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Abstract 

Article History:  The penalized or the regularization methods nowadays are the most 

statistical popular tools used for model selection and variable selection 

procedure. The  quality  of  the  regression  parameter  estimates  depends  

on  the  prediction  accuracy  of  the  estimated  model  and  the  model  

interpretability. Penalized operator methods usually produced the most 

parsimonious model (less number of predictor and more explanation). 

This paper utilized new scale mixture of Rayleigh  mixing  with  normal  

density  to  study  the  relationship  between  the stroke size and some 

predictors. New hierarchical priors model has developed as well new 

Gibbs sampling algorithm.  The results demonstrated that the proposed 

model is comparable to some exists regularization models.   
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Introduction  
Many problem is real world involve Bayesian estimation, making Bayesian inference about 

a population using the information from small size of observation and using prior information. 

Suppose we have the following linear regression model [1]: 

𝑌 = 𝑋𝛽 + 𝜀                       (1) 
 

Where Y is the n×1 vector of response observations, X is the n×(p+1) matrix of predictor variables, 

𝛽 is (p+1)×1 vector of coefficients, and 𝜀 is (n×1) vector of random errors with E(𝜀)=0, and  

Cov(𝜀) = 𝜎2𝐼𝑛. So that the regression function of the linear model Eq.(1) is  

𝐸(𝑌) = 𝑓(𝑋, 𝛽)               (2) 

The linear regression in Eq.(2) attempts to find the estimate average (mean) of the response 

variable based on the available information in matrix X. If the Gauss-Markov properties are met, 

the ordinary least squares (OLS) method that minimize the residual sum of squares (RSS) defined 

as [1-2] 

https://doi.org/10.55562/jrucs.v54i1.571
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𝑅𝑆𝑆(𝛽) = ∑(𝑦𝑖 − 𝑓(𝑋𝑖, 𝛽))2 

𝑛

𝑖=1

            (3) 

The  OLS method [1-2] gives unbiased and lowest variance estimators. Therefore, OLS 

method provides best prediction accuracy. But, in many practical situations, the number of the 

observations for the studied phenomena is berry small with more predictor variables. In these 

situations the matrix X will be singular matrix (not invertible) because of the correlated predictor 

variable, which yields biased and inflated variance estimators. Therefore, poor prediction accuracy 

is based on the non-unique estimates of the parameters. Consequently, many estimation methods 

have developed to overcome the drawbacks of the OLS method, such as subset selection methods 

and the penalized ridge method. The penalized or regularized methods produced based estimates but 

with lowest variance, which is useful in terms of prediction accuracy. 

Ridge regression method introduced by [3] to control the variance of the estimated 

parameters and then gives more prediction accuracy. The ridge estimator is minimize the following 

optimization problem, 

𝛽̂𝑟𝑖𝑑𝑔𝑒 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑅𝑆𝑆(𝛽) + 𝜆‖𝛽‖2                (4) 

Where 𝜆 ≥ 0 is the shrinkage parameter that controls the amount of the shrinkage of regression 

parameters. When  𝜆 = 0 in Eq.(4) becomes OLS method. ‖𝛽‖2  is the l2-norm which is the 

differentiable function at zero, thus ridge method not sparse method. Tibshirani [4] introduced lasso 

regularization method which is a sparse solution method that removing the irrelevant prediction 

variables that have no effect on the response variable and include the relevant prediction variables 

that have effect on the response variable. Removing irrelevant predictor variables means that set its 

parameters equals to zero. So, lasso provides more prediction accuracy with more interpretable 

regression model. The lasso estimators defined by the following optimization problem,  

𝛽̂𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑅𝑆𝑆(𝛽) + 𝜆‖𝛽‖1
               (5) 

