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Abstract: A coupled artificial neural network model with 
a genetic algorithm optimization model is developed for a 
practical case of a single cutoff. The proposed cutoff is of a 
soil-embedded vertical part with an inclined extension. The 
model successfully found the optimum dimensions of the 
vertical and inclined parts, the optimum angle of 
inclination, and the optimum length of protection 
downstream of the cutoff for a factor of safety of 3 against 
piping. Two thousand one hundred cases are modeled first 
using Geo-studio software to find the required length of 
downstream protection against piping for different lengths 
of the vertical, inclined lengths of the cutoff, its angle of 
inclination, soil layer depth, and degree of anisotropy. 
Then the created data set was used to develop an Artificial 
Neural Network (ANN) model for finding the length of 
protection required. The ANN model showed high 
performance with a determination coefficient of (0.922). 
The genetic algorithm model needs a minimum number of 
randomly generated populations of 100000 and three 
crossover iterations to produce a stable optimum solution. 
Running the model for different practical cases showed 
that the optimum angle variation was low and fluctuated 
around 30o. This low angle variation was due to its lower 
effect on the downstream soil protection length compared 
to the other decision variables. At the same time, the other 
dimensions varied with input variables, such as the depth 
of the soil layer, the seepage driving head, and the degree 
of isotropy. For a degree of anisotropy (ratio of vertical to 
horizontal hydraulic gradient) less than 0.5, the results 
showed no need for protection against piping; hence it is 
recommended to use minimum dimensions for such a case. 
The coupled model can easily obtain the optimum 
dimensions for any given input. Importance analysis 
showed that the optimum length of the downstream 
protection was highly affected by the vertical and inclined 
length of the cutoff, while it was less affected by the angle 
of inclination. Correlation analysis supported the 
importance analysis. 
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 نموذج الأمثلیة لإستقرار حاجب مكون من جزء شاقولي مدفون بالتربة وجزء مائل
 2 رزكار أحمد كریم  ،1 رافع ھاشم شاكرالسھیلي

 . ، امریكاقسم الھندسة المدنیة / كلیة الھندسة / جامعة سیتي كولیج 1
 . ھندسة الموارد المائیة / كلیة الھندسة / جامعة السلیمانیةقسم  2

 الخلاصة
تم تطویر نموذج مدمج بین الشبكة العصبیة الصناعیة ونموذج تحسین الخوارزمیة الجینیة لحالة عملیة لحاجب منفرد. الحاجب المقترح  
  متكون من جزء شاقولي مدفون في التربة وجزء مائل. نجح النموذج في إیجاد الأبعاد المثلى للأجزاء الشاقولیة والمائلة والزاویة المثلى 

ضد ظاھرة الغلیان لجعل الكلفة أقل ما    3عامل أمان قدره    م باستخدا  وذلك الحمایة المطلوبة لتربة مؤخرة الحاجب الأمثل    للمیل وطول 
لإیجاد طول المطلوب    Geo-studioحالة التي حصلت علیھا باستخدام برنامج    2100یمكن. تم بناء النموذج لقاعدة بیانات متكون من  

المائلة وزاویة المیلان للحاجب وعمق طبقة ودرجة    والأطوال لقیم مختلفة من الأطوال الشاقولیة    لیان،الغللحمایة المؤخرة ضد ظاھرة  
بعد ذلك تم استخدام قاعدة البیانات ھذه لبناء نموذج الشبكات العصبیة الصناعیة لإیجاد طول الحمایة المطلوبة.    التربة،تباین خواص  
یحتاج نموذج الخوارزمیة الجینیة إلى حد أدنى لعدد الحلول    0.922درجة عالیة من الأداء مع معامل تحدید (  ANNیظھر نموذج  

لإنتاج حل أمثل مستقر. یوضح تشغیل النموذج لحالات عملیة مختلفة    3وعدد المحاولات المطلوبة ھو   100000المولدة عشوائیاً من  
درجة. یرجع ھذا التباین المنخفض للزاویة إلى تأثیرھا المنخفض على طول حمایة   30ول أن التباین الأمثل للزاویة منخفض ومتقلب ح

تختلف الأبعاد الأخرى باختلاف متغیرات الإدخال مثل   الوقت،في نفس  الأخرى. التربة في اتجاه مجرى النھر مقارنة بمتغیرات التحكم 
)  0.5أقل من (   والأفقيالنتائج بأنھ في حالة نسبة معامل النفاذیة الشاقولي  عمق طبقة التربة وشحنة الماء ونسبة معامل النفاذیة. أظھرت  

یوجد حاجة لحمایة مؤخر الحاجب. لذلك نوصي باستخدام الحد الأدنى من الأبعاد لمثل ھذه الحالة. باستطاعة النموذج المدمج الحصول   فلا
بأن طول الحمایة الأمثل للتربة في مؤخرة الحاجب    الارطبات،   وتحلیل ة  بسھولة على الأبعاد المثلى لأي معطیات معینة. بینّ تحلیل الاھمی 

