
535 

 

Journal of AL-Rafidain University College for Sciences (2023); Issue 54; 539 - 546 

JRUCS 
Rafidain -Journal of AL

College for  University

Sciences 

PISSN: (1681-6870); EISSN: (2790-2293) 

Journal of AL-Rafidain 

University College for Sciences  

 
https://www.jrucs.iq Available online at:  

Rafidain  -AL
College University 

Regression Depth for Statistical Depth Function 
Mohammed Al-Guraibawi Baher K. Mohammed 

dw.moh2@atu.edu.iq bahr.mahemmed@qu.edu.iq 

Al-Diwaniyah Technical Institute – Al-Furat 

Al-Awsat Technical University, Kufa, Iraq 

Department of Statistics - College of 

Administration and Economic - Al-Qadisiyah 

University, Al-Qadisiyah, Iraq 

 

Article Information 
 

Abstract 

Article History:  The statistical depth function is one of the modern approaches that can be 

used for developing multivariate robust regression based on robust 

estimates of the location and dispersion matrix. One merit advantage of 

the depth concept is that it can be used directly to provide deeper 

estimation functions for data location and regression parameters in a 

multidimensional environment. The deeper estimation functions induced 

by depth are expected to inherit the desired and inherent robustness 

properties (such as limited maximum bias, impact function, and high 

breaking point) as do their counterparts at univariate sites. Investigation. 

The main objective of this article is to check the power of the statistical 

depth function throw the depth regression, it turns out that the deepest 

functional projection possesses a finite effect function and the best 

possible asymptotic breakpoint as well as the best breaking point of a 

finite sample compared with some classical and robust existed method. 

 

Received: December, 22, 2022 

Accepted: March, 3, 2023 

Available Online: December, 

31, 2023 

 

 

 
Keywords: 

Depth function, depth data, 

robust estimation, pagplot 

 

Correspondence: 
Mohammed Al-Guraibawi  
dw.moh2@atu.edu.iq 

 

https://doi.org/10.55562/jrucs.v54i1.621 
 

1. Introduction 
For the multivariate linear regression model: 

        (1) 

If n is a sample size and p is a number of predictors, then;         and          are the vectors 

of response and unknown regression coefficients, respectively.         is a matrix of explanatory 

variables and              ∑    is the random error vector distributed as identical normal 

distribution with zero mean and constant variance ([3],[8]).  

Linear regression model is widely used in many applications in statistics. It is simple to 

compute classical least squares regression, which reduces the sum of the squares of the residual but 

it destroys when one or more unusual points exist in the dataset. The robust methods are alternatives 

approaches which often computationally intensive. Following we present some common robust 

regression techniques that have well combinatorial algorithms.  

1. M-estimator  

The M-estimators is proposed by Huber ([4], [8]) . The class of M-estimators can be considered 

as a generalization of maximum-likelihood estimator. The M-estimator is determined by 

minimizing the sum of a less rapidly increasing function of residuals, as follows  
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where   is a particular function determines the contributions of each residuals in the objective 

function 

2. Least Median of Squares Regression 

least median of squares (LMS) as an alternative robust technique proposed by Rousseeuw 

(1984) ([4],[8]). The LMS estimator is obtained by reducing the median (Med) of squared errors, as 

         
          (   ∑    ̂ )

 

  (3) 

 

The LMS estimator has high breakdown point of 50 %, but it has low relative efficiency of 

37%. (see [4], ,[6], [8], [9]). In this study, we discuss the concept of statistical depth and present 

some applications of depth statistics such as median depth, bagplot, and regression depth. some 

examples are given to investigate and compare the depth statistics application with some classical 

and robust existing method. The rest of the article is organized as follows: 

In Section 2, The Bagplot Of The Statistical Depth Function Is Briefly Discussed With 

Some Figures. In Section 3, The Regressions Depth Is Illustrated With Some Depth Statistics 

Properties. Section 4 Presents The Regression Depth Briefly. Section 5, View Example Of 

Applying Regression Depth With Discussion. Finally, Some Conclusions Are Given In Section 6.    

