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technique in Bayesian quantile regression, compare it with a Bayesian
least absolute shrinkage and selection operator (Lasso) and perform
simultaneous estimation and variable selection in the context of quantile

SEM. We suggest using Gibbs samples to perform Bayesian inference.
Simulations with different sample sizes show that the proposed method

Correspondence: gives good results. The proposed method was applied to a group of
Lekaa A. Muhamed patients with Kidney failure disease to study the factors affecting this
lekaa.ali.1968@gmail.com disease.

https://doi.org/10.55562/jrucs.v54i1.615

Introduction

Structural equation models (SEMs) are widely applied in the fields of social, behavioral and
medical sciences to analyze latent variable that are measured by multiple highly correlated
covariates. Structural equation modeling (SEM) is a popular multivariate technique for analyzing
the interrelationships between latent variables.In classical SEMs, the effects of explanatory latent
variables on outcome latent variables are assumed to have predefined parametric forms.

In quantile regression, the conditional quantiles of the response variable are assessed, given the
explanatory variables. The main purpose of quantile regression is to obtain a highly comprehensive
analysis of the relationship between variables by using different measures of central tendency and
statistical dispersion. Although quantile regression has been rarely studied in structural equation
models (SEMs).

Quantile regression has emerged as a useful supplement to classical mean regression, In recent
years, variable selection based on penalty likelihood methods has used widly. Based on the Gibbs
sampling algorithm of asymmetric Laplace distribution, this paper considers the quantile regression
with Lasso penalty from a Bayesian point of view with proposed the Bridge technique in Bayesian
quantile regression for Structural equation model.
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1. Structural equation modeling (SEM)

The structural equation model consists of two components, as follows:

Let yi=(yil,....., yip)" be a( px1) vector representing the ith observation in a random sample
of size n, and ©i = (wil,....., wip )’ be a (qx1) vector of latent variables with (q<p)

The link between yi and wi is defined by the following measurement equation:

1) yi=AcitAowitel i=1,....,n (D)

2)  nican be assessed in the following structural equation

ni=p di + It & + 8 i=1,...n )

Then the Structural equation model (SEM) is defined by Equations (1) and (2).

Where A (p x rl) and A (p x q) are matrices of unknown coefficients, ci (rlx 1) is a vector
of fixed covariates, and &i (p x1) is a random vector of error terms.To analyze the interrelationship
among latent variables, let partition i = (ni, & )’ ,where ni (q1 x1) denote outcome latent
variables and &i (q2 x 1) is explanatory latent variables.

To simplify we assume that g1 = 1. The primary goal of SEM is to analyze the behavior of
latent variable ni given the information contained in a set of explanatory latent variables &i . The
purpose of the measurement equation in an SEM is to relate the latent variables in ® to the observed
variables in y. It represents the link between observed and latent variables, through the specified
factor loading matrix A, the vector of measurement error €i is used to take the residual error into
account. The important issue in formulating the measurement equation is to specify the structure of
the factor loading matrix A, based on the knowledge of the observed variables in the study. Any
element of A can be a free parameter or fixed parameter with a preassigned value [18].

The positions and the preassigned values of fixed parameter are decided based on the prior
knowledge of the observed and latent variables, and they are also related to the interpretations of
latent variables. It can also be known from previous studies [18].

In the traditional Structural equation model (SEM), the error term &i is assumed to follow a
normal distribution with mean zero. And therefore the conditional mean of yi is assumed to be a
linear combination of latent factors wi and covariates ci, with the error having a normal distribution.
While this assumption is common and reasonable in many instances, it may induce biased estimates
when the true underlying distribution of &i is highly non-normal, such as skewed. For this, the
quantile regression for SEM will be adopte upon, which will be explained in the section (2). The
rest of the paper is organized as follows. In section (2), we present Quantile Structural equation
model (QSEM), In section(3) we present Bayesian lasso technique in a model,in section (4) we
present Lasso technique in Bayesian quantile regression, in section (5) we present Bayesian
Modeling for Lasso Quantile Structural Equation Model and and finding the conditional
distributions of parameters and latent variable within the Bayesian lasso analysis by using Gibbs
sampling, in section (6) we Proposed Bridge technique in Bayesian quantile regression for
Structural equation model, in section(7) we present Bayesian model of the Bridge quantile SEM, A
simulation study is conducted to evaluate the empirical performance of the proposed method in
section 8 and in section 9 we report a real data on the determination of the risk factors of CKD
patients. We conclude with brief conclusions in section (10).