 . للحاجب بینما زاویة المیل ذات تأثیر قلیل  والمائلیتأثر بشكل كبیر بالطول الشاقولي  
 . Geo-studio المدفون،الشاقول  المائل،الحاجب  الجینیة،الخوارزمیة  التحسین،نموذج  ،ANNنموذج  الكلمات الدالة:

1.INTRODUCTION
For hydraulic structures, foundation design 
cutoffs and sheet piles are usually used to 
increase the safety factor against prevailing 
failures. One of the most common failures is the 
failure of the downstream soil due to piping. To 
increase the safety factor against this failure, 
downstream protection is usually used in 
addition to other facilities such as cutoffs. Much 
research has been done analyzing the effect of 
the upstream and downstream cutoffs on the 
required protection length. Other research has 
developed optimization models to find the 
optimum design for these facilities (upstream 
cutoff length, downstream cutoff length, and 
protection length) with the constraints 
satisfying the required safeties factor against 
both uplift and piping [1, 3, 7, 12]. Al-Suhili and 
Karim (2014) [2] developed a Genetic 
Algorithm model coupled with an Artificial 
Neural Network model to find the optimal 
values of upstream and downstream cutoff 
lengths, foundation length, and downstream 
protection length required for a hydraulic 
structure [1]. Other research investigated the 
effect of an inclined sheet pile on the piping 
phenomenon. Alnealy and Alghazali (2015) [1] 
analyzed the seepage under hydraulic 
structures using a "slide program". The results 
presented were the uplift pressure variation 
along the structure’s base and the exit gradient 
at the toe of the structure. These variations were 
shown for different cutoff angles; for two cases 
of upstream and downstream cutoff locations, 
the soil beneath the structure was either one 
layer or two layers. They observed that the best 
angles for the upstream and downstream 

cutoffs were 45 and 120, respectively 
[2]. Hassan (2017) used a genetic algorithm 
technique integrated with a numerical model 
(finite element method) to compute the optimal 
cutoff location and angle of inclination for 
barrages constructed on homogenous 
anisotropic soil foundations. The results 
indicated that the optimum depth of upstream 
cutoff to the width of foundation n ratio was 
0.4, and the optimum angle range was (59o, 
68o) [3]. Mansuri et al. (2014) studied the effect 
of the location and angle of the cutoff wall on 
uplift pressure in a diversion dam. They 
concluded that as the cutoff wall location 
approached the downstream side with an 
increasing inclination angle, the reduction in 
total uplift force decreased [4]. Ijam 
(1994) developed an analytical solution for the 
exit gradient variation downstream of a 
horizontal foundation dam with an inclined 
cutoff at the downstream side resting on a 
homogeneous, isotropic soil of infinite depth. 
The author concluded that using an inclined 
cutoff would increase the factor of safety 
against uplift and piping [5]. Ijam 
(2011) modified this solution to cover the same 
configuration, except that the cutoff locations 
can be at any point along the dam foundation. 
Similar results were obtained in the above-cited 
work [6]. Al-Saadi et al. (2011) investigated the 
effect of cutoff inclination angle on the exit 
gradient and uplift pressure head under 
hydraulic structure using (ANSYS11.0). They 
concluded that a downstream cutoff inclined to 
the right side by less than 120º was beneficial 
for increasing the factor of safety against piping 
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[7]. Esmat (2011) used (Geo-Studio 2007, 
SEEP/W) software to analyze the effect of the 
cutoff wall angle of inclination on uplift, 
seepage flow, and piping. Results showed that 
the angle that minimized the seepage flow was 
about 60°, while that minimized the uplift 
pressure ranged from 120° to 135° and that for 
the piping ranged from 45° to 75° [8]. Obead 
(2013) used (FORTRAN 90) to investigate the 
inclined cutoff position and inclination 
influence. Results showed that as the location of 
the inclined cutoff approached the downstream 
side, the required inclination angle for 
minimizing the seepage flow should be 
increased [9]. Armanuos (2021) used FEM to 
investigate the effectiveness of inclined double-
cutoff walls under hydraulic structures. The 
results showed that increasing the inclination 
angle of the downstream cutoff wall had a major 
impact on the exit gradient reduction. In 
addition, they concluded that the use of cutoff 
walls in the upstream and downstream ended 
with right angles and equal depths significantly 
reduced the seepage discharge more than any 
other configurations [10]. Alsenousi and 
Mohamed (2008) used a two-dimensional 
finite element model for analyzing seepage flow 
below a dam with an inclined cutoff located 
anywhere along the dam base. The results 
agreed with Ijam’s (2011) conclusions 
regarding the benefits of locating the inclined 
sheet pile at the toe of the dam and the 
inclination angle towards the downstream 
[11]. Al-Suhili et al. (2017) conducted an 
experimental study to verify the results of the 
SEEP/W software for seepage analysis under 
hydraulic structures with upstream and 
downstream inclined cutoffs. A genetic 
algorithm model coupled with the ANN model 
was used as an optimization tool to find the 
optimum lengths and inclinations for any 
hydraulic structure configurations [12]. Al-
Suhili (2009) used conformal mapping to 
obtain an analytical solution for the exit 
gradient variation along the downstream side of 
an inclined sheet pile [13]. Hassan (2018) 
applied an optimization model using the finite 
element method coupled with the genetic 
algorithm technique to find the optimal cutoff 
location and angle of inclination for barrages 
constructed on homogenous anisotropic soil 
foundations. The results showed that these 
optimal distance variables were affected by the 
anisotropic degree [14]. The novelty of the 
current work is related to the geometry of the 
hydraulic structures under study. None of the 
cited related research regarding inclined 
cutoffs’ effect on seepage has investigated an 
inclined cutoff with an embedded vertical part 
for traditional seepage analysis and the 
optimum design of the cutoff dimensions and 
inclinations. The practical implementation of 
an inclined cutoff is to have a vertical embedded 

