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Abstract: In this paper, Differential Transformation
Method (DTM) is applied for solving the nonlinear
differential equations arising in the field of heat
transfer. The solution is considered as an infinite
series expansion where converges rapidly to the exact
solution. The nonlinear convective—radioactive
cooling equation and nonlinear equation of
conduction heat transfer with the variable physical
properties are chosen as illustrative examples and
solutions have been found for each case. Results by
DTM with other results calculated by Homotopy
Perturbation Method are compatible.
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1. Introduction

Since most of the phenomena in our world are essentially
nonlinear and hence described by nonlinear equations, there has
developed an ever-increasing interest of scientists and engineers in
the analytical asymptotic techniques for solving nonlinear problems.
Recently, many new numerical techniques have been widely applied
to the nonlinear problems. One of these methods the Differential
Transformation Method (DTM) attracted great attention due to its
versatility and straightforwardness.

The technique that we used is introduced by Zhou [1] in a study
about electrical circuits. It gives exact values of the kth derivative of
an analytical function at a point in terms of known and unknown
boundary conditions in a fast manner and has since been used by
many mathematicians and engineers to solve various functional
equations. The technique that we used, which is based on Taylor
series expansion enables us to obtain a series solution by means of
an iterative procedure, which is the main advantage of this
technique. The (DTM) was applied to linear and nonlinear ODEs;
see Vedat [2, 3], Anwar [4-6].

In this article, the basic idea of the DTM is introduced and its
application in two heat transfer equations is studied. This numerical
scheme is based upon the Taylor series expansion and, as we shall
soon see, is capable of finding the exact solution of many nonlinear
differential equations.

This paper is organized as follows: Section 2 describes the
differential transform method. In Section 3, the method is
implemented to two examples, and finally conclusions are given in
Section 4.

2. Differential Transformation Method (DTM )
The differential transformation of the kth derivatives of function

Y(X) is defined as follows [2]:

wif2]
L @

and y(x) is the differential inverse transformation of Y (k) defined

as follows:
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Y = XY (0.0 x,)"

(2)
for finite series of k=N, Eq.(2) can be written as:
Y0 = Y (00.(x-x,)"
2 (3)

The following theorems that can be deduced from Egs.(1) and (3):
Theorem 1. If YOI =9(X)£N(X) then YK) =GK)£H(K)
Theorem 2. If Y =a9() then Y(K)=aG(k)

y(x) = 999
Theorem 3. If dx  then Y(K)=(K+D)G(k+1)

() = 90 "
Theorem 4. If dx"  then Y (K)=(k+mVk!)G(k-+m)

Theorem 5. If Y =90()h(X) then Y=, GOHK-1)
1 if k=m

Theorem 6. If YOO =X"" then Y(k):5(k_m):{0 if k=m.

Theorem 7. If Y(X) =8XP(@X) then Y (K)=a* /k!
Theorem 8. If Y(X) =sin(@x+2) then Y (k)= (" kt)sin(kz/2+4)
Theorem 9. If Y(X)=cos(.x+1) then Y (k) = (" /k!)coskrz/2+ )

3. Numerical applications
Two physical problems are presented and solved by the DTM.
The nonlinear convective-radioactive cooling equation and
nonlinear equation of conduction heat transfer with the variable
physical properties are chosen as illustrative examples.

3.1. Cooling of a lumped system by combined convection and
radiation

Consider the following problem of the combined
convective—radioactive cooling of a lumped system; see Aziz and
Na [7]. Let the system have volume V , surface area A, density p ,
specific heat ¢ , emissivity E , and the initial temperature T;. Att=0

, the system is exposed to an environment with convective heat
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transfer with the coefficient of h and the temperature T,. The system
also loses heat through radiation and the effective sink temperature
is T;. The corresponding governing equation of this cooling problem
is as follows

cV%+hA(T—Ta)+EcA(T4—TS4)=0, T)=T, (4)

Under the transformations 6 = — , 8, =2 , 6, = = , 7 = = |
T; T; T; pcv
EoT}
and e = —+
Equation (4) can be written as
§+(9—9a)+£(64—654)=0 L 0(0)=1 (5)

For the sake of simplicity, we take fa = 6s = 0 . Therefore, we have

S tedt+0=0 . 800)=1 (6)
The exact solution of above equation was found to be of the form

_1 1+£63 )
T=3in (1+£)03

Expanding @ (z ) , using Taylor expansion, about z = 0 gives the
series of the exact solution

9(1’)21+(—1—€)‘L’+E+§€+2€2]T2+[—%—28—8€2—

85

14 35 77 35 1 341
—83]T3+[ +—£+—£2+—£3+—£4] T4+[————
3 2 3 3 120

120

1
24 24

82 455 245 91

—g? - =g - —¢t ——85] 7% 4 -

3 6 3 3

(8)