Where ‖𝛽‖1 is the l1-norm function which is non-differentiable function, and 𝜆 ≥ 0 is the shrinkage 

parameter [5]. Also, [4] stated that the parameter 𝛽 can be estimated in Bayes theorem by assuming 

that this parameter follows the double exponential distribution as prior density. Since then many 

studies have done on the Bayesian aspect of lasso. Park and Casella [6] developed the hierarchical 

priors model based on the normal scale mixture to represent the double exponential distribution of 

the parameter𝛽. So, the lasso estimate can be interpreted as the posterior model estimate. The 

construction of lasso assumed that the design matrix X is standardized and Y is centered in 

traditional and Bayesian aspects. Mallick and Yi [7] proposed new scale mixture of uniforms 

mixing with special case of Gamma (2,λ) distribution. This scale mixture represents the prior 

distribution of double exponential density. Park and Casella [6] use the scale mixture of normal that 

proposed by [8]. Also, different scale mixtures have developed based on the scale mixture of 

normal, see [9] and [10] 

The prior distribution of double exponential that proposed by [6] used the following form: 

𝜋(𝜎2) = (
𝜆

2√𝜎2
)𝑝 𝑒𝑥𝑝 {− ∑

𝜆|𝛽𝑗|

√𝜎2

𝑝

𝑗=1

}              (6) 

The Eq. (6) is conditional on 𝜎2 to guarantee the unimodal. Kyug et al. [11] state the 

Bayesian Gibbs sampler of [6] provide a good measure of standard error for the parameter estimates 

[7] state that MCMC of Bayesian estimation gives a flexible way for estimate by the shrinkage 

parameter. 
 

Scale Mixture of Rayleigh-Normal (SMRN) 
In the prior we will use the scale mixture of Rayleigh mixing with normal distribution that 

proposed by [12], where the conditional double exponential distribution have the following form 
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𝜋(𝜎2) = ∏
1

2√𝜎2
 𝑒𝑥𝑝 {−

𝜆|𝛽𝑗|

√𝜎2
}

𝑝

𝑗=1

= ∏ ∫
1

√2𝜋𝜎2𝜏
𝑒

−
𝛽𝑗

2

2𝜎2𝜏  
𝜆

2
 𝑒−

𝜆𝜏
2 𝑑𝜏

∞

0

    

𝑝

𝑗=0

     (7) 

 

and the full joint density was of the form : 

𝑦|𝑋, 𝛽, 𝜎~𝑁𝑜𝑟𝑚𝑎𝑙(𝑋𝛽, 𝜎2𝐼𝑛) 

𝛽|𝜎2, 𝜏1, … , 𝜏𝑝~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2𝐸𝜏) 

𝐸𝜏 = 𝑑𝑖𝑎𝑔(𝜏1, … , 𝜏𝑝) 

𝜎2, 𝜏1, … , 𝜏𝑝~𝜋(𝜎2)𝑑(𝜎2) ∏
𝜆

2
𝑒𝑥𝑝 {−

𝜆𝜏𝑗

2
} 𝑑𝜏𝑗

𝑝

𝑗=1

    (8) 

 

Hierarchical Priors Model  
Using the prior distribution in Eq. (7) and the linear regression mode Eq.(1), we formulate 

the following representation of hierarchical prior model. Also, we modified the likelihood function 

in in the Bayesian rule through raising the likelihood function to new parameter (θ) which called 

safe parameter, see [13] for more details. The new method is called generalized Bayesian penalized 

lasso. Now the full joint density is defined by : 

𝑓(𝑦|𝛽, 𝜎2)𝜋(𝜎2) ∏ 𝜋(𝜏𝑗 , 𝜎2) 𝜋(𝜏𝑗)

𝑝

𝑗=1

= [(
1

2𝜋𝜎2
)

𝑛
2

𝑒𝑥𝑝 {−
1

2𝜎2
(𝑦 − 𝑋𝛽)′(𝑦 

− 𝑋𝛽)}]

𝜃
𝛾𝑎

𝛤𝑎
 (𝜎2)−𝑎−1𝑒

−
𝛾

𝜎2 ∏
1

√2𝜋𝜎2𝜏𝑗

𝑒
−

𝛽𝑗
2

2𝜎2𝜏  
𝜆

2
 𝑒−

𝜆𝜏𝑗

2

𝑝

𝑗=1

  

(9) 

 

The parameter (θ) controls the amount of data (likelihood) effect on prior density. Now 

based on Eq.(7), Eq.(1) and Eq.(8) the full conditional distribution distributions are as follows:  

1. The posterior distribution of  𝛽 is multivariate normal distribution with mean  (𝜃𝑋′𝑋 −
𝐸𝜏

−1)−1𝑋′𝑦 and variance  𝜎2(𝑋′𝑋 − 𝐸𝜏
−1)−1. 