followed by the inclined part. This structure is 
usually used when constructing an inclined 
cutoff or sheet pile. This study aims to 
investigate the case of an inclined sheet pile 
with an embedded vertical part. More 
specifically, determine the effect of the cutoff 
dimensions and inclination variations on the 
exit gradient and hence on the optimum 
dimensions and inclination of the cutoff. 
Starting with a simple sheet pile will open the 
gate for future research on a complete hydraulic 
structure with incline cutoffs constructed with 
an embedded part. This study will extend 
observing of the effect of the embedded part 
length, inclined part length, and angle of 
inclination to obtain the optimum design for 
these parameters and the length of the 
downstream protection required. 
2. METHODOLOGY 
Fig. 1 shows the physical configuration of the 
problem under study. The following are the 
definitions of the terms used. L is the length of 
downstream protection for a given factor of 
safety against piping, which is related to the exit 
gradient and the critical exit gradient, H is the 
difference of head between upstream and 
downstream water levels, D is the depth of 
impervious layer, d is the length of the vertical 
embedded part of the cutoff, S is the length of 
the inclined part of the cutoff, θ is the angle of 
inclination, and kr is the hydraulic conductivity 
ratio (ky/kx). Fig. 2 shows a flowchart of the 
used methodology, as follows: 
1. Developing a database that includes the 

input variables (D, H, d, S, θ, and Kr) and 
the corresponding output variable L for a 
factor of safety of 3 against piping (Fs = 
𝑖𝑖𝑐𝑐𝑐𝑐
𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 ≥ 3, icr is the critical exit gradient, and 

i is the hydraulic exit gradient). The 
software used is Geo-Studio 2018, 
SEEP/W.  

2. Use dimensional analysis to cast the 
variables into dimensionless pi-terms. 

3. Develop an ANN model to find the output 
pi-term variables (L/H) as a function of the 
input pi-term variables (S/H, D/H, d/H, 
Kr, and θ). 

4. Formulate an optimization model to find 
the optimum design variables (decision 
variables, L, S, d, and θ) for any given set of 
input variables (H, D, and Kr). 

5. Develop a coupled ANN-Genetic algorithm 
model to solve the optimization model 
developed above.  

Some of the above steps require clarifications, 
such as the ANN and GA optimization models. 
The ANN theoretical basis is well-known; 
however, the explanation presented herein will 
focus on the application. Similarly, an 
explanation will be given for the Genetic 
Algorithm solution of the optimization 
problem. 
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 Fig.1 Physical Configuration of the Problem. 

 
Fig.2 Methodology Flowchart. 

2.1.  Artificial Neural Network Model 
The artificial neural network models are black-
box data, dependable models. In this research, 
the ANN model was used with the physical 
judgment of the phenomenon. Since the exit 
gradient was physically a function of the soil 
strata properties and the geometrical 
dimensions of the incline cutoff, the ANN 
model was cast herein to follow this physical 
concept. The application of this software also 
allowed the selection of the data divided into a 
training set, testing set, and validation 
(holdout) set 

 
Fig.3. Architecture of the Artificial Neural 

Network Model. 
The general equations for the ANN model are 
shown below, as presented by Al-Suhili and 
Ghafour (2013) [15] 

