Compactly ω -closed set and compactly ω -k-closed set المجموعة المغلقة $\omega - \mathbf{K} - \omega$ المجموعة المغلقة $\omega - \mathbf{K} - \omega$

Habeeb Kareem Abdullah College of Education for Girls Department of Mathematics University of Kufa Zainab Mhudy Hamza College of Education for Girls Department of Mathematics University of Kufa e-mail: zainabmh.ed11p@uokufa.edu.iq

Abstract :

In this paper ,we introduce definition of compactly ω -closed set and obtain some fundamental properties for this concept. Moreover, we also study the definition of compactly ω -k-closed set and prove some results which are relate to this subject. Also ,we give the relation between these concepts.

Key Words: ω -open set , ω -closed set ,Compactly ω -closed ,Compactly ω -k-closed set , St- ω -compact function , ω -compact function .

الخلاصة:

في هذا البحث فقدّم تعريف المجموعة المغلقة- ((رصاً ونحصل على بعض الخواص الأساسية لهذا المفهوم على غلى ذلك، نَذرسُ تعريف المجموعة المغلقة (-k-d رصاً أيضاً وتُثبتُ بَعْض النَتائِج التي تَتعلَّقُ بهذا الموضوع أيضاً، نَعطي العلاقة بين هذه المفاهيم.

0.Introduction

In 1982, Hdeib defined $[1]\omega$ -closed and ω -open sets as follows :A sub set of a space is called ω -closed if it contains all its condensation point :A point $x \in X$ is called a condensation point of A if for each $U \in T$, the set $U \cap A$ is un countable. The complement of an ω -closed set is said to be ω -open .Equivalently a sub set W of a space (X,T) is ω -open if and only if for each $x \in W$, there exists $U \in T$ such that $x \in U$ and U-W is countable. In 1989, Hdeib [2] introduced ω -continuity as a generalization of continuity as follows :A function $f: (X, T) \to (Y, \sigma)$ is called ω -continuous if the inverse image of each open set is ω -open set. In the year 2003, the authors [3] proved that the family of all ω -open sets in a space (X,T) forms a topology X finer than that T.

This paper contains three sections :In section one of this paper we review the basic concepts that we needed . In section two ,we introduce the compactly ω -closed set and basic properties of this set . In section three ,we study the relation between compactly ω -closed set and compactly ω -k-closed set and review some properties of the last notion .

Throughout this paper by a space we mean a topological space .The closure of A and the interior of A will be denoted by CL(A) and INT(A) ,respectively.

1.Preliminaries

The section includes some basic definitions ,theorems ,propositions and remarks that we need for our main results in this paper .

Definition(1-1):[1] Let (X,T) be a space $W \subset X$. A set W is said to be ω -open if for each $x \in W$, there exists $U \in T$ with $x \in U$ and U-W is countable. The complement of ω -open set is called ω -closed set. The ω - closure and ω -interior of a set W, will be denoted by $CL_{\omega}(W)$ and $INT_{\omega}(W)$ resp., are defined by

 $CL_{\omega}(W) = \cap \{F \subset X/F \text{ is } \omega - closed \text{ and } W \subset F\}$ $INT_{\omega}(W) = \cup \{G \subset X/G \text{ is } \omega - open \text{ and } G \subset W\}$

Remark (1-2):[3] In a space (X,T) :

- i. Every open set is an ω -open set .
- ii. Every closed set is an ω -closed set.
- iii. A sub set U of (X,T) is ω -open (ω -closed) set if and only if its open (closed)set in (X, T $_{\omega}$).

Definition (1-3):[4]Let X be a space .We say that a subset A of X is ω -compact if for each cover of ω -open sets from X contains a finite sub cover for A .If A=X we say that X is ω -compact space .

Example (1-4): Every finite subset of any space is an ω -compact.

Remark (1-5):

- i. The space (X,T) is ω -compact if and only, if the space (X, T $_{\omega}$) is compact, [4].
- ii. Every ω -compact space is compact ,[5].

Lemma (1-6):[6] In any space the intersection of a compact sub set with closed subset is compact .

Proposition (1-7): In any space X ,the intersection of any ω -closed with any ω -compact set is ω -compact .

