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Abstract: This research examines the 

application of electrocoagulation (EC) by 

employing two water sources: river water and 

rejected water from a reverse osmosis system. 

To assess the impact of numerous factors on the 

removal efficiency of sulfate and iron, 

continuous flow experiments were conducted 

using bipolar and monopolar aluminum 

electrodes. The parameters studied included 

the number of electrodes (2, and 4) and flow 

rates (600, and 1000 L/h). The experimental 

findings revealed that increasing the number of 

electrodes improved the removal efficiency. 

Conversely, an increase in flow rate resulted in 

a decrease in removal efficiency for both water 

sources. For concentrated water, the best 

sulfate removal reached 47% (for four plates 

with 600L/h), whereas for the river, the highest 

sulfate removal was 50% (for four plates and a 

flow rate of 1000 L/h). For river water samples, 

the best iron removal was 56% (for four plates 

and 600L/h), whereas for concentrated water 

samples, the most significant removal was 79% 

(for four plates and 600L/h). 
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ازالة الكبريتات والحديد من محلول مائي باستخدام نمط جريان  
 جديد في مفاعل التخثر الكهربائي 

   1  حسين علي العاملي ،2 الحبوبي عبود صيرن ، 1فاضل الربيعيشهد 
 العراق.   - بغداد /جامعة النهرين /كلية الهندسة  وية /الكيميا الهندسة قسم 1
 العراق.  - بغداد  /جامعة بغداد /كلية الهندسة الخوارزمي /هندسة التصنيع الآلي 2

 الخلاصة 
تأثير عوامل    مياه نهر ومياه الرفض لمنظومة التناضح العكسي.  هذا البحث يدرس استخدام عملية التخثر الكهربائي لنوعين مياه مختلفة:  لتقييم 

مستمر باستخدام اقطاب الالمنيوم على شكل الواح مربوطة بطريقة احادية وثنائية  مختلفة على ازالة الكبريتات والحديد تم اجراء تجارب ذات جريان  
لتر /ساعة. اظهرت النتائج ان زيادة عدد الاقطاب    (1000و600( ومعدل جريان )4و2القطب. العوامل التي تمت دراستها هي: عدد الاقطاب )

ت الى تقليل كفاءة الازالة لكل من مصادر المياه. بالنسبة لمياه المرفوضة المركزة  ساهمت في تحسين كفاءة الازالة. بالمقابل زيادة معدل التدفق اد
لتر/ساعة( بينما بلغت اعلى نسبة ازالة للكبريتات في مياه    600)عند استخدام اربعة ألواح مع معدل جريان   %47بلغت أعلى نسبة ازالة للكبريتات  

الواح ومعدل سرعة    4باستخدام    %56لتر/ساعة. وكانت ازالة الحديد لمياه النهر بنسبة    1000الواح وبمعدل جريان    4عند استخدام    %50النهر  
ألواح وبمعدل جريان   4باستخدام  %79اضح العكسي تنلتر /ساعة بينما كانت نسبة ازالة الحديد للمياه المرفوضة من منظومة فلاتر ال 600جريان 