Zin(px1) = Vobias(px1) + VT(nxp) * X(nx1)            (1) 
Z (px1) = tansh (Zin(px1))                                   (2) 
yin (mx1) = Wobias (mx1) + WT (pxm) * Z (px1        (3) 
y (mx1) = yin (mx1)                                                (4) 
L = y1 * sd L + Mean L      (5) 
where n is the number of input variables 
(nodes) in the input layer, P is the number of 
nodes in the hidden layer, and m is the number 
of nodes (variables) in the output layer. The 
activation functions of the hidden and the 
output layers are the hyperbolic tangents and 
the identity, respectively. X is the standardized 
input variables vector (D/H, S/H, d/H, θ, Kr), y 
is the standardized output variables vector 
(L/H), and L is the anti-standardized variable 
2.2.a.OptimizationModel Formulation 
The dimensions and inclination of the inclined 
cutoff (d, S, and θ) and the required length of 
protection against downstream piping (L) are 
all affected by the maximum expected 
difference in head between the upstream and 
downstream sides of the hydraulic structure 
(H), the depth of impervious layer D, and the 
soil strata properties (kx and ky). The most 
critical failure for such a structure may be the 
erosion of the downstream side when the 
hydraulic gradient exceeds the critical exit 
gradient. The designer can control these 
failures by providing the recommended factors 
of safety against exit gradient failures(piping). 
The controlling process is done by selecting the 
dimensions of S, d, θ, and L for a given (H), (D), 
and (Kr). It is better to select optimum 
dimensions; the following formulation of such 
a problem could be introduced. 

Min. f(x) = C1S + C2d + C3L  (6) 
where f(x) is the cost function that should be 
minimized. C1, C2, and C3 are the relative cost of 
each dimension. These values should be set 
relatively from available location-wise cost 
databases for such types of constructions. 
These costs are usually available in known 
databases in advanced countries, while for 
developed countries, they can be set using 
practical cost experience and construction 
market prices. Since these costs are relative, 
they should be assigned such that they sum to 
unity. This function is subject to the following 
constraint: 

Fs = 𝑖𝑖𝑐𝑐𝑐𝑐
𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 ≥ 3                                (7) 

where Fs is the factor of safety against piping, 
with a minimum selected value of 3, as 
recommended by many authors [1, 12, 16]. icr is 
the critical exit gradient = 𝐺𝐺𝐺𝐺−1

1+𝑒𝑒
, where Gs and e 

are the soil’s specific gravity and void ratio. 
However, for most soils, icr is approximately (1), 
which is the hydraulic gradient at the 
downstream soil bed, where the seeped water 
exits the soil body, at which it will create soil 

 

Start 

Geo-Studio 2018, 
SEEP/W 

Dimension Analysis 

L/H = f (S/H, D/H, d/H, Kr, θ) 

Artificial Neural Network Model 

L/H = f (S/H, D/H, d/H, Kr, θ) 

Optimization Model using Genetic 
Algorithm 

Coupled of ANN – 
Genetic Algorithm 

Model 

End 
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boiling, i.e., piping failure. iexit is the computed 
exit gradient at the downstream side of the 
cutoffs due to the soil properties and cutoff 
dimensions and inclination. 
The other constraints are: 

  d +S*sin θ < D     

  dmin ≤ d ≤dmax 

   Smin ≤ S ≤Smax   

                              θmin ≤ θ ≤θmax                   

    

where dmin, dmax, Smin, Smax, θmin, and θmax are 
user-selected limits of the minimum and 
maximum vertical and inclined cutoff 
dimensions and angle of inclination. 
2.2.b.  The Genetic Algorithm Model 
Solution 
For the formalized optimization model solution 
shown above, the genetic algorithm solution 
methodology followed the steps below: 
1. Randomly generate Np (number of 

population). Each solution was represented 
by the following chromosome, which had 
four genes, as the decision variables were 
four, as shown below. 

 
. 

2. Apply Eq. (9) to ensure each generated 
variable is feasible and satisfies the related 
constraints. 

x∗ = x ∗ (Xmax − Xmin) + Xmin  (9) 

3. Apply the crossover process such that every 
two parents from the randomly generated 
population produced two offspring, as 
shown in Fig. 4 . The variables A, B, C, D, E, 
F, G, and H are the corresponding x* values 
shown as letters to explain the crossover 
process (swapping). 

 
Fig.4 Crossover Process. 

4. Evaluate the fitness function (the objective 
function) for each solution in the population 
and the offspring societies combined in one 
society (2*Np) using the developed ANN 
model. All the solutions were sorted in 
ascending order, and the last Np solutions 
were removed. The remaining Np solutions 
were used for the next iteration.  

5. As the number of iterations was decided and 
implemented, the last three best solutions of 
the final iteration were used for a mutation 
process (if needed) to reach the most 
optimal solution.  