Proof:

Let A,B be an ω -closed, ω -compact set, respectively of a space (X,T). Thus A,B be closed, compact set, respectively of a space (X, T_{ω}) , then by Lemma (1-6), $A \cap B$ is a compact set in (X, T_{ω}) , then by Remark (1-5,i) $A \cap B$ is an ω -compact in (X,T).

Theorem (1-8):[6]

- i. Every compact subset of a T₂ space is closed .
- ii. Closed sub sets of compact sets are compact .

Proposition (1-9):

- i. Every ω -closed subsets of an ω -compact space set is ω -compact.
- ii. Every $\omega\text{-compact}$ sub set of an $\omega\text{-}T_2$ space is $\omega\text{-closed}$.

Proof:

i.Let A be ω -closed sub set of ω -compact space (X,T), then by Remark (1-5,i) A is closed subset of compact (X,T $_{\omega}$), then by Theorem (1-8,ii), A is a compact subset of (X,T $_{\omega}$), therefore by Remark (1-5,i) A is an ω -compact subset of (X,T).

ii.Let A be ω - compact subset of an ω -T₂ space ,then A be compact subset of an T₂ space by using(1-9,i), A is closed subset ,then A is ω -closed subset .

Definition (1-10):Let X and Y be a spaces ,the function $f: X \to Y$ is said to be :

- i. ω -continuous if for every open sub set A of Y, $f^{-1}(A)$ is ω -open in X, [5].
- ii. ω -irresolute if for every ω -open sub set B of Y, $f^{-1}(B)$ is ω -open in X, [3].
- iii. ω -compact if for every ω -compact sub set K of Y, $f^{-1}(K)$ is compact in X.

Definition (1-11):[3]A space X is said to be ω -T₂ if for $x, y \in X$ such that $x \neq y$, there exists disjoint ω -open sets U and V such that $x \in U$ and $y \in V$.

Proposition (1-12):[7]A space (X,T) is ω -T₂ if and only , if (X, T_{ω}) is T₂.

Remark(1-13):Let X be a space and Y be a sub space of X such that $A \subseteq Y$, if A is an ω -open (ω -closed) sub set in X then A is an ω -open (ω -closed) in Y.

Proposition (1-14):Let X be a space and Y be an ω -open set of X ,if A an ω -open set in Y then A is an ω -open set in X.

Proof:

Let $x \in A$, since A is an ω -open in Y then there exists an open set W in Y contain x such that W-A is countable set. Since W is an open set in Y, then $W = U \cap Y$ for some open set U in X, $U \cap Y$ is an ω -open set in X, since $x \in U \cap Y$ and W is ω -open set in X contain x, then there exists an open set V in X contain x such that V-W is countable set.

Since V-A \subseteq (V-W)U(W-A) and (V-W)U(W-A) is countable set ,then V-A is countable set .So A is an ω -open set in X.

Proposition (1-15):Let X and Y be spaces and $f: X \to Y$ be function then if f is ω -irresolute function, then an image f(A) of any ω -compact A in X is an ω -compact set of Y.

Proof :

Let $\{V_{\lambda} \setminus \lambda \in \Delta\}$ be an ω -open cover of f(A), then $\{f^{-1}(V_{\lambda}) \setminus \lambda \in \Delta\}$ is an ω -open cover of A. Since A is ω -compact in X, then A has a finite sub cover say $\{f^{-1}(V_{\lambda_i})\}_{i=1}^n$, i.e. $A \subseteq$

 $\bigcup_{i=1}^{n} f^{-1}(V_{\lambda_{i}}), \text{hence } f(A) \subseteq \bigcup_{i=1}^{n} V_{\lambda_{i}} \text{ .Therefore } f(A) \text{ is } \omega \text{-compact of } Y.$

Proposition(1-16):Let X be a space and $A \subseteq X$, $x \in X$ then $x \in CL_{\omega}(A)$ if and only , if there exists a net $(\chi_d)_{d \in D}$ in A and $\chi_d \xrightarrow{\omega} x$.