 لتر/ساعة.  600

 . الفناديوم الخام، النفط  الإمتزاز،   ط، المنشالكاربون كلمات الدالة: ال
 

1.INTRODUCTION
Physical and chemical treatments are used to 
treat water [1]. Coagulation, electro-oxidation, 
electroflotation, precipitation, adsorption, and 
settling are examples of pollutant removal 
mechanisms [2]. One of these methods is 
electrochemical coagulation, the 
electrochemical synthesis of destabilizing 
agents that results in charge neutralization for 
pollutant elimination [3]. During water 
treatment procedures, electrocoagulation is a 
popular approach for removing various 
contaminants. Recent studies have shown that 
electrocoagulation significantly affects drinking 
water quality [4]. EC is an electrolytic process 
where the wastewater serves as the electrolyte 
[17] by applying a current to electrodes 
immersed in a solution, EC enables removing 
pollutants from a solution [37]. Typically, the 
electrodes are constructed of either iron or 
aluminum [37-41, 17]. Table 1 shows some of 
the research on removing different species and 
ions. The idea behind the electrocoagulation 
process is that the coagulants are produced in 
situ as the sacrificial metallic anode dissolves 
under the influence of the applied current, and 
the cathode produces hydrogen gas that floats 
the contaminants [42]. Removal of coagulated 
pollutants by sedimentation or by electro- 
flotation by evolved H2. Electro-flotation can 
disperse the coagulated particles via the 
bubbles of H2 gas produced at the cathode from 
the water reduction reaction, transporting the 
solids to the top of the solution [43]. Fig. 1 
shows a schematic representation of the EC 
process. Numerous chemical reactions occur at 
the electrode surfaces throughout the EC 
process, particularly the dissolution of 
aluminum by anode oxidation, which also 
results in the simultaneous reduction of water 
to generate hydrogen gas. The result of the 
breakdown of water is [45]: 
At cathode:  

2H2O + 2e- → H2 + 2OH-                 (1) 

At anode: 
Al → Al3+

(aq) + 3e-                               (2) 
2H2O→4H++O2+4e-                         (3) 

The developing Al3+ ions are effective 
coagulants for flocculating particles. However, 
the hydrolysed aluminium ions can create large 
Al-O-Al-OH networks that chemically adsorb 
pollutants [46].  

Table 1 Removal of Different Species Using 
Electrocoagulation. 

Parameter Reference No. 

Hardness, Fluoride [5] 
Arsenic [6] 
BOD, P, FC, COD [7] 
Calcium, Turbidity [8] 
Polymer Types: polyamide (PA), 
Polyethylene (PE), Polyethylene 
Terephthalate (PET) and  
Polypropylene (PP) 

[9] 

Turbidity, COD, BOD [10] 
 Hardness, SO4 , and Manganese  [11] 
Total Phosphorous, COD [12] 
Chlorella Vulgaris [13] 
Dye, COD [14] 
Perfluorooctanoic Acid, Microcystins  [15] 
TDS [16] 
TSS, Oil Grease [17] 
Total P0hosphorus, Total Nitrogen, 
TOC, Turbidity 

[18] 

Turbidity [19] 
COD [20] 
TDS, TSS, HCO3, CL, Ca [21] 
DFZ436, COD, DFZ437, COD, 
Conductivity, chloride, TDS 

[22] 
 

Fe, Turbidity, KMnO4 [23] 
Turbidity [24] 
Calcium, Magnesium, Silica [25] 
TTHM, NOM, DOC [26] 
Color, Turbidity [27] 
Hardness [28] 
TDS, Cl, Br, SO4 [29] 
Hardness, Alkalinity, TDS [30] 
Arsenic [31] 
Arsenic [32] 
Phosphate [33] 
Chromium (VI) [34] 
Iron [35] 
Fluoride [36] 
Sulfate, Iron This study 
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Fig. 1 A Schematic Description of the EC Cell. 
[44]. 

It chemically induces the aluminum and its 
hydroxide film, and it is represented by [47,48]: 

2Al+6H2O+2OH-→2Al(OH) -
4+3H2          (4) 

2Al+3H2O→2Al+3+
3

2
H2+3OH-              (5) 

Additionally, the Al(OH)-4 ions are released 
during a chemical reaction, and they can 
interact with cationic species to minimize the 
pollutants from effluent. So, they neutralize 
their charges and decrease their solubility [45]. 