It is worth mentioning that many factors of the 
genetic solution process were subjected to 
sensitivity analysis to find the best values for 
the problem under study, i.e., the Np value that 
gave a stable solution, the crossover position, 1, 
2 or 3, and the percent of crossover and the 
percent of mutation. 
3.RESULTS AND DISCUSSION 
3.1. Result of the Geo-Studio 
In order to create a database that could be used 
to develop the ANN model, (2100) different 
cases of the proposed phenomenon were 
analyzed using the Geo-studio model. For each 
case, different S, d, H, D, θ, and Kr values were 
selected. The results were used to estimate the 
required length (L) of the protection of the soil 
downstream of the cutoff, which satisfied the 
constraints of factors of safety against piping 
failure of (3) using equations (7) and (8), 
respectively. The results of the (2100) cases and 
the corresponding input values were cast in 
dimensionless variables (D/H, S/H, d/H, θ, and 
Kr) as the inputs and (L/H) as the output. This 
use of these dimensionless variables allowed 
the generalization of the developed model. 
Even though these results were proposed to be 
only a database for the ANN model, some 
results would be illustrated to prove reasonable 
variation. However, the validity of the Geo-
Studio modeling of seepage was well verified by 
(1) by comparing the head values obtained from 
the software to the corresponding heads 
obtained from measurements of physical 
models. The validation was done for 
complicated geometrical configurations, such 
as a dam with two vertical cutoffs. In order to 
ensure validation for inclined cutoffs, the Geo-
Studio results were highly verified by Al-Suhili 
et al. [12], as they used a similar complicated 
configuration to (1), except inclined cutoffs, 
rather than vertical ones. Figs. 5 (a) and (b) 
show the geo-studio results for the isotropic 
case, i.e., the soil had the same hydraulic 
conductivity in all directions (Kx=Ky). The y-
axis is the exit gradient expressed in the Geo-
Studio software, while the x-axis is the distance 
from the downstream cutoff edge. The variation 
of the exit gradient in Fig. 5 (b) looks 
reasonable, as all the exit gradient values are 
less than 1 and give a non-linear decreasing 
variation with distance along the downstream 
side of the cutoff. Also, the exit gradient 
approached a limiting almost constant value as 
distance increased. These observations comply 
with the physical behavior. Figs. 6 (a) and (b) 
show the geo-studio results for a case of 
anisotropic soil (𝐾𝐾𝐾𝐾 ≠ 𝐾𝐾𝐾𝐾). The results shown 
agree with the expected physical behavior The 
validation was done for complicated 
geometrical configurations, such as a dam with 
two vertical cutoffs. In order to ensure 
validation for inclined cutoffs, the Geo-Studio 
results were highly verified by Al-Suhili et al. 

(8) 
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[12], as they used a similar complicated 
configuration to (1), except inclined cutoffs, 
rather than vertical ones. Figs. 5 (a) and (b) 
show the geo-studio results for the isotropic 
case, i.e., the soil had the same hydraulic 
conductivity in all directions (Kx=Ky). The y-
axis is the exit gradient expressed in the Geo-
Studio software, while the x-axis is the distance 
from the downstream cutoff edge. The variation 
of the exit gradient in Fig. 5 (b) looks 
reasonable, as all the exit gradient values are 
less than 1 and give a non-linear decreasing 
variation with distance along the downstream 
side of the cutoff. Also, the exit gradient 
approached a limiting almost constant value as 
distance increased. These observations comply 
with the physical behavior. 

   
Fig.5a. Geo-Studio Analysis Flow Field Result 

for the Isotropic Case. 

 
Fig.5b. Geo-Studio Results for Exit Gradient 

Variation Downstream of the Sheet Pile for the 
Isotropic Case. 

Figs. 6 (a) and (b) show the geo-studio results 
for a case of anisotropic soil (𝐾𝐾𝐾𝐾 ≠ 𝐾𝐾𝐾𝐾). The 
results shown agree with the expected physical 
behavior. The variation of the exit gradient in 
Fig. 5 (b) looks reasonable, as all the exit 
gradient values are less than 1 and give a non-
linear decreasing variation with distance along 
the downstream side of the cutoff. Also, the exit 
gradient approached a limiting almost constant 
value as distance increased. These observations 
comply with the physical behavior. Figs. 6 (a) 
and (b) show the geo-studio results for a case of 
anisotropic soil (𝐾𝐾𝐾𝐾 ≠ 𝐾𝐾𝐾𝐾). The results shown 
agree with the expected physical behavior. 

Fig.6a. The Geo-Studio analysis flow field 
result for the anisotropic case 

 
Fig.6b. Geo-studio Results for Exit Gradient 
Variation Downstream of the Sheet Pile for 

Anisotropic Case 
3.2. Result of the ANN Model 

The input variables for the ANN modeling 
should be standardized to remove each 
variable's effect on the order of magnitude. 
Hence, each variable’s means and standard 
deviation values in the database were 
considered part of the ANN model parameters 
(Table 1). 
Table 1. The Max. and Min. Values 0f The 
Input and Output Variables 0f the ANN Model. 