Proof:

Let $x \in CL_{\omega}(A)$, then for all $U_x \in T_{\omega}$, $x \in U_x$, $U_x \cap A \neq \phi$. Notic that $(N_{\omega}(x), \geq)$ is a directed set , such that for all $U_1, U_2 \in N_{\omega}(x)$, $U_1 \geq U_2$ if and only if $U_1 \subseteq U_2$, now since $U_x \cap A \neq \phi$ for all $U_x \in N_{\omega}(x)$, thus there exists $\chi_{U_x} \in U_x \cap A$ for all $U_x \in N_{\omega}(x)$. Hence $(\chi_{U_x})_{U_x \in N_{\omega}(x)}$ is a net in A. To prove that $\chi_{U_x} \xrightarrow{\omega} x$. Let $U_0 \in N_{\omega}(x)$ and let $U \geq U_0$, thus $\chi_U \in U \subseteq U_0$, then $\chi_U \in U_0$.

Conversely, suppose that there exists a net $(\chi_d)_{d\in D}$ in A such that $\chi_d \xrightarrow{\omega} x$ (To prove that $x \in CL_{\omega}(A)$), let $U \in N_{\omega}(x)$. Since $(\chi_d)_{d\in D}$ is eventually in every ω -neighborhood of x, then there exists $d_0 \in D$ such that $\chi_d \in U$ for all $d \ge d_0$ but $\chi_d \in A$ for all $d \in D$, thus $U \cap A \neq \phi$, for all $U \in N_{\omega}(x)$. Hence $x \in CL_{\omega}(A)$.

Proposition(1-17):Let Y be an ω -open sub space and K \subseteq Y, then K is an ω -compact set in Y if and only , if K is an ω -compact set in X.

Proof :

Let $\{U_{\lambda}\}_{\lambda\in\Delta}$ be an ω -open cover in X of K and $V_{\lambda} = U_{\lambda} \cap Y$ for all $\lambda \in \Delta$. Then V_{λ} is an ω -open in X for all $\lambda \in \Delta$, but $V_{\lambda} \subseteq Y$, thus by Remark (1-13), V_{λ} is an ω -open cover in Y for all $\lambda \in \Delta$. Since $K \subseteq \bigcup_{\lambda\in\Delta} V_{\lambda}$, then $\{V_{\lambda}\}_{\lambda\in\Delta}$ is ω -open cover in Y of K and by hypothesis this cover has finite sub cover of K. Hence the cover $\{U_{\lambda}\}_{\lambda\in\Delta}$ has finite sub cover of K. Thus K is an ω -compact set in X

Conversely, let K is an ω -compact set in X (To prove that K is an ω -compact set in Y).Let $\{H_{\alpha} \setminus \alpha \in \Delta\}$ be ω -open cover in Y of K. Since Y be an ω -open sub space of X, then by Proposition (1-14), $\{H_{\alpha} \setminus \alpha \in \Delta\}$ is ω -open cover in X of K. Then by hypothesis there exists finite sub cover such that $K \subseteq \bigcup_{i=1}^{n} H_{\alpha_i}$. Hence K is an ω -compact set in Y.

2.Compactly ω-closed set

In this section ,we introduce a new notion of ω -closed set which is compactly ω -closed set .Also ,we give some proposition ,examples and theorems about this subject .

Definition (2-1):Let X be a space .A sub set W of X is called a compactly ω -closed if for every ω -compact set K in X, W $\cap K$ is ω -compact.

Example (2-2):

- i. Every finite sub set of a space X is compactly ω -closed set.
- ii. Every sub set of a discrete space is compactly ω closed set .

Proposition (2-3):Every ω-closed sub set of a space X is compactly ω-closed set. Proof:

Let A be an ω -closed sub set of a space X and K be an ω -compact set in X. Then by Proposition (1-7)A \cap K is a ω -compact set. Thus A is a compactly ω -closed set.

The converse of Proposition (2-3) is not true in general as the following example shows :

Example(2-4):Let $X = \mathbb{Q}^c$, $A = \mathbb{Q}^c - \{\sqrt{2}\}$ be a sets and let (X,T) is indiscrete space where \mathbb{Q}^c is the set of irrational numbers. Then A is compactly ω -closed set, but A is not ω -closed set, since $A^c \notin T_{\omega}$.

Theorem(2-5):Let X be a T_2 space .A sub set A of X is compactly ω -closed if and only ,if ω -closed set .