2. Quantile Structural equation model (QSEM)
The primary aim of SEM is to analyze the behavior of latent variable ni given the information
contained in a set of explanatory latent variables &i. This is done in traditional SEM by evaluating
the conditional mean of (ni\&i) and fixed covariates di (12 x 1) as follows [20]:

E(ni\éi,di)= Bdi+I'&i i=1,....,n ®)

Where B (g1 % r2) and I (g1 x Q) are the matrices of unknown coefficients to be estimated.
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The conditional mean does not provide a complete description of the interrelationship
among latent variables. A more comprehensive analysis can be achieved from a combination of
Q(ni \ &i ,di) the conditional quantile of ni, under some different quantiles t € (0,1), as follows:

Q:(mi\&i,di) =B di+I:§ i=1,....,n ()

The coefficients matrices B, and I'; have a subscript T because they might not be equal for
different quantiles. Thus, the model of quantile structural models is as follows:

1) 1- yi=AcitAoits i=1,....,n 5)
2) i can be assessed in the following structural equation
Ni=P: di + I': & + i=1,....,n (6)

Where A (p x r1) and A (p x q) are matrices of unknown coefficients, ci (r;x 1) is a vector of fixed
covariates, and g (p x1) is a random vector of error terms. Then the Quantile SEM is defined by
Equations (5) and (6).

3. Bayesian lasso technique in a model

(Tibshirani 1996) proposed a penalty function for the linear regression model known as Lasso),
which is abbreviated for (Least Absolute Shrinkage and Selection Operator). It is one of the
important techniques that were used in estimating the parameters of regression models. This
technique is of great importance in controlling the variance of the model parameters and selecting
the important variables in the model. It was proposed to estimate the parameters of the linear
regression model and to perform the variable selection simultaneously.

The principle of (Lasso method) is to reduce the sum of squares of the residuals according to a
constraint representing the absolute sum of the coefficients which are less than a certain constant.
For the linear regression model The Lasso estimator is the solution to the following L;- penalized
least squares problem:

ming ¥i_1 (Vi — X! B)? + VZ?=1|:BJ'| (7)
Where 25.’=1|[3j| is penalty function or It is sometimes called Regularization function, Brasso =
(Blr 82' ey Bp)

y is a tuning parameter (y >0) that controls the penalty amount, such that the Lasso estimator is
equal to the least squares estimator when y = 0 and shrinks towards zero as y increases.

The Bayesian inference in Lasso technique has gained great interest in recent years in
estimating the regression model because of its great importance in achieving the accurate inference
of this model, Park and Casella (2008)[16] proposed a Bayesian framework of the Lasso (BLasso),
they assumed the error term of the model is follow the normal distribution (0, 6°),they proposed the
Bayesian Lasso estimator of 3 is defined as the posterior mode of B by assuming that conditionally
independent double-exponential prior distribution by the following [10]:

v]8y]

n(B/o%) =TI, Le ™o (8)

So that produces the same effect in contraction as in the original equation of Lasso as in equation
(7). As it is known that in achieving the Bayesian analysis with this technique, the Laplace
distribution is assumed independently as a prior distribution of the model parameters.In order to
facilitate Gibbs sampling in Bayesian inference, in most research, the mixed representation of the
Laplace function assumed by Andrews and Mallows 1974 is used, so that the probability density
function of the Laplace distribution is written with a mixed representation of the two distributions
(Normal & exponential), as follows [10]:

| 7=

2
z—e—yml/o _ o~B}/(20%5)) %e—yzwzdsj ©)
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According to the hierarchical formula,  has a normal distribution, as follows:
[B/02,s]~N,(0,02.s;) Where S; _exponential ( 2/Y?) S; is diagonal matrix (s, ...,sp ), The tuning
parameter y*~Gamma(al,,b1,) When aly, bly are predefined hyperparameters, where it was
specified by (Feng et al., 2015, we set aly=1 and b1y= 0.05 for obtaining dispersed priors)[10;]
Based on the previously described hierarchical structure, Blasso may be easily used in more

complex models, such as quantile regression models or quantile SEM, to conduct simultaneous
estimation and variable selection.