Variables N Minimum Maximu
m 

Mean Std. 
Deviation 

D / H 2100 0.83 5.00 2.25 1.25 
S / H 2100 0.08 0.75 0.29 0.19 
d / H 2100 0.08 0.75 0.30 0.20 
L / H 2100 0.00 2.20 0.96 0.58 

θ 2100 0.00 180.00 90.04 58.93 
Kr 2100 0.25 1.00 0.63 0.28 

Valid N 
(listwise) 2100     

The application of the SPSS software on the 
database showed that 78.7% (1653 cases) were 
selected for training, 16.8% (353 cases) for 
testing, and 4.5% (94 cases) for validation. The 
required number of the hidden nodes in the 
hidden layer was found to be p =7, as n =5 and 
m =1. The ANN model matrices were found to 
be as follows 

wobias (1x1) = -0.553   (10) 

X (5x1) =

⎣
⎢
⎢
⎢
⎡
D/H
S/H
d/H
ϴ
kr ⎦

⎥
⎥
⎥
⎤
             (11) 
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Vobias (7x1) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
−1.679
−0.190
−3.372
−0.485
−1.326
−0.330
−0.269⎦

⎥
⎥
⎥
⎥
⎥
⎤

               (12) 

 
Vobias(7x1)=  

⎣
⎢
⎢
⎢
⎡
−1.778 −0.200 −0.325
−0.712 0.724 2.109
−0.437 −0.831 4.122

0.134 0.544 0.160  0.183
0.749 −0.319 −0.360 −0.060
1.768 −0.809 −0.556     0.144

0.122 0.269 0.207
−0.441 −0.690 0.308

−0.500 0.294 0.217 −0.337
−0.472 −1.458 −0.447 −0.209⎦

⎥
⎥
⎥
⎤
     (13) 

 

W (7x1) =        

⎣
⎢
⎢
⎢
⎢
⎡
−0.674
1.157
−0.874
0.376
0.271
−2.170
0.053 ⎦

⎥
⎥
⎥
⎥
⎤

          (14) 

 
 
 
Interpretation of the ANN model results 
showed that the software had adjusted the 
selected percentages of the training set from 
70% to 78.7%, for the testing set from 20% to 
16.8%, and for the validation from 10% to 4.5%. 
This software modification was performed due 
to the selection of the option of random data set 
for training, testing, and validation, which will 
make the software selection more accurate than 
the user selection. The optimum number of 
hidden nodes in the hidden layer was selected 
by the software as 7 from the tried hidden nodes 
number between 1 and 50 nodes. The 
determination coefficient of the model showed 
that the model performance was very well, as it 
can explain 92.2% of the variance of the 
phenomenon. 
3.3. Result of The Coupled Genetic 
Algorithm ANN Model 

A Matlab code was written for the genetic 
algorithm solution of the formulated 
optimization model. As explained above, this 
method requires finding the objective function 
of many solutions many times throughout the 
process. For this purpose, the developed ANN 
model was coupled with the genetic algorithm 
model. To apply the genetic algorithm model 
using this code, some parameters need to be set, 
such as (dmin = 0, dmax = 2 m, Smin = 0, Smax = 4 
m, θmin = 30o, θmax = 150o, C1= C2 = 0.25, and 
C3 = 0.5). Other parameters should be found 
using sensitivity analysis as follows: 
3.3.1.  The Number of Population (Np) 

As the genetic algorithm solution starts with 
generating Np random solutions, arbitrary 
selection of a small Np value will result in 
different optimum solutions in each run, which 
creates the problem of robustness. For this 
reason, it is essential to determine the 
minimum Np value that assures a stable 
solution, i.e., gives the same optimum solution 
in each run. Table 2 below shows a sensitivity 
analysis for Np to achieve this goal. Table 2 
shows that an Np value of 1500 was required to 
obtain a stable optimum objective function. For 
Np=10, there was a considerable difference in 

the optimum solution (minimum objective 
function) between the three runs. As Np further 
increased, those differences got smaller; 
however, they got equal when Np increased to 
1500. 
Table 2. Sensitivity Analysis 0f Np for A Stable Solution 

Np Run 1 Run 2 Run 3 
10 4.1761 4.2724 4.1119 
50 4.1512 4.0952 4.0985 

200 4.0890 4.0922 4.0821 
800 4.1000 4.0717 4.1000 
1000 4.0722 4.0721 4.1000 
1200 4.1000 4.1000 4.0809 
1500 4.1000 4.1000 4.1000 