Proof :

Let A be a compactly ω -closed set in a space X and let $x \in CL_{\omega}(A)$, then by Proposition (1-16) there exists a net $(\chi_d)_{d\in D}$ in A such that $\chi_d \xrightarrow{\omega} x$, then $F=\{\chi_d, x\}$ is an ω -compact set. Since A is an compactly ω -closed, A \cap F is an ω -compact. So, by Proposition (1-9,ii) A \cap F is an ω -closed set.

Since $\chi_d \xrightarrow{\omega} x$ and $\chi_d \in A \cap F$, then by proposition (1-16) $x \in A \cap F \to x \in A$. Hence $CL_{\omega}(A) \subseteq A$, therefore A is ω -closed set.

Conversely, by Proposition (2-3).

Before we prove the next propositions , we state the following notion of a strong ω -compact function.

Definition (2-6):Let X and Y be spaces ,the function $f: X \to Y$ is called a strong ω -compact function (st- ω -compact function) if the inverse image of each ω -compact set in Y is ω -compact set in X.

Example (2-7): Every constant function X into Y is st- ω -compact function .

Proposition (2-8):Let $f: X \to Y$ be an ω -irresolute ,st- ω -compact and one to one ,function .Then A is compactly ω -closed set in X if and only ,if f(A) is compactly ω -closed set in Y . Proof :

Let A be compactly ω -closed set in X and let K be an ω -compact set in Y. Since f is st- ω compact function then $f^{-1}(K)$ is ω -compact set in X. So, A $\cap f^{-1}(K)$ is an ω -compact set. Then
by proposition (1-15) $f(A \cap f^{-1}(K))$ is ω -compact set in Y but $f(A \cap f^{-1}(K)) = f(A) \cap K$, then $f(A) \cap K$ is ω -compact set. Hence f(A) is compactly ω -closed set.

Conversely, let f(A) be a compactly ω -closed set in Y and let K be ω -compact set in X. Since f is ω -irresolute function, then by proposition (1-15) f(K) is ω -compact set in Y, so $f(A) \cap f(K)$ is ω -compact set in Y.

Since f is st- ω -compact function, then $f^{-1}(f(A) \cap f(K)) = f^{-1}(f(A)) \cap f^{-1}(f(K))$ is ω -compact set in X. Since f is one to one to one function then $A = f^{-1}(f(A))$ and $K = f^{-1}(f(K))$. Thus $A \cap K = f^{-1}(f(A)) \cap f^{-1}(f(K))$. Hence $A \cap K$ is ω -compact set in X.

Therefore A is compactly ω -closed set in X .

Proposition (2-9):Let B be an ω -open sub space of space X. Then B is compactly ω -closed set if and only , if the inclusion function $i_B: B \to X$ is st- ω -compact.

Proof:

Let K be an ω -compact in X, then B $\cap K$ is an ω -compact in X thus by Proposition(1-17), B $\cap K$ is an ω -compact in B but $i_B^{-1}(K) = B \cap K$, then $i_B^{-1}(B)$ is ω -compact in B. Hence $i_B : B \to X$ is st- ω -compact function.

Conversely, let K be ω -compact in X. Since i_B is a st- ω -compact, then $i_B^{-1}(B)$ is an ω -compact in B. Thus by Proposition(1-17) $i_B^{-1}(K)$ is an ω -compact set in X but $i_B^{-1}(K) = B \cap K$, then $B \cap K$ is an ω -compact set in X, for every ω -compact K in X. Therefore B is a compactly ω -closed set.

3.The relationship between compactly ω-K-closed set and compactly ω-closed set.

In this section of the paper we introduce definitions of compactly ω -K-closed set and its relation with compactly ω -closed.

Definition (3-1):Let X be a space .Then a sub set A of X is called compactly ω -K-closed if for every ω -compact set K in X, A \cap K is ω -closed set.

Example (3-2):Let $X=\mathcal{R}$ and (X,T) is co finite space where \mathcal{R} is the set of real numbers .Then every finite set of this space is compactly ω -K-closed.