Hossein and Milad [8] solved Eq.(6) using Homotopy Perturbation
method and gave the following solution:
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9(T)=1+(—1—£)T+F+E€+2€2]T2+[—%—%8—882—

2| [+ B4 B2 4 T3 1 Bt 1 )

To solve Equation (6), by means of DTM, we construct the following
recurrence equation

Ok +1) = o Ts=0 Lm0 2 =0 0(m1) 8(my —
my) 6(mz —my) 6(k —m3)] (10)
The boundary conditions in Eg. (6) can be transformed at 7, = 0 as
follows:

0(0) =1. (11)

Utilizing the recurrence relation in (9) and the transformed boundary
conditions in Eq. (10), 6 (k) were calculated for k =1,2,3,4 asin
Table (1).
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Table (1): 0(k) for different k

Issue No. 32/2013

recurrence equation O(k+1)
0(k + 1)

—6(0) — ¢ —-1—¢
2) [9(1) + %[1 + 5¢ + 4£?]
€ {Zm3 02 02 —00(my) 0(m;, — '
my) 0(ms — mz) 9(1 m3)}]
‘?1[9(2)+ —%[1+21£+48£2+28s3]
€ {anFoZmi:oZm =0 g(ml) 9(m2 -
my) 0(mz —my) 6(2 — m3)}]
@)+ S +77e+252¢62 +
£ (Dm0 Zmi oo Xl o8(my) O(my —|  232° +56 &%)
my) 6(mz — mz) 9(3 —m3)}]
=@+ —=[1+333¢e+ 2776 6% +
£ {Tm, —0Xm’ OZ —00(my) 6(m, — 804-48 + 3045 £ +
my) 6(ms —my) 6(4—ma)) 2864 £°]

Therefore, the solution of Equation (6) as

9(‘[)_1—(1+£)T+
28 &3]3 +;[1+77£+252£ +232e3+56 &%t -

[1+5£+4£2]T ——[1+21£+48£ +

5[1 +333 &4 2776 2 + 80443 + 3045 &4 + 2864 £5]75
(12)

The solution (Eq.(12)) of the problem (Eq.(6)) represented in Table
(2) and (3), for (0.1 <7< 0.9) and (¢=0.1,0.2, 0.3, 0.4),
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Table (2): Results by DTM, HPM for 6(t) verses t

fore=0.1,0.2.

e=0.1 e=0.2

T 6(t) 0(t) Absolute error 0(t) 6(t) Absolute error

DTM HPM | HPM-DTM DTM HPM | HPM-DTM
0.1 | 0.8971519 | 0.8971406 1.1384[49E-5 0.8897192 0.8896737 4.5537|95E-5
0.2 | 0.8067375 | 0.8065653 | 1.721978E-4 0.7953129 0.7946396 6.733537E-4
0.3 | 0.7263253 | 0.7255046 | 8.206964E-4 0.711838 0.7087079 3.130138E-3
0.4 | 0.6533575 | 0.6509255 | 2.432048E-3 0.6325679 0.6235554 9.01258E-3
0.5 | 0.5843707 | 0.5788278 | 5.542934E-3 0.5460925 0.5262384 1.985413E-2
0.6 | 0.514215 | 0.5035397 | 1.067525E-2 0.4334173 0.3967045 3.671286E-2
0.7 | 0.4352739 | 0.4170133 | 1.826066E-2 0.2650634 0.2053045 5.975886E-2
0.8 | 0.3366847 | 0.30812 2.856475E-2 -1.833515E-3 | -0.0896946 8.786109E-2
0.9 | 0.2035577 | 0.1619464 | 4.161128E-2 -0.426423 -0.5445983 0.1181753
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Table (3) Results by DTM, HPM for 0(t) verses t
for €=0.3,0.4.

e=0.3 e=04
T 6(t) 0(t) Absolute error 6(t) 6(t) Absolute
DTM HPM | HPM-DTM DTM HPM error
| I HPM-
DTM |
0.1 | 0.8825229 | 0.8824103 | 1.126528E-4 0.8755469 0.875323 | 2.23875E-4
0.2 | 0.7842923 | 0.7826664 | 1.625896E-3 0.7734694 | 0.7703296 | 3.139853E-3
0.3 | 0.6962563 | 0.6889225 | 7.333875E-3 0.678055 0.6644023 | 1.365274E-2
0.4 | 0.6030357 | 0.5826917 | 2.034402E-2 0.5578151 | 0.5217548 | 3.606033E-2
0.5 | 0.4755976 | 0.4328499 | 4.274762E-2 0.3501579 | 0.2794273 | 7.073066E-2
0.6 | 0.2639324 | 0.1896412 | 7.429115E-2 | -5.393971E- | -0.1647186 | 0.1107789
2
0.7 | -0.1102708 | -0.2213187 0.1110478 -0.8252591 | -0.9640033 | 0.1387442
0.8 | -0.7609485 | -0.9050371 0.1440886 -2.211668 -2.334935 | 0.1232669
0.9 | -1.844987 | -2.00314 0.1581537 -4.553447 -4.569213 | 1.576614E-2