However, this Np value gave an unstable 
optimum solution, i.e., the same decision 
output variables (S, d, θ, and L) for the same 
inputs for different runs. For these reasons, 
different runs were made, increasing the Np 
value to 100000, the minimum found Np value 
that gave a stable optimum solution. 
3.3.2  The Number of Iterations (Ni) 
As explained above, in the genetic algorithm 
solution, the crossover process should be 
iterated in order to get a stable optimum 
solution. It was found that for Np =1500, the 
required number of iterations was equal to two. 
Hence, three iterations were used to ensure a 
stable solution, and this number of iterations 
was acceptable for an Np = 100000. 
3.3.3  Effect of Input Variables on 
Decision Variables and Objective 
Function 
The input variables for the problem under study 
were D, H, and Kr. The genetic algorithm model 
developed was used to investigate the effect of 
variations of these input variables on the 
optimum solution and the objective function. 
These effects were investigated using 
dimensionless forms of the input variables, 
such as D/H and Kr. Figs. (7, 8) show the effect 
of D/H on the optimum solution for isotropic 
soil media. To illustrate the effect of H and D, 
Fig. 7 was obtained by setting H = 8 m and 
changing the D values, while Fig. 8 was 
obtained by setting H = 2m and allowing D to 
change as before. 

 
Fig.7. Variation of Decision Variables and 

Objective Functions with D/H, H = 8 m and Kr 
= 1 (Isotropic Case). 

Fig. 7 shows a slight declining slope of all the 
variables with the increase of D/H. However, 
S/H and F(x) showed a slight increase at the low 
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value of D/H, then followed the declined slope, 
as mentioned above. Fig. 8 shows similar 
behavior, except that the value increase at low 
D/H values was observed for S/H, F(x), and 
L/H. The two figures indicate that the optimum 
L/H value was less or equal to 0.5, and as H 
increased, the L/H values increased. Increasing 
the H value may increase the L/H but still far 
below one. To investigate the effect of this 
variation for an anisotropic case, Fig. 9 was 
obtained by setting the same values as Fig. 7, 
except that Kr was changed to 0.75 instead of 1. 
A comparison between Fig.7 and Fig. 9 shows 
that for the isotropic case, the d/H decreased 
while the S/H increased. To obtain the effect of 
anisotropy more thoroughly, the variation of 
the decision variables and objective function 
with Kr was investigated. to investigate the 
effect of this variation for the anisotropic case, 
Fig. 9 was obtained by setting the same values 
as Fig. 7, except that Kr was changed to 0.75 
instead of 1. Comparing Figs. (7, 9) show that 
the d/H decreased while the S/H increased for 
the isotropic case. In Figs. (7, 8, 9), the angle of 
inclination of the sheet pile was not shown. The 
reason is that the results of θ showed a very 
narrow range (30.01o, 30.78o). For this reason, 
the optimum inclination angle was 30o for a 
wide range of inputs. This variation is shown in 
Figs. (10, 11), where H changed from 8m to 12m. 
The Kr values varied from 0.5 to 1, as the 
calculation showed that the S/H and d/H were 
approximately zero for smaller Kr values, which 
is reasonable since, for low Kr values, the 
vertical permeability was much lower than the 
horizontal one, which decreased the hydraulic 
vertical gradient. Fig. 10 shows that for Kr 
between 0.5 and 0.6, the required L/H was 
greater than one. As Kr changed from 0.6 to 0.7, 
a steep decrease in the L/H value was obtained, 
which stayed almost constant for Kr between 
0.7 and 1. As H increased to 12 m (Fig. 11), the 
L/H value showed similar behavior, except as 
Kr increased from 0.7 to 1, the L/H value 
decreased. The objective function variation was 
relatively low, slightly decreasing as Kr 
increased, as shown in Figs. (10, 11). The S/H 
and d/H variation with Kr was the same for 
both figures. S/H and d/H were zero for Kr = 
0.5, sharply increased as Kr increased from 0.5 
to 0.7, then almost constant as Kr increased 
further to 1. The above discussions show 
important effects on the objective function and 
decision variables. Fixing some variables while 
changing others does not give the global ideal 

about the relative effects of the input variables 
on the optimum design. For this purpose, an 
importance analysis was done to first show the 
effect of each ANN input variable on the output 
L/H. 

Fig. 8. Variation of Decision Variables and 
Objective Functions with D/H, H = 12 m and 

Kr = 1 (Isotropic Case). 

Fig.9 Variation of Decision Variables and Objective 
Functions with D/H, H = 8 m and Kr = 0.75 

(Anisotropic Case). 