Proposition (3-3): Every compactly ω -K-closed sub set of a space X is ω -closed set . Proof:

Let A compactly ω -K-closed sub set of a space X and let $x \in CL_{\omega}(A)$, then by Proposition(1-16) there exists a net $(\chi_d)_{d\in D}$ in A such that $\chi_d \xrightarrow{\omega} x$. Then $F=\{\chi_d, x\}$ is an ω -compact set. Since A an compactly ω -K-closed set then A \cap F is ω -closed set. Since $\chi_d \xrightarrow{\omega} x$ and $\chi_d \in A \cap F$, then by Proposition (1-16) $x \in A \cap F \rightarrow x \in A$. Hence $CL_{\omega}(A) \subseteq A$, therefore A is ω -closed set.

The converse of proposition (3-3) is not true in general as the following example shows :

Example (3-4) : $X = \mathbb{Q}^c, A = \mathbb{Q}^c - \{\sqrt{2}\}$ be a sets and let $T = \{\phi, \mathbb{Q}^c, \{\sqrt{2}\}\}$ be a topology on X. Notice that A is ω -closed set, but A is not compactly ω -K-closed set, since A \cap B is not ω -compact set for any ω -compact set B in X.

Proposition (3-5): Every compactly ω -K-closed sub set of a space X is compactly ω -closed set . Proof:

Let A compactly ω -K-closed sub set of a space X and let K be an ω -compact set in X, then A \cap K is ω -closed set. Since A \cap K \subseteq K and K is ω -compact set in X. Then by Proposition (1-9,i) A \cap K is ω -compact set. Therefore A is compactly ω -closed set.

Note that the opposite direction of proposition (3-5) is not true .The following example shows that

Example (3-6) : $X = \mathbb{Q}^c$, $A = \mathbb{Q}^c - \{\sqrt{2}\}$ be a sets and let (X,T) is indiscrete space where \mathbb{Q}^c is the set of irrational numbers. Then A is compactly ω -closed set, but A is not compactly ω -K-closed set, since $A \cap B$ is not ω -compact set for any ω -compact set B in X.

Remark (3-7):From the propositions(2-3,3-3,3-5), we get the following diagram ,and none of its implications is reversible and the Examples (2-4,3-4,3-6) shows that ,respectively .

The following theorem shows that under certain condition , ω -closed , compactly ω -closed and compactly ω -K-closed sets are equivalent .

Theorem (3-8):Let X be T_2 -space and A is a sub set of X. Then the following statement are equivalent :

i. A is compactly ω -K-closed set .

ii. A is compactly ω -closed set.

iii. A is ω -closed set.

Proof :

 $(i \rightarrow ii)$ By proposition (3-5).

(ii \rightarrow i) Let A be a compactly ω -closed subset of X and K be an ω -compact set in X. Then A \cap K is ω -compact set .Since X is T₂ -space, Then by proposition (1-9,ii), A \cap K is ω -closed set .Hence A is a compactly ω -K-closed set.

(iii \rightarrow i) Let A be an ω -closed sub set of a space X and K be an ω -compact set in X. Then by Proposition (1-7)A \cap K is a ω -compact set. Then by Proposition (1-9,ii) A \cap K is a ω - closed set. Hence A is a compactly ω -K-closed set.

 $(i \rightarrow iii)$ By Proposition (3-3).

References :

[1] H.Z.Hdeib ,ω-closed mapping ,Rev.colomb .Math .,vol.16,no .(3-4),pp.65-78,(1982) .

- [2] H.Z.Hdeib, ω-continuous functions, Dirasat, vol.16, n0.2, pp.136-142, (1989).
- [3] K.AL-Zoubi and B .AL-Nashef ,The topology of ω-open sub sets ,AL-Maharah Journal ,vol.9,no.2,pp.169-179,(2003) .
- [4] T.Noiri,A.AL-Omari ,M.S.M.Noorani ,Weak forms of ω-open sets and decomposition of continuity ,Eur. Jou .of Pure and App.Math .vol.2,no.1,pp.73-84,(2009).
- [5]A.Qahis and M.S.Noorani ,On ω-confluent mapping ,Int .Journal of math .Analysis ,Vol.5,No.14 ,PP.691-703,(2011).
- [6] J.N.Sharma, Topology , Published by Krishna . Parkashan mandir , Meerut , (1977).
- [7] H.Maki, P.Sundaram and N.Rajesh ,Characterization of ω -T₀ , ω -T₁and ω -T₂ topological spaces ,(under preparation).