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Introduction

Many problem is real world involve Bayesian estimation, making Bayesian inference about
a population using the information from small size of observation and using prior information.
Suppose we have the following linear regression model [1]:
Y=XB+e¢ 1)

Where Y is the nx1 vector of response observations, X is the nx(p+1) matrix of predictor variables,
B is (p+1)x1 vector of coefficients, and ¢ is (nx1) vector of random errors with E(¢)=0, and
Cov(s) = a1, So that the regression function of the linear model Eq.(1) is
E(Y) = f(X,B) )
The linear regression in Eq.(2) attempts to find the estimate average (mean) of the response
variable based on the available information in matrix X. If the Gauss-Markov properties are met,
the ordinary least squares (OLS) method that minimize the residual sum of squares (RSS) defined
as [1-2]
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RSS(B) = Z(yl F(X3 B))? 3)

The OLS method [1-2] gives unbiased and lowest variance estimators. Therefore, OLS
method provides best prediction accuracy. But, in many practical situations, the number of the
observations for the studied phenomena is berry small with more predictor variables. In these
situations the matrix X will be singular matrix (not invertible) because of the correlated predictor
variable, which yields biased and inflated variance estimators. Therefore, poor prediction accuracy
is based on the non-unique estimates of the parameters. Consequently, many estimation methods
have developed to overcome the drawbacks of the OLS method, such as subset selection methods
and the penalized ridge method. The penalized or regularized methods produced based estimates but
with lowest variance, which is useful in terms of prediction accuracy.

Ridge regression method introduced by [3] to control the variance of the estimated
parameters and then gives more prediction accuracy. The ridge estimator is minimize the following
optlmlzatlon problem,

Brldge - argmm RSS(B) + Mlﬁ”z (4)
Where 4 > 0 is the shrinkage parameter that controls the amount of the shrinkage of regression
parameters. When A =0 in Eq.(4) becomes OLS method. ||B]|? is the l,-norm which is the
differentiable function at zero, thus ridge method not sparse method. Tibshirani [4] introduced lasso
regularization method which is a sparse solution method that removing the irrelevant prediction
variables that have no effect on the response variable and include the relevant prediction variables
that have effect on the response variable. Removing irrelevant predictor variables means that set its
parameters equals to zero. So, lasso provides more prediction accuracy with more interpretable
regression model. The lasso estimators defined by the following optimization problem,

Blasso = argmin RSS(B) + Al|Bll1 (%)
Where ||B]|; is the l2-norm function which is non-differentiable function, and A > 0 is the shrinkage

parameter [5]. Also, [4] stated that the parameter § can be estimated in Bayes theorem by assuming
that this parameter follows the double exponential distribution as prior density. Since then many
studies have done on the Bayesian aspect of lasso. Park and Casella [6] developed the hierarchical
priors model based on the normal scale mixture to represent the double exponential distribution of
the parameterf. So, the lasso estimate can be interpreted as the posterior model estimate. The
construction of lasso assumed that the design matrix X is standardized and Y is centered in
traditional and Bayesian aspects. Mallick and Yi [7] proposed new scale mixture of uniforms
mixing with special case of Gamma (2,A) distribution. This scale mixture represents the prior
distribution of double exponential density. Park and Casella [6] use the scale mixture of normal that
proposed by [8]. Also, different scale mixtures have developed based on the scale mixture of
normal, see [9] and [10]
The prior distribution of double exponential that proposed by [6] used the following form:

14
)P expd — AlBj|
v— LiVa?
The Eq. (6) is conditional on o2 to guarantee the unimodal. Kyug et al. [11] state the
Bayesian Gibbs sampler of [6] provide a good measure of standard error for the parameter estimates

[7] state that MCMC of Bayesian estimation gives a flexible way for estimate by the shrinkage
parameter.

n(o?) = (—=

(6)

Scale Mixture of Rayleigh-Normal (SMRN)
In the prior we will use the scale mixture of Rayleigh mixing with normal distribution that
proposed by [12], where the conditional double exponential distribution have the following form
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and the full joint density was of the form :
y|X, B, o~Normal(XB, c?1,)
Blo?, 14, ..., Tp~Normal(0, 0 *E;)
E; = diag(ty, ..., Tp)
z A At;
02,14, ., Tp~m(0%)d(0?) ﬂiexp {— 7]} dr; (8)
j=1