4. Lasso technique in Bayesian quantile regression

As we explained in section 3 that the Quantile regression presented by Koenker and Bassett
Jr (1978)[11] where the frequentist approach to the estimation of coefficients, is to solve the
following optimization problem:

n

mﬁinzlpf(yi —xTp) (10)

Where p.(X) = x(t — 1(x<0)) is the quantile loss function ( so-called check function)
Li and Zhu (2008) proposed the regularized quantile regression to achieve estimation and variable
selection, which uses the Lasso type penalty function, as follow [15]:

p

mﬁm; pe (i — xTP) + yjzzllﬁ"l (11)

In a Bayesian quantile regression framework, we need to specify a working likelihood
function for the model. According to Yu and Moyeed (2001)[23], they proposed the Bayesian
inference of quantile regression by introducing the ALD as a parametric link between the likelihood
function of the quantile regression model is equivalent to minimizing the problem in equation (10).
The Asymmetric Laplace (ALD) has its probability density function (pdf) as follows:

(l—r1 —
o0 = S Dexp —p. (=H)) (12)

o o
Where p is the location parameter, ¢ is the scale parameter and t (0 < t < 1) is the skewness

parameter. According to Yu and Moyeed (2001) implementing Bayesian inference for quantile
regression, if the error term &i are follow AL(0O, o, 1), then the likelihood function for the quantile
regression model as follows:

" (1 —o)" Lo (i — X1 B)

L(IB, g, y,X) = Texp {— o } (13)
Hence the solution of equation given by equation (10) is equivalent to maximizing the likelihood
function (13), For the likelihood function equation (13), we suffer computation difficulty.
Nevertheless, Kozumi and Kobayashi (2011) provided that the skewed Laplace distribution
equation (13) can be viewed as a mixture of normal and exponential distribution as follow [15]:

y=u+kie+.kyoeg (14)

Where k; = (1 — 21’)/(1’(1 — T)) k,=2/t(1—-1)

¢-N[0,1] | e-exp(l/o)

The resulting conditional distribution of y is normal, with a mean (u+k;e) and variance (kooe). The
posterior distribution of B can be expressed as follows:

i pe (i — X[ B)
f(B7.%) n(ﬁ)exp{— EE—
Where =t (B) is a prior distribution, The prior distribution of B is not unique, but there have been
many attempts by researchers, initially Yu and Moyeed (2001) employed non-informative prior
(m(B) o< 1) which yielded a proper joint posterior distribution, and the posterior mode of B is also
identical to the solution to quantile regression in equation (10). And based on the aforementioned
475
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normal mixture representation of (e¢i) Kozumi and Kobayashi (2011) specified a conjugate normal
prior for B, and the posterior of a normal distribution.

Feng et al.(2017) [15] have adopted Li et al. (2010) [15] proposing the Bayesian
regularized quantile regression by employing the double-exponential prior in equation (8), such that
the maximization of the posterior of B is equivalent to the minimization of equation (11) in Lasso
technique.

In order to implement the Gibbs sampling we need to generate the unknowns from the fully
conditional posterior distributions. The fully conditional posterior distributions are provided below.
Thus, by using this prior distribution, an easy posterior distribution analysis is obtained, as well as an easy
possibility to apply the Gibbs sampling method [10].

5. Bayesian Modeling for Lasso Quantile Structural Equation Model

The Bayesian hierarchical model based on the hierarchical model presented by Feng et al.
(2017) used in estimating the parameters of the structural equation as well as the measurement
equation within the structural equations model using the Lasso technique, which was explained in
section (4).

Based on the hierarchical representation, the Bayesian Lasso can be conveniently implemented
in a more complex Bayesian model by simply adding extra steps to the Gibbs sampling.
The common conjugated prior distributions were used in the Bayesian analysis of the structural
equations model, as follows [10] [18]: To simplify the expression of the distributions we define
several notations:

For the measurement equation (5), we let Q = (01, . . ., ©n), Ay = (A, A) = {Ay}, and define
Ly = {ly} as its identification matrix. That is, ly = 0 if the value of Ay is prefixed for
identification purposes, and Iy = 1 if Ay IS subject to estimation.