Figures (1) and (2) represent the solution between 6(t) and t for by
HPM and DTM for (¢ = 0.1,0.2, 0.3, 0.4),
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Figure (1) HPM solution between 8(t) and () for

(e =
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Figure (2) DTM solution between 8(t) and () for
(€=0.1,0.2, 0.3, 0.4)
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3.2. Cooling of a Lumped System with Variable Specific Heat
Consider the cooling of a lumped system; see Y’aziz et al [9]
exposed to a convective environment at temperature Ta with
convective heat transfer coefficient h at time t = 0. Let the system
have volume V, surface area A, density p , specific heat C and
initial temperature Ti . Assume that the specific heat C is a linear
function temperature of the form
C=Ca[l+pB(T-Ta)], (13)

where Ca is the specific heat, at temperature Ta and £ is a constant.
The cooling equation corresponding to this problem is

pcV Z+hA(T-T)=0 , T(O)=T, (14)
Under the transformations 6 = % T = % ande =BT —-T,)
Equation (15) can be written as

ae
(1+eb)——+6=0 6(0) =1 (15)

Taylor expansion, about z = 0 gives the series of the exact solution

1 1 1-2¢ 1-8e+6¢?
0(t)=1——r+ 72 — =73 T4
1+ 21 (1+¢€)3 3! (1+¢) 4! (1+¢)7
1-22e+5882-243 ¢

5! (1+¢&)?

(16)
Hossein et al [8] solved Eq.(15) using Homotopy Perturbation
method and gave the same solution in Eq.(16).

Now to solve Equation (15), by means of DTM, we construct the
following equation

B reg¥rg=0 (17)
dt dt . .
The recurrence equatlon IS
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(k+1) 0k +1D)+e¥r 0Dk —-1+1)0(k—-1+1)+60(k)=0

(18)

The boundary conditions in Eq. (14) can be transformed at 7, = 0 as

follows:

0(0)=1.

(19)

Utilizing the recurrence relation in Eq.(18) and the transformed
boundary conditions in Eq. (19), 6 (k) were calculated for k =

1,2,3,4 asin Table (4)

Table (4) 6(k) for different k

560(5) + ¢ Z(s — DO OG- +6(4) =0

=0

K recurrence equation 0(k+1)
ok + 1)
0 [1+e]0()+1=0 -1
[1+ €]
1 1 1
2002) +¢ Ze)(z) 2-D2-D+6(1)=0 N[+
=0
2 2
39(3)+sZG(Z)(S—I)H(S—Z)+6(2)=O 2¢ -1
1=0 31 +¢)°
3 3 6c2 —8s+ 1
40(4) +¢ Ze)(z) 4-DO@E -1 +6(3) =0 It
=0
4 24e3 —58e%2 + 22— 1

511 +¢]°

Therefore, the solution of Equation (15) as
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1 1 1 2 1-2¢ 3 6e°—8e+l 4
o) =1 [1+¢] Tt 2! [1+¢]3 t 3! [1+€]5 t 4! [1+€]7 4
1 [-24€3458e2-22e+1] ¢
5[ [1+¢]° ]T + (0)

The solution in Eq.(20) is compatible with that obtained by Ganji et
al [10], by applying the HPM and VIM. Figure (3) illustrates the
variation of the obtained solution of Equation (20) 6(t) over ¢ by
DTM for (¢ = 0.1,0.2, 0.3, 0.4) .

4. Conclusion

The Differential Transformation Method (DTM) is
successful in solving two nonlinear differential equations arising in
heat transfer problems. Results were compatible with the Homotopy
Perturbation method HPM and variational iteration method VIM
Ganji et al [10]. For higher orders of approximation with a greater
degree of accuracy more computations must be needed. Thus DTM
IS an important tool in handling highly nonlinear differential
equations with a minimum size of computations and a wide interval
of convergence.

1.00 |

0.80 —

thita (taw)

DTM Solution
—4— eps=01
—.— eps =0.2
N —&A— eps=03
eps =0.4

0.60 —

GO T T T T T T T 1

0.00 0.20 0.40 0.60 0.80 1.00
taw

Figure (3) represents the solution between @(t) and t for by
DTM for(¢=0.1,0.2, 0.3, 0.4).
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This emphasizes the fact that this method is applicable to
many other systems of nonlinear equations and it is reliable and
promising when compared with existing methods.
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