Hierarchical Priors Model
Using the prior distribution in Eq. (7) and the linear regression mode Eq.(1), we formulate
the following representation of hierarchical prior model. Also, we modified the likelihood function
in in the Bayesian rule through raising the likelihood function to new parameter (6) which called
safe parameter, see [13] for more details. The new method is called generalized Bayesian penalized
lasso. Now the full joint density is defined by :
14

@18, 0)me) | | n(0%) n(x)
j=1

n
2

1
= |(Gre) e

]

o200 ©)

ye T By
_XB)} I (0.2) a— 1 21_[ e 202t — e 2
,/ mo? T]

The parameter (6) controls the amount of data (likelihood) effect on prior density. Now
based on Eq.(7), Eq.(1) and Eq.(8) the full conditional distribution distributions are as follows:
1. The posterior distribution of g is multivariate normal distribution with mean (6X'X —
E;7H~1X'y and variance o?(X'X — E;1)™1,
2. The posterior distribution of 2 is inverse Gamma with the following shape parameter
[0(%2) +2+a]and 2 (v - xp) (v —xp) + =L L
3. The posterior distribution of 7 is Inverse Gaussian (%/1 %)
j
4. The posterior distribution of 1 is Gamma (p + a,%zz}’zlrj + b).

Finally, the parameter 6 can be estimated by implementing the k-fold cross-validation
method, see [14] for more information.

Simulation study

To evaluation the performance of the proposed method that based on modified the
likelihood function in the Bayesian rule through raising the likelihood function to safe parameter
(0), simulation study is considered. In this study the estimation accuracy is conducted to the
proposed method NBLS compared to the other existing method Ridge regression Method (RRM),
Lasso Regularized Method (LRM), and Bayesian Lasso Method (BLM), the bias of parameters
estimators are computed by using the following formula,

Bias = f — ptrue
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where B%€ is the true parameter vector. As well as, the performance of the methods are evaluated
based on the median of mean absolute deviations denoted as MMAD; where, MMAD =

median (mean(|xiTB - xiT,Bm‘eD).

In our simulation study, we have simulated eight predictor variables from the normal
distribution Ng(0,%), where the variance- covariance matrix X is eIl for each (i,j)th element.
From the following model we have simulated two samples size (30 and 100):

y=Xf+e
Where e is the error term with normal distribution e~N(0,3), S is the coefficients vector and we
consider two cases:

Case one 8 = (0.85,0.85,0.85,0.85,0.85,0.85,0.85,0.85)
Case two f = (3,2.5,0,0,2,0,0,0)

We have constructed an R code to implement MCMC algorithm. K-fold cross validation
method have been used to compute the value of the safe Bayes parameter, we found the best values
are (6 = 0.4and 8 = 0.5). MCMC algorithm is run 20000 iteration and remove the first 5000 as
burn in. We have shown the standard division of the parameters estimates in Table 1 for all methods
proposed NBLS and existing methods RRM, LRM and BLM at the samples size 30 and 100. From
this table we can see clearly that the proposed method get the smallest values of the SD among
other methods at both cases and also at both samples. Compare to RRM and LRM methods, we can
note that BLM method get small values in most cases and samples size. On the contrary, RRM
method has the largest values of SD in both cases and also in both samples size.

