
 1

Automatic Determining Of Candidate Keys Sets Depending On

Functional Dependency

Nada Adnan

Al-Rafidein University College

Abstract

This paper presents a step in automatic database design, re-

engineering and schema modification, design weak points detection, and

normalization. This step represents determining the candidate keys of the

tables automatically via proposing and implementing an algorithm which

depends on the functional dependency and attribute set closure. Also,

some techniques of Apriori algorithm of association rule mining are used

to generate keys and minimize the keys space. The implementation is

done by using Oracle PL/SQL to utilize the facilities provided by

ORACLE DBMS and to give the features of embedded system to the

proposed one.

ستخذام الآلي لمجموعة المفاتيح المرشحة في قواعذ البيانات با التحذيذ

 يةالذاليةلاعتمادا

 َدى عدَاٌ

 كهية انرافديٍ انجايعة

 الخلاصة

هذا انبحث يًثم خطوة فوا انميوًيى ا نوا ندةاعود انبياَواد اعواة هُديوة رعوديم ا ور

مطبيع. هوذِ انططوة رمًثوم انجدا ل انعلائدية، انكشف عٍ َدا ضعف انميًيى، كذنك عًهية ان

فا رحديود انًاواريخ انًرةوحة نهجودا ل شوكم ونوا ةايوطة ردوديى رطبيوة خةامدييوة رعمًود عهو

انًجوواييع، خةامدييووة رعووديٍ اةاعوود الامربووا . خةامدييووة اَغوولا خاصووية الاعمًاةيووة اندانيووة

ايوومطداو غنغووة انمعووديٍ ايوومطديو نمةنيوود يجًةعووة انًاوواريخ ررةووية ف ووازها. انبحووث اَجوو

 ريجة/نغووة الايمارووام انًةيكهووة فووا ل ماكووم نلايوومااة يووٍ انطووةاو انمرووةيلاد انًمووةفر فووا

 اَظًة اةام اةاعد انبياَاد كذنك لاعطاز يي اد الاَظًة انًُ ةية نهُظاو انًدمرح.

 2

1. Introduction

1.1 Redundancy

 In non database systems each application has its own private files

that fact can often lead to considerable redundancy in stored data, with

resultant waste in storage space. For example, a personnel application and

an education-records application may each own a file that includes

department information for employees, those two files can be integrated,

and the redundancy eliminated, if the DBA is aware of the data

requirements for both applications, i.e., if the DBA has the necessary

overall control.

 Incidentally, we do not mean to suggest that all redundancy should

necessarily be eliminated. Sometimes there are sound businesses or

technical reasons for maintaining multiple copies of the same stored data.

However, we do mean to suggest that any such redundancy should be

carefully controlled. That is, the DBMS should be aware of it, if it exist,

and should assume responsibility for "propagating dates".

1.2 Definition: Functional Dependency

 We can define what we called Functional Dependencies by the

following:

Given a relation R, attribute Y, of R is functionally dependent on attribute

X of R- in symbols: R.X  R.Y (read "R.X functionally determines

R.Y"). If and only if each X-value in R has associated with it precisely

one Y-value in R (at any one time). Attributes X and Y may be

composite.

 Note that if attribute X is a candidate key of relation R in

particular, if it is the primary key- then all attributes Y of relation R

must necessarily be functionally dependent on X.

 3

 Also note, however, that there is no requirement in the definition

of functional dependence (hence forth abbreviated FD) that X in

fact be candidate key of R; in another words, there is no

requirement that a given X-value appear in only one tupelo of

R .We give an alternative definition of FD that makes this point

more explicit:

 Given a relation R, attribute Y of R is functionally dependent on

attribute X of R if and only if, whenever two tupelos of R agree on

their X-value, they must necessarily agree on their Y-value.

 We also define the concept of (full) functional dependence.

 Attribute Y of relation R is fully functionally dependent on attribute X

of relation R if it is functionally dependent on X and not functionally

dependent on any proper subset of X (that is, there does not exist any

proper subset Z of the attributes constituting X such that Y is functionally

dependent on Z).

1.3 Logical Implications of dependencies:

 Suppose R is a relation scheme and A, B and C are some of its

attributes. Suppose also that FD A and B C are known to hold in R. In

proof, suppose r is a relation that satisfies AB and B C, but there are

two tupelos t and u in r such that t and u agree in the component for A but

disagree in C, then we must ask whether t and u agree on attribute B, if

not, then r would violate AB, if they do agree on B then since they

disagree on C, r would violate BC hence r must satisfy AC.