We let ui = (¢i", o), U = (uy, . . ., Uy), and define Uy as the submatrix of U after removing the
rows corresponding to lykj = 0. We let Y* = (Y1, . . ., Vi)' with:
r2+4q2
Vik = Yik — Z Ayrj Uij (1 = Lykj) (16)
For the median regre]szsilon in measurement equation (5), we can be expressed as follows:
e/ w101y, e00) "N, (Ac; + Aoy, 9) (17)

To simplify the notations, let u; = (ci’, wi')", 01, =(A, A), B1y« ' be the kth row of 1, for k=1,.....p
Then the equation (5) is in the following form:
(vi/ 0y, 601, ey;) ”id N, (61;u;,%¥;) (18)
and
01y ~ N r14q (Aoyk , Hoyk ) €yik ~ €XP (oyk) oy - ~ Gamma (agyk , bovk)
Where agy , boy, Aoyk and Hoyk (positive-definite matrix)are the hyperparameters and
And the structural equation (6) with Bayesian Lasso as follow:
T
Let B = (Bl B3)T, v = (d], &)
ind

(Mi/& 0824, eq;) O N (BTv; +kyen , kooyeq) (19)

ind

§i_ Ng2(0, @) &'~ Wishart(Ro, po) Blr~ Ny2442(0,5) , where S=diag( su,....Sr2+q2)

Sj~ Exponential(z}%) yi~ Gamma(al,, bl,) 0,7‘1~ Gamma(aly, bl,) e,;~ exponential (a;)
Where agy , bor , Aoy and Hoy(positive-definite matrix) are the hyperparameters and e, =

n
(ey1s rem)T
As is known, a Bayesian estimate for parameters is obtained from the posterior joint
distribution p (2, 0 \'Y, C, D, en) by iterative sampling of the parameters and latent variables, each
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component of the posterior distribution is generated by the Gibbs sampling method From the
conditional complete post hoc distribution iteratively. Bayes estimates for and were taken to be the
sample mean for the random observations generated [10].

Then the full conditional posterior for the latent variable and parameters in QSEM: The full
conditional posterior for the parameters of measurement equation (5) was derived, and the full
conditional posterior for latent variable and parameters of structural equation (6) as follows:

The Gibbs sampling algorithm is implemented with the following full conditional posterior
distribution of parameters and latent variable [20].
Let 01, =( A,A), 020 = B, I't), U= (¢i' , ') vi = (di",§&" )", U= (ul,...,ui ) where Uy be its
submatrix with rows corresponding to lykj =0 are deleted, Yy = (yix .-, ¥nk) Where yj =
- Zr1+q Ayig Ui (1= Tyxg)
l) The full conditional posterior distribution of the latent variable Q

d
(371/9131:771; gly)eyl) in N (Acl +A(l)l ,l'p)

p(Y /01y, 7, & ey = (P77 exp {"z(% 01,u) Wt (v — 01,u;) (20)

Itis known that p(wi/yi, 8y) o p(wi/6y) p(yi/w;,0y)
Then, the full conditional posterior distribution of the latent variable is

(wi\yioyiey01, 0y, @)~ No( 1, 27) (21)
Where :
po= BT - A + 375k
=31 + ATy A
Ypi = (FT(DFTT + iz%enz FA)) Y; = diag(8ay1yi1, .....,80y,eyi5)
2) The ful?)cl:)nditional pcc)I;terior distribution of the eyik : for (i=1,...,n, k=1,....p)

Py \Vir @i, 01y, 0yie) < f(Vires w1, 01y, Oy ) f (€318 \Oyic)

1 : (eylk 4 )2
20, 2 —
p(e;i}{\yik,wi,elyk,ayk) {Zn(:yk) } exp{ |ylk — yzkull l (22)

Thus, the full conditional distribution of ey, is an inverse Gaussian distribution (4 | yik- 01yU; | 1

26 yk)
3) The full conditional posterior distribution of the 61y:  for (k=1,...,p)

L2 -1 o
P(B1\Y, eyiig Oyi) o€ (B33 2 exp(o- (Bl — My TEAD T} Oy — Mu)  (23)
Where Muy, = ZI_\I%(HO_yl + Zn ylkul