2. Bagplot of the Statistical Depth Function 
The statistical depth function (SDF) is an approach suggested by John Tukey (1975) ([1], 

[12]). The SDF is determined how close an arbitrary point of the space has existed to an implicitly 

specified location of a data cloud. In addition, Tukey introduced a “depth median” (DM) which is 

the „deepest‟ point in a specific data cloud (Tukey, 1975). The DM is the deepest point which is 

enclitic by a “bag” containing the half points with the largest depth. There are a lot of subjects like 

economics, social sciences that cannot be modeled easily, due to our knowledge of economic rules 

is not sufficient for effective parametric modeling or the datasets containing outliers or missing 

data, hence the SDF is the effective approach to deal with it. 

 
Figure 1: Bagplot based on adjusted projection depth [12] 

In the SDF, the bagplot is a modified shape for the well-known boxplot proposed by 

Rousseeuw, Ruts, and Tukey ([10], [11]). In the bivariate case, the box of the boxplot changes to a 
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convex hull, the bag of bagplot. As shown in figure 1, in the bag, there is 50 percent of all 

observations. The fence separates observations inside and outside the fence. The loop is stated as 

the convex polygon that holds all observations inside the fence if all points are on a straight line you 

get a classical boxplot.  increasing the bag by a proportion of 3 results in the “fence” as shown in 

figure 1. points between the bag and the fence are flagged by a light gray loop, whereas points 

outside the fence are identified as outliers. The bagplot conceive the location, dispersion, 

overlapping, skewness, and tails of the dataset [11]. 

3. Data Depth  
The data depth of multivariate points is present by univariate (individual) number defined by a 

depth function. That value of depth is used to identify outliers in the data.  A depth function is a 

real-valued function that produces a “center-outward” ordering of the multivariate data. Recently, 

many depth function has been suggested in the literature ([1], [2], [13], [14]). 

 Tukey (1975) halfspace  

 The simplicial depth (Liu, 1990) 

 The majority depth (Singh,1991; Liu and Singh, 1993),  

 The projection depth (Liu, 1992; Zuo, 2003),  

The depth data  has desirable statistical properties due to it depend on the depth function   x; p). 

The depth function   x; p) has the following properties:- 

1- Affine invariant,                       for every nonsingular matrix       , 

    . 

2- Vanishes at infinity:                ‖ ‖      

3- Upper semicontinuity: {              }         . 

4- Monotonicity relative to deepest point: 

The classical estimation methods are extremely sensitive to outlying observations. A popular 

approach to deal with this issue is to use robust variance-covariance matrix. One of the common 

practice to obtain robust estimators is to use concept of depth statistics [13] Applying depth in 

construct for getting such estimator is easy due to depth has “center outward ordering”. The depth 

has ability to increase at the center of the data cloud and minimize along all direction for that center 

[1]. Observations those extreme with respect to the bulk of data will be down weighted by depth.     

The value of the depth is proportional “inversely” to the distance from the center for the data 

cloud, as the data is closer to the center the greater its depth. On the contrary, the lower the depth 

value, the further away from the center it is. From the foregoing, it can be seen that the depth of a 

point can shift to its outlyingness (and vice versa). It will be concluded from the above that the 

process of converting the depths of points in the data set into outlyingnesses, will help us to identify 

points with far outliers on the basis of specific cut-off point [12]. 

4. Robust Regression Depth  
The least-squares approach (LS) is the usual method of getting estimators of linear 

regression. However, it is well-known that LS estimators are highly sensitive to unusual points. A 

popular method alternative to LS is thus to use robust estimators of location    and scatter   . In 

robust regression approach, many variance covariance matrix has been suggested such as MVE and 

MCD by Rousseeuw ([8], [9]). The regression depth (RD) is a quality measure for robust linear 

regression. As a statistical vision, "the RD of a hyperplane (RHP) is the minimum number of 

residuals that need to change the sign to be non-fit". 