 In general, let F be a set of FD's for relation scheme R, and let XY

be a FD. We say F logically implies XY, written F |= XY, if every

relation r for R that satisfies the dependencies in F also satisfies XY. We

say above that if F contains AB and BC, then AC is logically implied

by F. That is {AB, BC}|= AC.

 4

Definition 2:

 Let F+, the closure of F, be the set of FD's that are logically implies

by F, F+={XY| F|=XY}.

Example 1:

Let R=ABC and F= {AB, BC}. Then F+ consists of all those

dependencies XY such that either:

 1. X contains A, e.g., ABCAB, ABBC, or AC,

 2. X contains B but not A, and Y does not contain A, e.g. , BCB, BC,

or B0 and

 3. XY is one of the two dependencies CC or C0.

 2. Key Finding

 When we talking about entity sets, we assumed that there was a key,

set of attributes that uniquely determined any entity. There is an

analogous concept for relations with FD's.

Definition 3

 If R is a relation scheme with attributes A1A2……An and FD's F,

and X is a subset of A1A2…..An, we say X is a key of R if:

1. XA1A2….An is in F+, that is the depending of all attributes on the set

of attributes X is given or follows logically from what is given, and

2. For no proper subset Y is X is YA1A2…An in F+.

 We should be a ware that the term "key" does imply minimalism. Thus,

the given key for an entity set will only be a key for the relation

representing that entity set if the given key was minimal. Otherwise, one

or more subsets of the key for the entity set will serve as a key for the

relation.

 As there may be more than one key for a relation, we sometimes

designate one as the "Primary Key". The primary key might serve as the

 5

file key when the relation is implemented. For example, however, any

key could be the primary key if we desired.

The term "Candidate Key" is sometimes used in the literature to denote

any minimal set of attributes that functionally determine all attributes,

We also use the term super key for any super set of a key.

Example2:

Let F be the following set and suppose we would like to compute the

(BD)+

ABC CA BCD ACDB

DEG BEC CGBD CEAG

. X (0) =BD

. X (1): the dependency DEG is used

 X (1) =BDEG

. X (2): the dependency BEC is used

 X (2) =BCDEG

. X (3): we consider CA BCD CGBD CEAG

 X (3) =ABCDEG

. (BD)+=X (3)

3.The Aim of the Research

In this research, we propose and implement an algorithm to

automatic determining of the set of candidate keys in a relational

database. This algorithm depends on the functional dependency rules and

(set of attributes)
+
, set of attributes closure, i.e., F

+
. This algorithm and its

implementation system; Automatic candidate keys determiner, ACKD,

are very useful in many cases such as:

1) Database system design and database system re-engineering:

The designers of actual applications database systems frequently

 6

perpetrate many mistakes during the design phases. The lack of design

may occur in the conceptual phase which leads to bad Entity-relationship

or UML diagrams. Bad designed ERD or UML means an imprecise

mapping in the logical phase and hence imprecise schema. Also, the

inaccurate logical phase design leads to the imprecise schema. The

weakness of the design in these phases causes the data redundancy which

makes many problems in the case of updating, deleting, and inserting the

data in the database.

2) Database system modification and re-engineering: Many tables

and attributes may be added to the database; therefore the dependency

rules will be changed and hence the keys of the tables.

3) ACKD represents a step in the automatic database

normalization. The 3NF, 4NF, and 5NF depend on determining the set of

candidate keys and the dependencies. Therefore, ACKD produces the

keys on the golden trail to the manual or automatic normalization system.

4) Selection of an alternative primary key due to a particular reason.

5) Analyzing the relationships between the keys to determine the

foreign keys of the tables of the database to achieve best form operators

between the tables.

4. ACKD Architecture

Figure (1) depicts the architecture of ACKD. It consists of many

modules each of which accomplishes specified duty. This architecture are

built according to the process view and structural view. The dashed

arrows represent data flow while continued arrows represent execution

flow. These modules are Database's Tables Names Retriever, Table's

Schema Extractor, X
i
 Generator; K-attributes set Generator, Key

Checker. The dependency rules are stored as a table and will be read as

input to be used to compute the closure. One or set of databases can be

manipulated by at a time. The output of ACKD is a table of candidate

 7

keys. The design of the modules will be explained in next sections in

detail. Figure (2) depicts the general algorithm of ACKD.