2. The posterior distribution of 𝜎2 is inverse Gamma with the following shape parameter 

[𝜃 (
𝑛+1

2
) +

𝑝

2
+ 𝑎] and 

𝜃

2
(𝑦 − 𝑋𝛽)′(𝑦 − 𝑋𝛽) +

𝛽′𝐸𝜏
−1

𝛽

2
+ 𝛾. 

3. The posterior distribution of 𝜏 is Inverse Gaussian  (
1

2
, 𝜆, √

𝜆𝜎2

𝛽𝑗
2 ).  

4. The posterior distribution of 𝜆 is Gamma  (𝑝 + 𝑎,
1

2
∑ 𝜏𝑗 + 𝑏

𝑝
𝑗=1 ). 

Finally, the parameter θ  can be estimated by implementing the k-fold cross-validation 

method, see [14] for more information. 
 

Simulation study 
To evaluation the performance of the proposed method that based on modified the 

likelihood function in the Bayesian rule through raising the likelihood function to safe parameter 

(θ), simulation study is considered.  In this study the estimation accuracy is conducted to the 

proposed method NBLS compared  to the other existing method Ridge regression Method (RRM), 

Lasso Regularized Method (LRM), and Bayesian Lasso Method (BLM), the bias of parameters 

estimators are computed by using the following formula, 

𝐵𝑖𝑎𝑠 = 𝛽̂ − 𝛽𝑡𝑟𝑢𝑒 
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where 𝛽𝑡𝑟𝑢𝑒 is the true parameter vector. As well as, the performance of the methods are evaluated 

based on the median of mean absolute deviations   denoted as MMAD; where, 𝑀𝑀𝐴𝐷 =

𝑚𝑒𝑑𝑖𝑎𝑛 (𝑚𝑒𝑎𝑛(|𝑥𝑖
𝑇𝛽̂ − 𝑥𝑖

𝑇𝛽𝑡𝑟𝑢𝑒|)).    

In our simulation study, we have simulated eight predictor variables from the normal 

distribution N8(0, Σ),  where the variance- covariance matrix Σ is e|i−j| for each (i, j)th element. 

From the following model we have simulated two samples size (30 and 100): 

𝑦 = 𝑋𝛽 + 𝑒 

Where e is the error term with normal distribution 𝑒~𝑁(0,3), 𝛽 is the coefficients vector and we 

consider two cases:  
 

Case one 𝛽 = (0.85, 0.85,0.85,0.85,0.85,0.85,0.85,0.85) 

Case two 𝛽 = (3, 2.5,0,0,2,0,0,0) 

 

We have constructed an R code to implement MCMC algorithm. K-fold cross validation 

method have been used to compute the value of the safe Bayes parameter, we found the best values 

are (θ = 0.4 and θ = 0.5 ).  MCMC algorithm is run 20000 iteration and remove the first 5000 as 

burn in. We have shown the standard division of the parameters estimates in Table 1 for all methods 

proposed NBLS and existing methods RRM, LRM and BLM at the samples size 30 and 100. From 

this table we can see clearly that the proposed method get the smallest values of the SD among 

other methods at both cases and also at both samples. Compare to RRM and LRM methods, we can 

note that BLM method get small values in most cases and samples size. On the contrary, RRM 

method has the largest values of SD in both cases and also in both samples size. 