[Al(OH) 
-4]→Al(OH)3+OH-                      (6) 

The electrocoagulation method consists of 
three steps: the destabilization of pollutants, 
the suspension of particles, and the de-
emulsification, as well as the aggregation of 
unstable phases and floc-forming [49-51]  , all 
of which contribute to the synthesis of 
coagulant [51,52]. The migration of the 
produced cations to the oppositely charged 
electrode (electrophoresis) destabilizes the 
negatively charged pollutant by the double layer 
compression or charge neutralization, thus 
lowering the repulsive forces and promoting the 
particles' aggregation (coagulation) [53,54,37]. 
This step includes compression of the diffuse 
double layer (electrical double layer) around 
the charged species by the interaction of ions 
generated by oxidation of the sacrificial anode, 
charge neutralization (resulting in a zero net 
charge) of the ionic species presents in the 
media by counter ions produced by the 
electrochemical dissolution of the sacrificial 
anode and floc formation as a result of particle 
bridging [55]. This destabilization mechanism 
is quite simple, where the adsorption of 
counter-charged ions on the surface of colloidal 
particles neutralizes their surface charge so that 
repulsive forces are overcome, and Van der 
Waals attractive forces dominate. Eventually, 
colloidal particles approach each other and 
coagulate [6,44,56-58]. Also, the entrapment of 
particles in the sediment, called sweep 
coagulation, is often encountered when high 
metal salt concentrations are added. In such 
cases, the metal salts react with water, forming 
insoluble metal hydrates that precipitate, 
forming a sludge blanket. The formed 

precipitates eventually entrap colloidal 
particles during and after precipitation [44, 57, 
58]. As a result, coagulation may occur due to 
the creation of flocs, which entrap and connect 
colloidal particles still present in the aqueous 
medium [59]. The electrocoagulation process 
has the following advantages over other 
chemical processes compared to other chemical 
procedures: effluent has fewer total dissolved 
solids, is  easy to operate, and degrades organic 
waste more quickly and effectively than 
chemical coagulation, and bigger  and more 
stable flocs are developed. Except in severe 
circumstances, controlling the  pH of the water 
does not need chemicals, lowers residue, 
processes various contaminants simple to 
remove, and its operating costs are far lower 
than those of most current technologies [60]. 
The quantity of sludge produced by EC would 
be reduced since it does not need a chemical 
additive and removes pollutants quickly [61]. 
Due to these advantageous characteristics, EC 
is preferable to traditional physicochemical 
treatment methods [41]. It reduced 
maintenance costs, fewer labor requirements, 
and quick results [62]. This article studied 
removing of sulfate and iron for two and four-
plate electrodes using two flow rates to treat 
river water and reverse osmosis rejected water.  

2.EXPERIMENTAL PROGRAM 
2.1.Experimental Sets 
The EC experiments were conducted in 
continuous mode using a plastic reactor. A 
transparent plastic reactor is advantageous for 
observing the reaction process and monitoring 
flocks' formation and the pollutants' deposit. 
Additionally, using this non-conductive 
material ensures an appropriate setting for the 
reaction. The dimensions of the reactor were 
50cmx50cmx60cm, with vertically placed 
aluminum plate electrodes for the anode and 
cathode. The plates consisted of holes (2.5 cm 
diameter, 5 cm spacing between the holes), as 
shown in Fig. 2. Two and four electrodes were 
used to determine the effects of electrode 
surface area. For the two plates experiment, the 
space between plates was 40 cm, while for the 
four plates experiment, the distance between 
the first plate and the second was 10 cm, as 
between the third and the fourth. The space 
between the third and the second plates is 20 
cm. The plates were connected in monopolar 
and bipolar parallel connection modes. The 
surface area of the anode and cathode was 2500 
cm2 (0.25 m2). Aluminum was chosen for the 
anode and cathode due to the low cost, 
reliability, and accessibility of the material, and 
it is better than iron for treating drinking water 
[60]. The experimental setup is shown in Fig. 3. 
The experiments were conducted in a 
controlled environment with accurate 
temperature regulation. The anode and cathode 
plates were connected to a DC power supply's 

