     0     0     0 

0     0     0    -1     0    -1     0     0     0     0     0     0     0    0     0 

0     0     0     1     1     1     0     0     0     0     0     0     0     0     0 

 

 

Definition (6.16):[2] 

Let M be a matrix with entries in a principal domain R, be equivalent  D=diag{d1,d2,…, 

dm,0,0,…,0} such that  dj/ dj+1 for 1 j m. We call D the  invariant factor matrix of M and 

d1,d2,…, dm the invariant factor of M. 
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Proposition (6.17) :   P(Q2pˣD3)*M(Q2pˣD3)*W(Q2pˣD3)= 

 

4     0     0     0     0     0     0     0     0     0     0     0     0     0     0 

0     2     0     0     0     0     0     0     0     0     0     0     0     0     0 

0     0    -2     0     0     0     0     0     0     0     0     0     0     0     0 

0     0     0     2     0     0     0     0     0     0     0     0     0     0     0 

0     0     0     0     1     0     0     0     0     0     0     0     0     0     0 

0     0     0     0     0    -1     0     0     0     0     0     0     0     0     0 

0     0     0     0     0     0     4     0     0     0     0     0     0     0     0 

0     0     0     0     0     0     0     2     0     0     0     0     0     0     0 

0     0     0     0     0     0     0     0    -2     0     0     0     0     0     0 

0     0     0     0     0     0     0     0     0     2     0     0     0     0     0 

0     0     0     0     0     0     0     0     0     0     1     0     0     0     0 

0     0     0     0     0     0     0     0     0     0     0    -1     0     0     0 

0     0     0     0     0     0     0     0     0     0     0     0     2     0     0 

0     0     0     0     0     0     0     0     0     0     0     0     0     1     0 

0     0     0     0     0     0     0     0     0     0     0     0     0     0    -1 

 

 

 

=diag{4,4,2,2,2 ,2,2,1,1,1,-2,-2,-1,-1,-1}=D (Q2pˣD3) 

The following  theorem  gives the cyclic decomposition of the factor group AC(D (Q2pˣD3)) when p 

is D (Q2pˣD3) prime number. 
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