The name of the database is fetched from the database catalog in

step#1. Then, step#2 fetches the names of the tables in the tables_name

cursor. The Oracle PL/SQL cursor provides high flexibility in the

implementation of ACKD.

Figure (1) the Architecture of ACKD

The next steps extract the structure of each table to specify its

attributes and all subsets of these attributes set will be generated and

checked according to the dependency rules table. The dependency rules

are stored as a table of two fields; RHS and LHS. RHS is varchar2 (30).

LHS is defined as large data type to hold the set of attributes which

are supported by the attribute of the RHS and separated by ',' comma to

Database's Tables

Names Retriever

Table's Schema

Extractor
K-Attribute Set

Generator

X
i
 Generator

Key Checker

Dependency

Rules

One Schema

 at a time

One table at a time

One AttributeSet at a time

(AttributeSet)
+

Database Name

Candidate Keys Set file

LHS RHS

B, C A

 8

easies the checking operation. For example the rule ABC is stored as

follows:

The candidate key table is one attribute table it holds all the

candidate keys. Also the attributes of the key are separated by comma.

Figure (2) The general Algorithm of ACKD

LHS is defined as large data type to hold the set of attributes which

Figure (2) The general algorithm of ACKD.

4.1 K-attributes Generator

 This module with Xi generator represents the core of the system. It

designed according to the algorithm presented in Figure(3) and Figure(4).

Figure (3) the general Algorithm of K-attribute Generator

Step#1 stores the attributes set of a table in L1 list, then frequently calls

an algorithm named K-Attribute_Set_Gen, see Figure (4). This algorithm

generates from the elements of L1 all the sets of attributes of length 2 and

1. Fetch the name of the database; db.

2. Store the name of the tables of db in a cursor;Tables_names cursor
3. While Tables_ names is not empty

4. Begin

5. Store the attributes of a table t in t_attributes array

6. Call k-attribute-generator (t-attribute,k_attributes_set)

7. i=0;

8. While (k_attributes_set is not empty)

9. Begin

10. Call X
i
_generator (k_attributes_set[i],X

+
);

11. If (key_checker(X
+
))

 Write k_attributes_set in the candidate keys table

 as a candidate key.

12 End

13. End

K-AttributeSet Generator()

 1) L1= {Table Attributes};

 2) For (k=2; Lk-1 =; k++) do

 3) Lk =K_Attribute Set_gen (Lk-1)// see next figure

 4) Return =k Lk;

 9

stores these sets in L2, and so on. The finding of next length attributes

sets depends on join operation which join the sets which have only one

different attribute of length k to generate a set of length k+1.

Figure (4) K-AttributeSet_Gen Algorithm

Table (1) the generated sets of attribute by K-attributes set

generator

L1 L2 L3 L4 L5 L6

A AB ABC ABCD ABCDE ABCDEG

B AC ABD ABCE ABCDG

C AD ABE ABCG ABCEG

D AE ABG ABDE ABDEG

E AG ACD ABDG ACDEG

G BC ACE ABEG BCDEG

 BD ACG ACDE

 BE ADE ACDG

 BG ADG ACEG

 CD AEG ADEG

 CE BCD BCDE

 CG BCE BCDG

 DE BCG BCEG

 DG BDE BDEG

 EG BDG CDEG

 BEG

 CDE

 CDG

 CEG

K-AttributeSet_Gen (Lk-1);

 3.1) Ck =

 3.2) for all attribute set l1  Lk-1 and L2  Lk-1 do

 3.3) if (L1 [1] = L2 [1]  ...  (L1[k-2] = L2 [k-2])  (L1 [k-1] < L2 [k-1]) then
 3.4) begin

 3.5) C=L1  L2; // join step
 3.6) add C to Ck

 3.7) end

 3.8) Return Ck

 11

 DEG

For example it joins {A, B, C} and {A, B, D} which are element in L3 to

generate {A, B, C, D}. The algorithm ignores the joining of for example

{A,C,D} and {A,D,G} because there are two different attribute at the end

of each set, see step 3.1 and 3.2 of figure (4).