https://tj-es.com/
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positive and negative ports (’Model: S-480-48, 
DC output:48V,10A). Fig. 4 represents the 
pumps used for the treatment. The 
specifications of the pumps are shown in Table 
2. Before each experiment, the electrodes were 
scraped using fine sandpaper, cleaned with 
(5%) hydrochloric acid solution for 5 min, 
rinsed with distilled water, dried, and finally 
weighed. The cleaning process prevents the 
material precipitation on the electrodes during 
long-term operation and induces a passivating 
effect that decreases treatment performance 
and increases power requirements. So, cleaning 
the electrodes was to remove and avoid a 
passivation film forming on the electrodes. 
Arranging of plates with holes could enhance 
the mixing and dispersion of contaminants in 
the water, thereby increasing the efficiency of 
the EC process. Alternating upward and 
downward flow paths created by the holes 
might lead to more effective contact between 
the electrodes and the contaminants, 
improving the coagulation and flocculation 
reactions. 

 

Fig. 2 Plate of Aluminum used for Cathode 
and Anodes. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
Fig. 3 The Box Used for the Treatment (a) Top 

View (b) Side View (c) During the 
Experiment(d) Diagram Shows the 

Distribution of the Holes in the Reactor. 

 
(a) 

 
(b) 

Fig. 4 Pumps Used (a) 1000L/h (b) 600L/h. 
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Table 2 The Specification of the Submerged Pumps that were Used. 
Parameter First pump Second pump 

AC 220-240 V 50Hz, 12W 220-240V 50Hz, 18W 

Qmax 600L/h 1000L/h 

Hmax 1.6 m 2.0 m 

Table 3 Operating Parameters Values of the Present Work. 
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e1 3309 0.12 710 0.4 2 monopolar 1000 Concentrated 

e2 3475 0.09 770 0.08 4 bipolar 1000 Concentrated 

e3 3406 0.09 700 0.3 2 monopolar 600 Concentrated 

e4 3345 0.034 210 0.3 4 bipolar 600 Concentrated 

e5 890.3 0.034 210 0.314 2 monopolar 600 River 

e6 1009 0.02 280 0.08 4 bipolar 600 River 

e7 1039 0.11 200 0.169 2 monopolar 1000 River 

e8 929.9 0.11 240 0.027 4 bipolar 1000 River 

2.2.Water Samples 
The water samples used in this work were 
collected from the Tigris River, and the rejected 
water was from the reverse osmosis system  

(membrane), which consisted of the salts’ main 
concentration. A continuous process was done 
using submerged pumps with a flow rate of 
(600 L/h and 1000 L/h) the treatment time was 
chosen to be (60-50 minutes) with an applied 
voltage of 36 V and 3-2 A current for the plates. 
Table 3 shows the condition for each 
experimental run. 
3.RESULTS AND DISCUSSION 
The removal percentage of the sulfate and iron 
and the increasing percentage of the aluminum 
in the final solution were recorded. Sulfate, 
iron, and aluminum were measured using a 
Spectrophotometer (HACH DR6000). 
3.1.Effect of the Number of Plates on the 
EC Process  
The number of electrodes used in the EC 
process is an essential factor affecting the 
process; the electrode area influences the 
current density and can directly impact 
contaminants' removal efficiency. 
Electrocoagulation involves using electrodes to 
generate coagulant species, such as metal 
hydroxide flocs, that aid in removing 
contaminants. The surface area accessible for 
electrochemical reactions is increased by 
increasing the number of electrodes, which 
raises the rate at which coagulant species are 
generated; expanding the generation of 
coagulants may improve the efficacy of 
pollution clearance. When there are more 
electrodes, there are more places of interaction 