Table 1: The average SD of the parameter estimates of NBLS , RRM, LRM and BLM

methods
Sample
size Cases Methods | SD.3, | SD.3, | SD.B3 | SD.34 | SD.Bs | SD.f¢ | SD.B7 | SD.Bg
Case one RRM 1.4360 | 0.7321 | 1.5695 | 1.6209 | 0.9034 | 0.4059 | 0.7037 | 0.8488
LRM 1.7742 | 0.6878 | 1.0184 | 1.4226 | 0.8358 | 0.1437 | 0.5911 | 0.7653
BLM 1.0008 | 0.5328 | 0.7285 | 0.7683 | 0.5274 | 0.2846 | 0.4607 | 0.3798
N=30 NBLS 0.7866 | 0.3457 | 0.1022 | 0.5557 | 0.4273 | 0.0472 | 0.3506 | 0.1550
Case two RRM 1.8973 | 0.7757 | 1.6323 | 1.3544 | 1.7719 | 1.1834 | 1.5282 | 1.2173
LRM 1.6741 | 0.6845 | 1.4403 | 1.1950 | 1.5634 | 1.0442 | 1.3484 | 1.0741
BLM 0.5116 | 0.5873 | 0.3120 | 0.4896 | 0.7835 | 0.4886 | 0.7731 | 0.4619
NBLS 0.4644 | 0.3326 | 0.2439 | 0.4383 | 0.5535 | 0.3434 | 0.6317 | 0.3375
Case one RRM 1.0959 | 0.9680 | 0.8243 | 1.7038 | 0.8435 | 1.0513 | 0.6250 | 1.1051
LRM 0.9980 | 0.8533 | 0.6692 | 0.9303 | 0.2623 | 0.8122 | 0.5967 | 0.7126
BLM 0.7721 | 0.3218 | 0.3843 | 0.7034 | 0.2563 | 0.4101 | 0.5853 | 0.6256
N=100 NBLS 0.5975 | 0.2617 | 0.2934 | 0.4480 | 0.2572 | 0.2133 | 0.3720 | 0.3069
Case two RRM 1.1661 | 0.6955 | 1.3488 | 0.8576 | 1.0777 | 1.2370 | 0.8345 | 1.1088
LRM 0.9020 | 0.6737 | 1.2003 | 0.5224 | 0.7681 | 1.1196 | 0.7460 | 0.8650
BLM 0.4174 | 0.2995 | 0.9503 | 0.3331 | 0.6261 | 0.7629 | 0.6216 | 0.7930
NBLS 0.1502 | 0.1356 | 0.6099 | 0.3156 | 0.4396 | 0.5189 | 0.4309 | 0.6133
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Table 2: The average bias of the parameter estimates of NBLS , RRM, LRM and BLM

methods

AP | Cases | Methods | By | B2 | Bs | Bs | Bs | Bs | By | Bs
Case one RRM 3.1588 2.4656 1.9383 2.2446 2.5297 1.9792 2.4242 2.1697
LRM 1.6494 0.5111 1.4018 0.2586 0.0682 0.3063 0.4530 0.6354
BLM 1.2759 0.1928 0.8050 0.9989 0.5865 0.1547 0.6683 0.9635
N=30 NBLS 0.5921 0.6464 0.6823 0.6413 0.6712 0.7047 0.6509 0.6405
Case two RRM 2.1843 1.5420 1.8562 2.0804 2.2005 1.4699 1.8490 2.0787
LRM 1.8448 0.8455 2.0546 1.3811 1.1822 0.9628 0.9125 0.8604
BLM 1.4271 0.7303 1.1800 1.1720 1.0675 0.4861 0.9037 0.8499
NBLS 0.6721 0.7168 0.6913 0.6947 0.6856 0.7209 0.7100 0.6948
Case one RRM 1.8417 1.1523 | 13.0973 | 18.7547 | 13.0973 | 18.7547 | 1.5826 2.0296
LRM 1.0047 0.0578 | 12.3043 | 3.9292 | 12.3043 | 3.9292 1.0032 0.4996
BLM 0.2858 0.0338 7.4384 1.2172 7.4384 1.2172 1.6317 0.1657
N=100 NBLS 0.0623 0.0133 3.0035 0.9685 3.0035 0.9685 0.5016 0.1445
Case two RRM 2.8112 1.8661 0.6402 0.4930 0.6402 0.4930 0.5486 0.6281
LRM 1.4006 0.2304 0.3151 0.4804 0.5151 0.4804 0.3756 0.4715
BLM 0.0169 0.0136 0.4154 0.4101 0.4154 0.4101 0.2166 0.2752
NBLS 0.0070 0.0106 0.1456 0.2673 0.1456 0.2673 0.1050 0.1875

We have summarized the bias of all methods under study the existing methods RRM, LRM

and BLM and the proposed method NBLS in Table 2. From the table we can see that clearly the
proposed method NBLS get the smallest bias at both cases and samples, that indicated the proposed
method is more accurate than the other methods. Whereas, RRM method get the largest values of
bias in most cases and sample. Also we can notice that the bias of the BLM method was smaller
than the LRM method. Table 3 show MMAD values for all methods in our study. The NBLS
method has the lowest values of MMAD compare to the other method in this study. As same as that
in Table 1 and Tale 2 the RRM method gets the largest values of MMAD. In addition, in this table
the MMAD values for BLM method was smaller than that for LRM method.