1
=180y keyik

B‘rdi + kleni>
0

And Zp, = Hgy + X

=1 Soykeylk
normal distribution (Mux,E Ak )
4) The full conditional posterior distribution of the Gyk for (k=1,...,p)

p(c \Y U, Ayk) 1% (0_1)n+aoyk lexp {(boyk + 22|ylk 01 ku1|> 0;&} (24)

Thus, the full conditional posterior distribution of the oy Is
Gamma distribution (n + agyk, boyi + % - ?=1|yik - elykui|)
5) The full conditional posterior distribution of the ®:

Thus, The full conditional posterior distribution of the 61 is a
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p(@\0,) % p(®) | [ pe®) 25)
P(O\Q,) o |b|~(H+Po+az+D 20 {—% tr[@71(2,05 + Ry 1} (26)

6) The full conditional posterior distribution of on
r2+4q2

n
2
_ 14
(a,, I\ QB Sj,yj)~Gamma(n +al, + 1, +qs, bl, + Z pr (i — BFvy) + = Z 5;)
i=1 j=1

7) The full conditional posterior distribution of the eni is a

Inverse Gaussian distribution (# ﬁ) (27)
2|n;=Bd;=T§;| ~ 4oy

8) The full conditional posterior distribution of Brt:
f(BL\ Qe 0y) « f(1:\ Q,eq,0,)f (Br)
fBL\Q ey, 0)~Nra g2 (B VE;'EY, Z51) (28)
Where 3" = (™! + VE; V)"

9) The full conditional posterior distribution of S:
2

(Sj._l \ Bejr ¥, an)~1nverse - Gaussian(\/glyﬁrjl ,);—n) (29)
10) The full conditional posterior distribution of Y':
2\ sp00) < f(s:\ ay)f(r?)
21?3+q2 )
f(r?\ s;,0p)~Gamma(al, + 1, + qy, b1, + % (30)
n

6. Proposed Bridge technique in Bayesian quantile regression (Proposed method)

Frank and Friedman (1993) proposed Bridge regression which is a broad class of the penalized
regression method, The Bridge regression of frank and Friedman (1993) estimates linear regression
coefficients  through Lq penalized least-square estimates. They achieve [2]:

k
. q
min(y = X§)"/ = X§) + 1) |5} (31)
j=1
Where y= (yi, ..., yn) and X = (X1,....,Xn). Whereas the subject of interest is the quantile regression
presented by Koenker and Bassett (1978), the quantile regression coefficients  can be estimated
consistently by solving the following loss objective function:
n

mﬁE pe(yi — 1 B) (32)

Where p.(u)= u(t-1(u<0)) is the quantile check function, and I(.) is an indicator function, which
equals 1 if the argument is true and O otherwise [2].

In quantile regression model, to select significant covariates for improving prediction
accuracy, we can select different of penalty functions, such as L; penalty (Lasso and Adaptive
Lasso), L, penalty (ridge regression). Le (0 <& < 1) penalty (Bridge regression), which result in the
penalized quantile regression loss function as following:

Q(B) = Qe(B) +py (IBD) (33)
Where y > 0 is a penalty parameter, and py (|B|) is a penalty function on f.

The Bridge penalized regression is an important method that utilizes the Lz-norm penalty. In
general, the Bridge regularization regression with L..norm penalty of quantile regression models can
be expressed as follows:
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n p
mﬁinzlpf(yi —xTp) + yZIﬁjlf (34)

Where y > 0 is a tuning parameter, and & is the penalty exponent of the LE-norm penalization
function.
The Bridge penalized regression equation (34), penalization function p,(|8]) =

y25?=1|ﬁj 5, €=0 Includes three popular special cases[2]: the best subset selection if & =0,

Lasso (Tibshirani 1996) if £ = 1, and ridge regression (Hoerl and Kennard 1970) if§=2. (Xuet
al. 2010) showed that if 0 < & < 1, the L regularizer equation (34) keep many desirable statistical
properties such as sparsity, oracle and unbiasedness [2]. And they detect that L/, penalty is the most
sparse and robust among the L& (1/2 < & < 1) and has similar properties to the LE (0 < & < 1/2)
regularizers.