 

Table 1: The average SD of the parameter estimates of  NBLS , RRM, LRM and BLM 

methods 

Sample 
size 

Cases Methods 𝑺𝑫. 𝜷𝟏 𝑺𝑫. 𝜷𝟐 𝑺𝑫. 𝜷𝟑 𝑺𝑫. 𝜷𝟒 𝑺𝑫. 𝜷𝟓 𝑺𝑫. 𝜷𝟔 𝑺𝑫. 𝜷𝟕 𝑺𝑫. 𝜷𝟖 

N=30 
 

Case one RRM 1.4360 0.7321 1.5695 1.6209 0.9034 0.4059 0.7037 0.8488 

 LRM 1.7742 0.6878 1.0184 1.4226 0.8358 0.1437 0.5911 0.7653 

 BLM 1.0008 0.5328 0.7285 0.7683 0.5274 0.2846 0.4607 0.3798 

 NBLS 0.7866 0.3457 0.1022 0.5557 0.4273 0.0472 0.3506 0.1550 

Case two RRM 1.8973 0.7757 1.6323 1.3544 1.7719 1.1834 1.5282 1.2173 

 LRM 1.6741 0.6845 1.4403 1.1950 1.5634 1.0442 1.3484 1.0741 

 BLM 0.5116 0.5873 0.3120 0.4896 0.7835 0.4886 0.7731 0.4619 

 NBLS 0.4644 0.3326 0.2439 0.4383 0.5535 0.3434 0.6317 0.3375 

N=100 

Case one RRM 1.0959 0.9680 0.8243 1.7038 0.8435 1.0513 0.6250 1.1051 

 LRM 0.9980 0.8533 0.6692 0.9303 0.2623 0.8122 0.5967 0.7126 

 BLM 0.7721 0.3218 0.3843 0.7034 0.2563 0.4101 0.5853 0.6256 

 NBLS 0.5975 0.2617 0.2934 0.4480 0.2572 0.2133 0.3720 0.3069 

Case two RRM 1.1661 0.6955 1.3488 0.8576 1.0777 1.2370 0.8345 1.1088 

 LRM 0.9020 0.6737 1.2003 0.5224 0.7681 1.1196 0.7460 0.8650 

 BLM 0.4174 0.2995 0. 9503 0.3331 0.6261 0.7629 0.6216 0.7930 

 NBLS 0.1502 0.1356 0.6099 0.3156 0.4396 0.5189 0.4309 0.6133 
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Table 2: The average bias of the parameter estimates of  NBLS , RRM, LRM and BLM 