Table 3: The values of MMAD of NBLS , RRM, LRM and BLM methods

MMAD

Cases Methods N=30 N=100
Case one RRM 3.5208 3.4760
LRM 2.0445 2.9983

BLM 1.9210 1.8792

NBLS 1.7172 1.5740

Case two RRM 8.7384 6.0994
LRM 7.3233 5.5467

BLM 4.7506 3.8485

NBLS 2.5801 1.6014

To check the convergence performance for the coefficient that estimated by the proposed
method trace plots have been used in Figures 1-2. In Figure 1, we show the trace plots for the
estimated parameters by the proposed method for case one and sample size n=30, whereas in
Figure 2 we show the case two with sample size 100 for 20000 iterations. From these figures we
can see that the chain of the estimated parameters for our proposed method there is low fluctuation
in the chain and it became more stationary after the first 5000 iterations.
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Figure 1: Shows the trace plots for the estimated parameters by the proposed method for
case one and sample size n=30.
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Figure 2: Shows the trace plots for the estimated parameters by the proposed method for
case two and sample size n=100.

Real Application

A stroke size is one of the factors that impacting functional outcome for human. There are
many different variables may be effect on the stroke size and then the human life. In this study, 150
patients are drawing from Al-Diwaniyah Hospital during the period from 1/10/2022 to 15/12/2022.
We study the effect of the some independent variables on the response variable (Y: stroke size),
whereas the independent variables is ( X1: Age, X2: Smoking, X3: the weight of patient, X4: Blood
pressure, X5: Diabetes, X6: Cholesterol, X7: Have a heart disease, X8: Gender, X9: Alcohol, X10:
Exercise). Proposed method is adapted to relation between the response variable Y and covariates
variables.
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Table 4: Shows the parameters estimates by RRM, LRM, BLM and NBLM with(0 = 0.4).

Parameters Variables RRM LRM BLM NBLS
B1 Age 1.6937 1.1547 1.1548 3.3754
B Smoking -0.1403 1.7504 2.1750 15553
Bs the weight of -0.0515 3.0511 0.0511 7.6430

patient
B4 Blood pressure 1.0712 1.4700 3.6997 3.2848
Bs Diabetes 0.1462 1.5625 1.6254 41775
Be Cholesterol 0.2266 -0.4045 1.0404 1.8183
B, Ha;‘? & REELT 0.1082 7.5755 0.0058 0.0032
1Sease
Bs Gender 0.1236 4.3548 1.3548 0.0008
Bo Alcohol -0.5850 -1.1857 1.1857 -0.0124
B1o Exercise -0.1108 4.9749 0.9749 -3.5498

In Table 4, result of the real data application is reported. This result show the coefficients
estimated by the proposed NBLS and existing methods RRM, LRM and BLM. It’s clearly, that the
estimated coefficients (Have a heart disease, Gender and Alcohol) close to zero that meaning these
variables do not have important effect on the size of stroke. The proposed method also showing that
the variables (the weight of patient, Diabetes, Exercise, Age and Blood pressure) have large effect
on the response variables, this method can selected the important variables. Also, we can see that
the perform of the BLM method is better than the other existing method where this method can
choose the important and unimportant variables.

Table 5: Shows the RMSE and MAE for the different methods

Methods RMSE MAE
RRM 9.7376 8.2063
LRM 8.1475 7.7808
BLM 5.0463 5.3358
NBLS 3.0291 2.7089

Table 5 shows the RMSE and the MAE for the proposed method, NBLS and the other three
existing methods RRM, LRM and BLM. The performance of the method was better than that of the
other methods, since it showed the smallest RMSE and MAE. From this table we can also see that
the BLM method does better than the RRM, LRM methods.

Conclusion

The new formulation of the scale mixture of Rayleigh distribution mixing with exponential
distribution has employed with the safe Bayesian parameter to the likelihood function. The
proposed formula applied to the linear regression for the sake of variable selection procedure. This
paper proposed new hierarchical priors model representation based on the developed formulation
and then new posterior distribution have derived. Gibbs sampler algorithms have used to compute
the mode of the posterior distribution of the interested parameters. Simulation experiments analysis
have been conducted to find the solution of the shrinkage method and the results yields the
minimum bias for the proposed method compared with the other models, also we have obtained the
minimum value of the prediction accuracy criterion MMAD. Furthermore we performed the
variable selection for real data analysis and the results showed that the proposed model is sparse
model with the minimum MMAD and MAE.
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