between the coagulant and the water's 
contaminants; increasing interaction between 
the coagulant and contaminants increases the 
probability of coagulation and subsequent 
clearance. The coagulant species generated at 
the anode electrode may interact with and 
neutralize other pollutants. Increasing the 
number of electrodes strategically within the 
electrocoagulation reactor will enhance 
flocculation and mixing. The electrodes may 
improve the dispersion and distribution of 
coagulant species throughout the water by 
creating flow patterns and turbulence. 
Enhanced mixing facilitates producing larger 
flocs by bringing the pollutants into touch with 
the coagulant. Increasing the number of 
electrodes increases the possibility of contact 
with pollutants and guarantees that the 
coagulant is dispersed uniformly. It improves 
the overall removal efficiency by lowering the 
chance of dead zones where the coagulant may 
not reach. Figs. (5-8) compare the results of 
studies conducted with two and four plates for 
aluminum, sulfate, and iron. These figures 
illustrate that as the number of electrodes 
increases, the removal percentage increases for 
Fe and SO4. These findings are the same results 
as removing cadmium by Khaled et al. [63], 
COD removal by Elnenay et al. [64], TDS and 
turbidity by Gusa et al. [65], and non-sugar 
removal by Noersatyo et al. [66]. Thus, as the 
number of electrodes increased, the large 
surface area of the electrodes (the cross-
sectional area for the current supply) led to 
excellent current efficiency [67]. The results are 
shown in Fig. 5 for concentrated water and a 
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flow rate of 1000 L/h. The number of plates 
needed to achieve the best removal, and the 
quantity of aluminum released into the solution 
was raised. Fe and SO4 were removed at 9.4% 
and 77%, respectively, and Al increased by 66%. 
Fig. 6 displays the results with concentrated 
water and a flow rate of 600 L/h. The SO4 and 
Fe removal rates were 47% and 79%, 
respectively, while the increasing percentage 
for Al was 79%. Fig. 7 shows the result for the 

river water and a flow rate of 600 L/h; The 
removal rate for SO4 and Fe was 32% and 56%, 
respectively, while for Al, the increasing 
percentage was 90%. Fig. 8 shows the removal 
percentages for (Fe and SO4) and the amount of 
released AL as the number of plates grows for 
river water flowing at a flow rate of 1000L/h. Fe 
and SO4 removal rates were 29% and 48%, 
respectively, while the rate at which Al 
increased was 59%. 

 

Fig. 5 The Effect of the Number of Plates Used for Concentrated  
Water for Flow Rates of 1000 L/h. 

 

Fig.6 The Effect of the Number of Plates Used for Concentrated  
Water for Flow Rates of 600 L/h. 
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Fig. 7 The Effect of the Number of Plates Used for  
River Water for Flow Rates of 600 L/h. 

 

Fig. 8 The Effect of the Number of Plates used for  
River Water for Flow Rates of 1000 L/h.

3.2.Effect of Flowrates on the EC Process 
The electrocoagulation process can be affected 
by flow rates in several ways. The 
electrocoagulation process's effectiveness and 
productivity are mainly dependent on flow 
rates. It includes forming of flocks and 
reactions inside the reactor, eliminating  iron 
and sulfate. and releasing aluminum ions. The 
residence time would be decreased as the flow 
rate increases; this might lead to insufficient 
removal of contaminants and incomplete 
coagulation. On the other hand, lowering the 
flow rate will increase the residence time, allow 
coagulation, and increase the contaminant's 
removal efficiency. The mixing process of the 
coagulant produced and the pollutant depends 
on the flow rate. A higher flow rate may enhance 
the mixing and the interaction between the 
coagulant and the contaminant. Still, a higher 
flow rate could reduce the coagulation by 