methods 

Sample 
size 

Cases Methods 𝜷𝟏 𝜷𝟐 𝜷𝟑 𝜷𝟒 𝜷𝟓 𝜷𝟔 𝜷𝟕 𝜷𝟖 

N=30 
 

Case one RRM 3.1588 2.4656 1.9383 2.2446 2.5297 1.9792 2.4242 2.1697 

 LRM 1.6494 0.5111 1.4018 0.2586 0.0682 0.3063 0.4530 0.6354 

 BLM 1.2759 0.1928 0.8050 0.9989 0.5865 0.1547 0.6683 0.9635 

 NBLS 0.5921 0.6464 0.6823 0.6413 0.6712 0.7047 0.6509 0.6405 

Case two RRM 2.1843 1.5420 1.8562 2.0804 2.2005 1.4699 1.8490 2.0787 

 LRM 1.8448 0.8455 2.0546 1.3811 1.1822 0.9628 0.9125 0.8604 

 BLM 1.4271 0.7303 1.1800 1.1720 1.0675 0.4861 0.9037 0.8499 

 NBLS 0.6721 0.7168 0.6913 0.6947 0.6856 0.7209 0.7100 0.6948 

N=100 

Case one RRM 1.8417 1.1523 13.0973 18.7547 13.0973 18.7547 1.5826 2.0296 

 LRM 1.0047 0.0578 12.3043 3.9292 12.3043 3.9292 1.0032 0.4996 

 BLM 0.2858 0.0338 7.4384 1.2172 7.4384 1.2172 1.6317 0.1657 

 NBLS 0.0623 0.0133 3.0035 0.9685 3.0035 0.9685 0.5016 0.1445 

Case two RRM 2.8112 1.8661 0.6402 0.4930 0.6402 0.4930 0.5486 0.6281 

 LRM 1.4006 0.2304 0.3151 0.4804 0.5151 0.4804 0.3756 0.4715 

 BLM 0.0169 0.0136 0.4154 0.4101 0.4154 0.4101 0.2166 0.2752 

 NBLS 0.0070 0.0106 0.1456 0.2673 0.1456 0.2673 0.1050 0.1875 

We have summarized the bias of all methods under study the existing methods RRM, LRM 

and BLM and the proposed method NBLS in Table 2. From the table we can see that clearly the 

proposed method NBLS get the smallest bias at both cases and samples, that indicated the proposed 

method is more accurate than the other methods. Whereas, RRM method get the largest values of 

bias in most cases and sample. Also we can notice that the bias of the BLM method was smaller 

than the LRM method. Table 3 show MMAD values for all methods in our study. The NBLS 

method has the lowest values of MMAD compare to the other method in this study. As same as that 

in Table 1 and Tale 2 the RRM method gets the largest values of MMAD. In addition, in this table 

the MMAD values for BLM method was smaller than that for LRM method. 

  

Table 3: The values of  MMAD of  NBLS , RRM, LRM and BLM methods 

Cases Methods 
MMAD 

N=30 N=100 

Case one RRM 3.5208 3.4760 

 LRM 2.0445 2.9983 

 BLM 1.9210 1.8792 

 NBLS 1.7172 1.5740 

Case two RRM 8.7384 6.0994 

 LRM 7.3233 5.5467 

 BLM 4.7506 3.8485 

 NBLS 2.5801 1.6014 

To check the convergence performance for the coefficient that estimated by the proposed 

method trace plots have been used in Figures 1-2.  In Figure 1, we show the trace plots for the 

estimated parameters by the proposed method for  case one and sample size n=30, whereas in 

Figure 2 we show the case two with sample size 100 for 20000 iterations. From these figures we 

can see that the chain of the estimated parameters for our proposed method there is low fluctuation 

in the chain and it became more stationary after the first 5000 iterations.  
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Figure 1: Shows the trace plots for the estimated parameters by the proposed method for   

case one and sample size n=30. 

 
Figure 2: Shows the trace plots for the estimated parameters by the proposed method for   

case two and sample size n=100. 

Real Application 
 A stroke size is one of the factors that impacting functional outcome for human. There are 

many different variables may be effect on the stroke size and then the human life. In this study, 150 

patients are drawing from Al-Diwaniyah Hospital during the period from 1/10/2022 to 15/12/2022. 

We study the effect of the some independent variables on the response variable (Y: stroke size), 

whereas the independent variables is ( X1: Age, X2: Smoking, X3: the weight of patient, X4: Blood 

pressure, X5: Diabetes, X6: Cholesterol, X7: Have a heart disease, X8: Gender, X9: Alcohol, X10: 

Exercise). Proposed method is adapted to relation between the response variable Y and covariates 

variables.  
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Table 4: Shows the parameters estimates by RRM, LRM, BLM and  NBLM with(𝜽 = 𝟎. 𝟒).   

Parameters Variables RRM LRM BLM NBLS 

𝜷𝟏 Age 1.6937 1.1547 1.1548 3.3754 

𝜷𝟐 Smoking -0.1403 1.7504 2.1750 1.5553 

𝜷𝟑 
the weight of 

patient 
-0.0515 3.0511 0.0511 7.6430 

𝜷𝟒 Blood pressure 1.0712 1.4700 3.6997 3.2848 

𝜷𝟓 Diabetes 0.1462 1.5625 1.6254 4.1775 

𝜷𝟔 Cholesterol 0.2266 -0.4045 1.0404 1.8183 

𝜷𝟕 
Have a heart 

disease 
0.1082 7.5755 0.0058 0.0032 

𝜷𝟖 Gender 0.1236 4.3548 1.3548 0.0008 

𝜷𝟗 Alcohol -0.5850 -1.1857 1.1857 -0.0124 

𝜷𝟏𝟎 Exercise -0.1108 4.9749 0.9749 -3.5498 

 In Table 4, result of the real data application is reported. This result show the coefficients 