In the subject of Bayesian analysis, Polson et al. (2014) proposed a Bayesian Bridge
estimator for regularized regression, they proposed a Bayesian inference which using a prior for 8
that decomposes as a product of independent exponential power prior as following [2]:

P(B\Ev) o« [T%_, exp(— |%|§) ,where 7= y~1/¢ (35)

They utilize the Markov Chain Monte Carlo (MCMC) methods to obtain the posterior
inference based on two different scale mixture representation of the Bayesian Bridge prior in
equation (35), this mixture consists of the scale mixture of normal representation and the scale
mixture of triangular representation, Mallick (2016) proposed an efficient Gibbs sampling method
for bridge regression utilizing a scale mixture of uniform (SMU) representation of the Bayesian
bridge prior, A connection with a particular gamma distribution provides tractable full conditional
distributions so that B has a truncated multivariatnormal distribution. Alhamzawi and Algamal
(2018) studied Bayesian Bridge Quantile regression with fixed penalty exponent (§ = 0.5) [2].

To conduct the fully Bayesian inference of Bridge regularized model in the equation, we
need to specify the prior distribution. The analyze Bayesian Bridge quantile regression in equation
(34), If we put an exponential power prior to equation

k

p(B\E. V) < expl—y ) |;[°] (36)
j=1

On the regression coefficient and assume that the error term &i follow the ALD [33], then
the posterior distribution of  as follows:

n k
p(B\y,X,0,y) < exp {—frz pr(yi — x'B) - )/Zlﬁjlf} (37)
i=1 =1

As it was previously mentioned that minimizing the Bridge QR equation (34) is equivalent
to maximizing the likelihood in equation (37), to conduct the fully Bayesian inference of Bridge
regularized models we need to specify the prior distribution, Mallick and Yi (2016) proposed the
scale mixture of uniform distribution, whereas the exponential power distribution can be
represented as a scale mixture of uniform distribution as follows [2]:

1 1
y? y?+1 1

1—exp(—)/|t|f) = f fsfe‘ys ds (38)

ZF(?+ 1) s>[t|¢ 2551'*(?_'_ 1)

This representation Mallick and Yi (2016) of the exponential power distribution results in an
easy and efficient Gibbs sampler with traceable full conditional posterior distributions, which are

used. For the scale parameter, we also assign the gamma prior for the scale parameter o, to
summarize the following is the proposed Bayesian hierarchical representation [2]:
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.= .Tﬁ +(1- Zr)ei + /20,7 e; {;
("‘1_[ exp(_ZCL)

e\op~ 1_[ (1 — 7)oy, exp(—t(1 — )0} €)) (39)

(B\s, f)~Uniform(—sj%, sj%)
\r,O~IT" Gamma(; +1,7)

op~Gamma (alg, bl,)
y~Gamma (a2,,b2,)

In addition to the prior distributions of the rest of the parameters of the measurement
equation (5), which was mentioned in section (5) (Lasso), For the median regression in
measurement equation (5), is as follows [10]

The common conjugated prior distributions were used in the Bayesian analysis of the
structural equations model

In this section of the thesis, it was proposed to use the hierarchical Bayesian with Bridge
Lasso technique to Quantile Structural Equations model (QSEM)and by mixed representation by
Mallick and Yi(2016) and by proposing that the exponent parameter is a constant value equal to
(0.5) in Equation (34) and this method is considered one of the commonly used organization
methods, but according to the researcher’s knowledge it has not been applied within Bayesian
analysis quantile Structural Equation Models.

7. Bayesian model of the Bridge quantile SEM

The Bayesian hierarchical model based on the hierarchical model presented by Alhamzawi and
Algamal (2018) [2] used in estimating the parameters of the quantile regression by applying Bridge
Lasso technique, and applied this technique in structural equation model, which was explained in
section (1).

There is no available explicit formula of the joint posterior distribution of the unknown
parameters, to update the unknowns from the posterior distribution, we utilize Gibbs sampling.