For k-dimensional independent vector               
  and m-dimensional   

             for     and    . The multiple regression model is: 

          

where   is the       coefficient matrix and   is the m-dimensional constant term vector. The 

error term   is identically distributed with mean zero and covariance   . Let           and the 

location and variance matrix of Z given as    and   , respectively. The partition of location and 

scatter of Z is as follows [2]: 
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with        
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    where                   are the response vector and predicted vector, 

respectively. and,        
    

    where                   are the response vector and predicted 

vector, respectively. Assume   ̂   to be invertible and suppose  ̂  and  ̂  are the estimates of    

and   , respectively. The estimators of             are as follows )[2], [14]): 
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 ̂    ̂  
   ̂   (5) 
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In RD, robust estimates of    and    are used in depth based estimators (see Serfling, 2006; Zuo, 

Cui and He, 2004; Zuo, Cui and Young, 2004) given as: 
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where:  (  ) represent the depth of   ,      . 

   and    are not non-decreasing and non-negative weight functions (WF) and they are not 

imposed to be the same. The weight function   , is given as follows: 

      
   [  {   

 
  

  }
  
]          

          
                   

(8) 

Where      is the indicator function,         and     for          control the grade of 

approximation. According to Zuo et. al (2004), a consistent estimate of   is imposed on the median 

of the depth values and   is assumed to be 100. The WF assigns weight "one" to half of the 

observations with larger depth and this equipoise efficiency with robustness. The second half of the 

observations with smaller depth may be assigned as outliers, so they give lower weights. Many WF 

can be used that satisfy appropriate properties [14]. 

5. Example and Discussion 
In this section, we consider one example investigate targets of this study and to compare the 

performance of robust regression depth versus other existing methods. The first example is the well-

known Hawkin Bradu Kass's Artificial Dataset (HBK). The HBK dataset was introduced by 

Hawkins et al. (1984) [8].  The data has four variables, one is the response variable and the rest are 

the independent variables.  The dataset has 75 cases with 14 outliers (cases 1-14) [3]. Table 1 

present the depth values for the points of the dataset. It's clear to see that observations numbered (1-

14) have the lowest depth values, so they identify as outliers. On the other hand, we observed from 

Figure 2 (a, b, and c) that the points (1-14) lie outside of the bagplot indicating that they are outliers. 

Figure 2-d shows the bagplot for the data, where we find that the fence of the bagplot expands 

greatly towards the anomalous data, while we find the outliers are located outside the bagplot. 

Figure 3 shows the fit of the regression line for the HBK dataset, where we find that the regression 

line of the least-squares method (LS) is far away from the data cloud, while we find that the 

regression lines of the robust methods are all passed from the bulk of dataset. 
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Table 1: Depth values for Hawkin Bradu Kass's Artificial Dataset 

Depth Values 

1 0.0352 16 0.4696 31 0.5088 46 0.3306 61 0.3390 

2 0.0337 17 0.5472 32 0.4550 47 0.2558 62 0.2596 

3 0.0336 18 0.5675 33 0.3139 48 0.5445 63 0.4341 

4 0.0337 19 0.5417 34 0.2642 49 0.3608 64 0.3422 

5 0.0333 20 0.3776 35 0.5605 50 0.3896 65 0.3016 

6 0.0339 21 0.3804 36 0.3289 51 0.3610 66 0.3540 

7 0.0322 22 0.4254 37 0.3232 52 0.3294 67 0.4062 

8 0.0341 23 0.3584 38 0.3001 53 0.2674 68 0.2535 

9 0.0343 24 0.4267 39 0.2642 54 0.3623 69 0.3553 

10 0.0347 25 0.2901 40 0.4732 55 0.6538 70 0.4378 

11 0.0427 26 0.2693 41 0.5661 56 0.4694 71 0.5921 

12 0.0448 27 0.3567 42 0.3458 57 0.2886 72 0.6287 

13 0.0390 28 0.3596 43 0.3505 58 0.3836 73 0.4654 

14 0.0296 29 0.3712 44 0.2996 59 0.5686 74 0.3485 

15 0.3760 30 0.3647 45 0.2867 60 0.3511 75 0.3315 

 