producing turbulence. An optimal flow rate 
must be determined to get sufficient mixing and 
dispersion while avoiding excessive turbulence. 
The flow rates affect the electrical current and 
the coagulant's generation between the 
electrodes. Also, the elevated flow rates may 
result in higher mass transfer of the coagulant 
and increase the electrode efficiency. Higher 
flow rates could lead to insufficient current 
distribution and incompatible coagulant 
production, reducing the efficiency of the 
process. So it is essential to integrate the two 
main factors (residence time and mixing). After 
all, a reduction in period leads to insufficient  
EC process at higher flow rates. On the other 
hand, mixing is better than electrocoagulation 
since it makes contaminants easier to remove. 
Nevertheless, it is crucial to maintain 
equilibrium as excessive mixing might result in 
a decline in overall efficiency. In conclusion, the 
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significance of mixing in the electrocoagulation 
(EC) process must be considered. However, 
achieving an optimum residence duration is 
crucial to its overall efficacy in removing 
contaminants. Figs. (8-10) reveal that as the 
flow rate increases, the removal per cent 
decreases, and the amount of Al released 
decreases. It should be noticed that the removal 
percentage is inversely proportional to flow 
rates (during the high speeds, the retention 
time decreased compared with the lower rates) 
because of the effect of electrolysis time on the 
residual Fe and SO4 concentration. The 
outcomes of these figures are matching [68-75]. 
Fig. 9 reveals that as the flow rate decreases, the 
removal rate of Fe and SO4 increases, and the 
dissolution rate of aluminum increases. For 
concentrated water with two plates using the 
SO4, the Fe removal percentage reached 14% 

and 53%, respectively, while for Al, the increase 
reached 70%. Fig. 10 shows the impact of the 
flow rate on the removal rate of Fe, SO4 and the 
increase of the dissolution of aluminum. For 
concentrated water and four plates using the 
SO4, the Fe removal percentage reached 47% 
and 79%, respectively, while for Al, the increase 
reached 79%. Fig. 11 shows that the removal 
rate for SO4 and Fe for the lower speed is higher 
than that for the higher speed. As SO4, Fe 
removal was 23% and 29% for 600 L/h speed, 
and the increasing percentage for Al was 76%. 
Fig. 12 shows that the removal rate for SO4 and 
Fe for the lower speed is higher than that for the 
higher speed for four plates used in treating 
river water. As SO4, Fe removal was 32% and 
56% for 600 L/h speed, and the increasing 
percentage for Al was 90%. 

 

Fig. 9 The Effect of Flow Rates for Two Plates for Concentrated Water. 

 

Fig. 10 The Effect of Flow Rates for Four Plates for Concentrated Water. 
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Fig. 11 The Effect of Flow Rates for Two Plates for River Water. 

 

Fig. 12 The Effect of Flow Rates for Four Plates for River Water.

4.CONCLUSIONS 
The removal of sulfate and iron from two types 
of water (river water and rejected water from 
a reverse osmosis system) was significantly 
influenced by the number of electrodes and 
flow rate, as demonstrated in continuous 
experiments employing monopolar and 
bipolar aluminum electrodes. The study 
outcomes highlighted the effectiveness of a 
continuous flow electrocoagulation reactor 
equipped with Al plates that have strategically 
placed holes, facilitating the distribution of 
coagulants in water samples through an 
innovative approach. These results are similar 
studies of Elnenay et al. [64] and Apshankar 
and Goel [68]. The highest sulfate removal for 
river water was 50% (for four aluminum plates 
and 1000 L/h flowrate), and the lowest was 
20% (for two plates and 1000 L/h). While for 
concentrated water, the best removal reached 
47% (for four plates with 600L/h), and the 
minimum reduction was 7.04% (for two plates 

and 1000L/h). The best removal for iron 
reached 56% (for four plates and 600L/h) for 
river water samples, while the minimum 
reduction reached 15% (for two plates and 
1000L/h). For concentrated water samples, 
the best removal reached 79% (for four plates 
and 600L/h), and the lowest was 47% (for two 
plates and 1000L/h). For river water samples, 
the best iron removal achieved 56% (for four 
plates and 600L/h), while the lowest removal 
achieved 15% (for two plates and 1000L/h). 
The best removal for concentrated water 
samples was 79% (for four plates and 
600L/h), while the lowest was 47% (for two 
plates and 1000L/h). 
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