 
Fig.10. Variation of Decision Variables and 

Objective Functions with Kr, H = 8 m and D =10 m 
(Anisotropic Case) 

 
Fig.11 Variation of Decision Variables and 

Objective Functions with Kr, H =12 m and D=10 m 
(Anisotropic case 

Table 3 Independent Variable Importance. 
variable Importance Normalized 

Importance 
D/H 0.121 31.2% 
S/H 0.251 64.8% 
d/H 0.387 100.0% 

θ 0.057 14.7% 
Kr 0.184 47.6% 

Table 3 shows that the variables’ relative 
importance to L/H were in descending order 
(d/H, S/H, Kr, D/H, and θ) with the following 
numerical relative importance (100%, 64.8%, 
47.6%, 31.2, and 14.7), respectively. As Kr and 
D/H were not decision variables, then the other 
three decision variables should be focused on. 
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The d/H had the highest effect, which relatively 
means the vertical embedment of the cutoff, 
followed by the S/H, which means the inclined 
length of the cutoff. In contrast, the angle of 
inclination of the cutoff had the lowest effect 
and a high difference from the S/H value by 
almost 50%. Table 4 shows the correlation 
matrix between the decision variables of the 
optimum solutions. The correlation of d/H and 
S/H was significantly high (at 0.01 level of 
significance) and negative. As these two 
variables increased, they decreased the 
required L/H, which complies with the logical 
physics of the phenomenon. The correlation 
between L/H and angle of inclination was 
significant at (0.05 level of significance); 
however, the correlation was much lower than 
that with d/H and S/H, which was positive and 
a lower direct variation with less effect of θ. The 
correlation between d/H and S/H was highly 
significant and positive, which means both 
increased or decreased together for an 
optimum solution. The optimum angle of 
inclination with d/H and S/H was insignificant.  
Table 4 Correlation Matrix Between Decision 
Variables for the Optimum Solution.  

Variables L/H d/H S/H θ 
L/H 1 -0.683 -0.604 0.054 
d/H -0.683 1 0.546 0.02 
S/H -0.604 0.546 1 0.03 

θ 0.054 0.02 0.03 1 

4.CONCLUSIONS 
An ANN-GA optimization model was developed 
to find the optimum dimensions and 
inclination for an inclined cutoff with an 
embedded vertical part followed by an inclined 
part. The auxiliary variables were the difference 
in head between the downstream and upstream 
sides, the depth of the soil layer, and the degree 
of the anisotropy of the soil. The research was 
limited to finite soil layer depth and one soil 
layer, i.e., no soil stratification. 
The findings of the present research are 
summarized as follows: 
1. The developed ANN model prediction 

performance was found to be 92.2%, which 
was considered a high prediction level. This 
model was considered practically validated 
as it used the database developed by 
SEEP/W, as the results of this software 
were verified with experimental results. 

2. The couple ANN-Genetic Algorithm model 
was capable of producing a stable objective 
function with a minimum value of an initial 
population of 1500. 

3. The initial population size of 1500 should 
be increased to 100000 to get a stable 
decision variable of the optimum solution. 

4. The number of iterations required for the 
genetic algorithm model to give a stable 
optimum solution was 3. 

5. The optimum solutions (S/H, d/H, L/H, 
and F(x)) with D/H generally decreased 

with a mild slope for relatively low H 
values. However, for relatively high H 
values, an increase in L/H and F(x) was 
found for small D/H values, followed by 
decreased variation. 

6. The optimum angle of inclination showed 
very little variation with the range of 
(30.01o to 30.78o). This observed narrow 
range for the angle of inclination was due to 
its low effect on the length of downstream 
protection compared to the other variables, 
as shown in the importance analysis. 

7. The effect of anisotropy showed that for low 
Kr values less than 0.5, there was no 
requirement for protection against piping. 
When Kr was between 0.5 and 0.6, the 
required protection was (L/H > 1). As Kr 
increased from (0.6 to 0.7), a steep 
decrease in the required (L/H) was 
obtained. No signification values were 
found for the (L/H) value as Kr changed 
from (0.7 to 1). 

8. The importance analysis showed that the 
effects of the independent variables on the 
required length of protection for optimum 
solution were as follows in descending 
order of importance (d/H, S/H, Kr, D/H, 
and θ), with the following numerical 
relative importance (100%, 64.8%, 47.6%, 
31.2%, and 14.7%), respectively. 

9. The correlation analysis showed that d/H 
and S/H significantly affected the optimum 
L/H value and showed inverse variation. 
This analysis showed that the angle of 
inclination had a low effect on the optimum 
L/H value and had direct variation. The 
optimum angle of inclination with d/H and 
S/H was insignificant. 

10. There was no specific unique, controlling 
optimum solution that covered most of the 
cases with different input variables, such as 
the depth of the soil layer, the seepage 
driving head difference, and the degree of 
anisotropy, which reflects the importance 
of developing such a model that can be 
easily programmed in a simple MatLab 
code or any simple software. 

The following are recommended for future 
extension of the present work: 
1. The model developed in the present 

investigation assumed one soil layer where 
the cutoff was embedded. The same 
methodology could be used to develop a 
model for layered soil, which requires 
adding other variables related to these 
layers, such as the number of layers with 
each layer depth and hydraulic 
conductivities. 

2. As all the variables involved in the phenomenon 
were certain except the degree of anisotropy, a 
study is recommended to address the effect of 
uncertainty of this variable on the optimum 
solution.  
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