estimated by the proposed NBLS and existing methods RRM, LRM and BLM. It’s clearly, that the 

estimated coefficients (Have a heart disease, Gender and Alcohol) close to zero that meaning these 

variables do not have important effect on the size of stroke. The proposed method also showing that 

the variables (the weight of patient, Diabetes, Exercise, Age and Blood pressure) have large effect 

on the response variables, this method can selected the important variables. Also, we can see that 

the perform of the BLM method is better than the other existing method where this method can 

choose the important and unimportant variables.  

Table 5: Shows the RMSE and MAE for the different methods 

Methods RMSE MAE 

RRM 9.7376 8.2063 

LRM 8.1475 7.7808 

BLM 5.0463 5.3358 

NBLS 3.0291 2.7089 

 
 Table 5 shows the RMSE and the MAE for the proposed method, NBLS and the other three 

existing methods RRM, LRM and BLM. The performance of the method was better than that of the 

other methods, since it showed the smallest RMSE and MAE. From this table we can also see that 

the BLM method does better than the RRM, LRM methods. 

Conclusion  
 The new formulation of the scale mixture of Rayleigh distribution mixing with exponential 

distribution has employed with the safe Bayesian parameter to the likelihood function. The 

proposed formula applied to the linear regression for the sake of variable selection procedure. This 

paper proposed new hierarchical priors model representation based on the developed formulation 

and then new posterior distribution have derived. Gibbs sampler algorithms have used to compute 

the mode of the posterior distribution of the interested parameters. Simulation experiments analysis 

have been conducted to find the solution of the shrinkage method and the results yields the 

minimum bias for the proposed method compared with the other models, also we have obtained the 

minimum value of the prediction accuracy criterion MMAD. Furthermore we performed the 

variable selection for real data analysis and the results showed that the proposed model is sparse 

model with the minimum MMAD and MAE. 
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 التنبؤ بالتحليل المعاقب للسكتة الدماغية بناءً على نموذج بايزي الهرمي الجديد
 طه الشيباوي احمد نعيم فليح

ahmed.flaih@qu.edu.iq taha.alshaybawee@qu.edu.iq 
 ، العراقالقادسية، القادسيةجامعة  - كلية الادارة والاقتصاد  - الاحصاءقسم 

الصلوخحسن   
hxelsalloukh@ular.edu 

 الولايات المتحدة الأمريكية جامعة أركنساس في ليتل روك، أركنساس، - قسم الرياضيات والإحصاء

 

 المستخلص  معلومات البحث

تعد طرق العقاب أو التنظيم في الوقت الحاضر من أكثر الأدوات   تواريخ البحث:

شيوعًا.  وإجراءات اختيار المتغير الإحصائية المستخدمة في اختيار النموذج

تعتمد جودة تقديرات معلمة الانحدار على دقة التنبؤ للنموذج المقدر وقابلية 

تفسير النموذج. عادة ما تنتج أساليب المشغل المعاقب النموذج الأكثر بخلا )عدد 

أقل من المتنبئين ومزيد من التفسير(. تم في هذا البحث استخدام خليط مقياس 

من خلط رايلي مع الكثافة الطبيعية لدراسة العلاقة بين حجم الضربة جديد 

وبعض المتنبئات. لقد تم تطوير نموذج هرمي جديد للأقدمية بالإضافة إلى 

الجديدة. أظهرت النتائج أن النموذج المقترح  Gibbsخوارزمية أخذ عينات 

 يمكن مقارنته ببعض نماذج التنظيم الموجودة.

 7/1/0202ث: تاريخ تقديم البح

 3/3/0202تاريخ قبول البحث: 

 23/12/0202تاريخ رفع البحث على الموقع: 
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