According to example (2), the K-attributes set generator will

generate L1, L2…, L6. These sets are shown in table (1), these sets

compose a lattice see figure (5). The complexity of this lattice elucidates

the complexity of generating the sets of attributes. Easily, a reader can

consider the hugeness of the number of the generated keys. Therefore, we

adopt an efficient heuristic to avoid this weak point. This heuristic is a

priori fact [3], that is "the sub set of large item set are large". We confirm

this fact to be suitable for the research problem, according to definition

#3, this fact becomes "the super sets of any key are not keys". Therefore,

any super set of any key should be removed before computing its closure.

The removes done by using subsystem called supersets remover. The

removed supersets are faded to show the hugeness of eliminated sets

depending on the mentioned heuristic.

For example when this module generates (AB), it will be sent to

the X
i
 generator, which generates (AB)

+
 as follows:

 X(0)= AB

 X(1)= ABC

 X(2)=ABCD

 X(3)=ABCDE

 X(4)=ABCDEG

 X(5)=ABCDEG

(AB)
+
= ABCDEG which includes all the attributes of the table,

therefore AB is a key. Hence AB will be stored in the candidate key file,

 11

and X
i
 generator will ignore the following sets of attributes because all of

these are super set of AB; {ABC, ABD, ABE, ABG, ABCD, ABEG,

ABDB, ABCG, ABCE, ABEG, ABCEG, ABDEG, ABCDEG}

Table (2) shows the manipulated sets of attributes after applying

the mentioned heuristic , this table shows the effect of this heuristic in

minimizing the key space.

Table (2) Minimized sets space

L1 L2 L3 L4

A AB

 AC

B AD ACG ACDG

C AE ADE ACEG

D AG ADG ADEG

E BG AEG BCDE

G DE BCG BCDG

 DG BDG CDEG

 EG BEG

 CG CDG

 DEG

X
i
 computing Algorithm: Input (F,X)

 Output X
+

Begin

 X
+
 =X;

 Repeat

 OldX
+
= X

+
 ;

 While the set of Functional Dependency F is not empty do

 Begin

 Fetch the rule R of the form YZ;

 If X
+

belongs to Y then X
+
=concat(X

+
,Z);

 End;

 Until (X
+
= OldX

+
);

End;

 12

Figure (6) Xi generator Algorithm

4.2 X
i
 Generator Module

 This module receives a set of attributes from the K-Attributes

Generator to compute the set closure. This computation is done according

to the algorithm shown in figure (6).

4.3 Key Checker

Key Checker is a simple module to check the result of Xi

generator, i.e., the closure of a set of attributes. If it includes all the

attributes of a table, the set will be added to candidate keys table as a key.

This operation is done by the following algorithm:

Figure (7) Key Checker Algorithm

This algorithm stores the attributes of X
+
 in ORACLE variable size

array or cursor. Then it frequently fetches an attribute and checks it's

belong ness to the set of the attributes of the table under processing.

5. Conclusions and Future works

 The proposed system is tested by using many schemas of

databases. The candidate keys sets are detected correctly and efficiently.

From the implementation view point most of the execution time is

consumed in generating and degenerating the sets of attributes. Also, the

execution time is increased according to the number of the dependency

While the set of attributes of X
+
 is not empty

Begin

 Fetch an attribute A from X
+

 If A does not belong to the set of table's attributes

 Begin

 Ignore X; it is not a key;

 Exit;

 End;

 //else fetch next attribute

End

 13

rules, because each rule should be checked against each set of attributes

which passed the pruning step. Another factor which influences the

execution time is the number of attributes in the schema because the

number of the combination of the attribute sets will be increased.

There are many developments that can be done as future works:

1) Defining and implementing the criteria that can be used to select the

primary key from the set of candidate keys.

2) Modify the proposed system to perform automatic normalization.

3) Defining and implementing the criteria to determine the foreign keys

of database tables.

4) It is very important future work that is extracting the functional

dependency rules depending data mining and Armstrong's theorem. In

this way we avoid the manual detection of these rules which consumes

a huge amount of time and efforts.

6. Reference

1. C. J. Date, "An Introduction to Database Systems", Addison-Wesley

Publishing Company.

2. Ramiz Elmasri, "Fundamentals of Database Systems", Pearson

International Edition, 5ed, 2007.

3. Rakesh Agrawal, Ramakrishman Srikant, "Fast Algorithm for mining

Association Rules", IBM Almaden Research Center, 1997

4. Jeffrey D. Ullman, "Principles of DATABASE SYSTEMS",Stanford

University,Galgotia Publications Ltd. ,1997

 14