  

  

 

Figure 2: a, b and c represent plots for independent variables (x1, x2 and x3) v.s response 

variable for HBK dataset, “d” represents the pagplot for x1 v.s y [12] 
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Figure 3: Regression lines for LS, LMS, M-estimator and Regression depth [12] 

6. Conclusions 
In this study, we discussed the concept of depth statistical function, which is characterized 

by many good merits, such as (Affine invariant, Vanishes at infinity, and Upper semicontinuity). 

The box plot was also discussed as to how to use it in diagnosing outliers in the data. The pagplot is 

dependent on the Tukey Median which has great property in representing the data, unlike the 

arithmetic mean, which was far away from the data cloud significantly. Regression Depth was also 

discussed as one of the robust methods for representing the regression line for the data, as is the 

case in other strong methods such as the LMS method and the mother method. The results of the 

example confirmed that the concept of depth statistics has good merits in identifying outliers and 

fitting of the regression line in the presence of outliers. 
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 الإحصائيعوق الانحذار لذالة العوق 
 بحر كاظن محمد .أ.م.د محمد محمد عبذ الحسين أ.م.  

dw.moh2@atu.edu.iq bahr.mahemmed@qu.edu.iq 
، جبيعت انفزاث الأٔسظ انخمُيت -انًعٓذ انخمُي ديٕاَيت 

 انعزاقانكٕفت، 
 انعزاق انمبدسيت، انمبدسيت،جبيعت  - كهيت الادارة ٔالالخصبد

 
 

 الوستخلص  هعلوهات البحث

حعذ ٔظيفت انعًك الإحصبئي إحذٖ انطزق انحذيزت انخي يًكٍ   تواريخ البحث:

اسخخذايٓب نخطٕيز الاَحذار انحصيٍ يخعذد انًخغيزاث بُبءً عهٗ حمذيزاث 

ٔانخشخج. حخًزم إحذٖ يزايب يفٕٓو انعًك في أَّ يًكٍ حصيُّ نًصفٕفت انًٕلع 

اسخخذايّ يببشزة نخٕفيز دٔال حمذيز أعًك نًٕلع انبيبَبث ٔيعهًبث الاَحذار في 

بيئت يخعذدة الأبعبد. يٍ انًخٕلع أٌ حزد دٔال انخمذيز الأعًك انُبحجت عٍ انعًك 

ذٔد، ٔدانّ خصبئص انًخبَت انًزغٕبت ٔانًخأصهت )يزم انخحيز الألصٗ انًح

انخأريز، َٔمطت الآَيبر انعبنيت( كًب آَب حعًم في انبيبَبث أحبديت انًخغيز.  

انٓذف انزئيسي يٍ ْذِ انذراست ْٕ انخحمك يٍ لٕة دانت انعًك الإحصبئي في 

حأريز يحذٔد  دانّاَحذار انعًك، ٔحبيٍ أٌ الإسمبط انٕظيفي الأعًك يًخهك  حمذيز

 هعيُت نًكُت ببلإضبفت إنٗ أفضم َمطت كسز ٔأفضم َمطت حٕلف حمبربيت ي

 انًٕجٕدة. تٔانحصيُيمبرَت ببعض انطزق انخمهيذيت انًُخٓيت 

 22/12/2022حبريخ حمذيى انبحذ: 

 3/3/2023حبريخ لبٕل انبحذ: 

 31/12/2023حبريخ رفع انبحذ عهٗ انًٕلع: 
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 pagplot، انحصيٍدانت انعًك، بيبَبث انعًك، انخمذيز 
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