Let 6 = [Bl,o s, v, 0, £] be a vector of unknown parameters. The joint posterior distribution of
the unknowns (parameters and latent variables) is not available in explicit form. Given that 0
includes multiple components, p(0|y, X, V) is complicated, Thus, we utilize the Gibbs sampling to
update the unknown parameters from the posterior distributions. Based on the hierarchical model
and prior specifications, the full conditional posterior for the parameters of measurement equation
(5) was derived within the section (5) and the full conditional posterior for latent variable and
parameters of structural equation (6) as follows:

1) The full conditional posterior distribution of the @ as mentioned in the equation (25) is

given by: [@\Q,]~IWy,[(Q,Q] + Rg™),n + po]

2) Updating flo
The full conditional posterior distribution of Pt is truncated normal (TN):

f(Blw \ Q, en' Un'sj) x f(rli \ Q, enlan)f(Blw\Sj)

r2+q2
1 T -1
X exp {_ k [Th' - BTdi - F‘L’Ei - kleni] (klaneni) [771' - Tfl klenl } 1_[ I|B]| < S
1Uneni =
then
r2+q2
(Bl \ €3, 0,)~N(Mitgp, 55 ™) 1_[ 18] <sf (40)

Where mean: Mu = (VTWV)"WWTWE |
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variance- covariance matrix: W = diag(—, ...,—)
2eq 2en

E=[m—0=20ep1, ...y — (1= 2t)e,,]"
and
Spp t = (VTWV)~1, and I(B;) denotes an indicator function
3) Updating eni: for i=1,..,n
The full conditional posterior distribution of ey;
p(erTil\ Wi, Blw: Un) x f( Wi, Blwi en_il' O-n)f(en_il\o-yk)

1 (
o 2 |Z(et- L )2

\
|
)

(eryil\wi, Blw, O'n) o8 W _1 (41)

| 5 l 1 l
V0 - pLavo?
Thus, the full conditional posterior distribution of the e,; is a

(eniN\w;, Bly, 0y)~Inverse Gaussian(M, ¢)

N 1 . _ o
WhereM—m and ¢ = >

4) Updating on
The full conditional posterior distribution of o:

(Un \ Q,p01, ,sj,yj) = U;BB_lexp(bBBan) (42)
Where

2
-B1hv;-(1-2b)e;)
Zei

n .
aps =al, + 2 by = b1, + Zzleln + (1 - ey

2
o (i — BLov — (1 = 20)e;)
Zei

3n
(oy \ Q. By, s;,v;)~Gamma(al, + —,

S b1y +

+t(1—t)e)

5) Updating sj

The full conditional posterior distribution of s;(j=1...rp+02)is a left-truncated exponential
distribution given by:

(5)\B1w, V)~Exp(NI{s; > |B1,|°
Updating s; can be done by using the inversion method as follows [2].

1) Update s*j from Exponential (y)

2) sets; = s +|p1y|° (43)
n(sj ) is a left-truncated exponential distribution, sampling from which is accomplished by using the
inverse transformation method with two substeps:

a) Generate si*~ Exp(A) and
b) si=s;*+|pi ™ Ji=1,-,p
3) Updating y : The full condltlonal posterlor distribution of the y

r2+q2| |f

, _ al,+2(r24q2)-1, Plyt = 120 )
fr\sjo,) = y*r e

Thus, the full conditional posterior distribution of y is

f\sjop) = f(si\ a)f @)

r2+q2
fr\ Sj, Un)~Gamma(a1y +2(ry + q2), b1, + | jl (44)

2 oy
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8. Simulation studies

The performance of the lasso method and proposed Bridge lasso method was illustrated using
simulation studies with different sample sizes, the simulation study’s main goal is to estimate the
quantile regression coefficients bs, y; and vy,
For structural equations model (SEM) at different quantiles:

We consider the quantile structural equations model (QSEM) given by (5) and (6) with p=9 ,

g=3, g1=1, q2=2 , r1=1r2=1 and n= 50, 100 with three different values of quantity were used,
which are (0.25, 0.5, 0.75). For measurement equation (5) the true value was determined as follows:

A= (0.5, ..., 0.5) and the fixed covariate ¢; , we can generate it by drawing from N(0,1) and the
factor loading matrix A has the common non-overlapping structure
A21= A31= Aso= Ag2= Ag3= Ag3= 0.7, then the factor loading matrix A will be in the following, The true
values of parameters Ajk and aj in the measurement equation are taken to be:

1* 07 0.7 0 0 0° 0 0 O

AT=[o* 0o* 0 1* 0.7 07 0° 0° 0

o o0+ o0 0 0 0 1 0.7 07
For structural equation (6) the true value is:
The true values of parameters Bt= (b1) = (0.1), I't =[y1,y2] =[0.1, 0.3]
And the explanatory latent variable & = (&1 , &i2)" is assumed to follow a normal distribution N(0,

®) where & = [012

The distributions for the error term in each equation of the structural equation model (SEM),
equation (5) and (6), they are assumed as follows:

i. eiand 61 ’s follow the normal distribution N (0, 0.4)

Ii. eiand 61 ’s are distributed as the heavy- tailed central t-distribution t(5)

The sampling was carried out using the Gibbs Sampler algorithm with the Metropolis
Hastings algorithm (10,000 iterations with the initial 2000 observations dropped in the burn-in)
from the posterior conditional distributions and The performance of the proposed method is
assessed by the (Bias) and root mean square error (RMS)

The conjugate normal prior of 01y ~ Ni1+q (Aoyk, Hoyk) where the mean Aoy is 0.7 and the
covariance matrix Hoyx is a diagonal matrix with diagonal element 10. Also 024 ~ Nr2+q2(Aow, How)
where the mean Ay, is= [1, 0.4, 0.4] and the covariance matrix Hy, is an identity matrix. The
conjugate inverse gamma prior of cs'lyk ~ Gamma (a0 , bOyx) and 0-171 ~ Gamma ( a0, , b0;) we
specified aOy= a0,=1, bOy= b0,=1 and the tuning parameter was mentioned in BLasso and BALsso
yi~ Gamma(al,, bl,) we specified aly =1 and bly= 0.05 ,The inverse Wishart prior of ot~
Wishart (Ro,po ) we specified Ro=5 I, and po=4.

Oiz] Also the fixed covariate d;, we can generate by drawing from N(0,1).

Table (1): shows the Bayesian estimates of the Quantile regression coefficients in the
structural equation (6) with the RMS Criteria and the BIAS Criteria, with d;x~ N(0, 0.4) with

n=50
oi n=50 N (0 0.4)
BQLsso BBQSEM
Par T RMS Bias RMS Bias
Blt 0.25 0.3203991 0.2034196 0.203687 0.190439
0.5 0.31898737 0.22608887 0.256814 0.162779
0.75 0.3414035 0.2797307 0.281436 0.218339
ylt 0.25 0.4470690 0.3847818 0.403564 0.335814
0.5 0.47278105 0.40327755 0.431297 0.342611
0.75 0.4535363 0.3920687 0.403812 0.312782
v2t 0.25 0.6168246 0.5996073 0.605692 0.554468
0.5 0.56062748 0.55901562 0.561235 0.0.55218
0.75 0.5800023 0.5789627 0.501237 0.569921
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Tables (2): shows the Bayesian of the parameters for measurement equation (5) with n=50,
gik~ N(0, 0.4), for = 0.25,0.5, 0.75

n=50 egi N(@00.4) 1=0.5
BQLsso BBQL
par RMS Bias RMS Bias
221 0.2632676 0.2613677 0.272241 0.256481
231 0.2344360 0.2339240 0.214751 0.214358
252 0.1884731 0.1868658 0.182146 0.183200
162 0.1899072 0.1665583 18234512 0.161478
283 0.1868642 0.1857021 0.184015 0.180245
293 0.3090305 0.2980920 0.310254 0.297250
al 0.19255419 -0.1656226 0.180123 -0.165281
a2 0.20055532 -0.1885822 0.190378 --0.18921
a3 0.19207265 -0.1159183 0.1720.3 -0.118536
ad 0.17305769 -0.1682224 0.171023 -0.182456
a5 0.05667344 -0.0383346 0.023489 -0.05674
a6 0.19528392 -0.1424781 0.169874 -0.153698
a’ 0.17555317 -0.1681655 0.185641 -0.200158
a8 0.11800695 -0.1139600 0.124581 -0.169548
a9 0.17118411 -0.1546713 0.165483 -0.20.158
ol1 0.5053664 -0.4728446 0.482681 -0.482364
012 0.2484923 -0.2392917 0.668542 -0.260158
021 0.2484923 -0.2392917 0.668542 -0.260158
022 0.3083302 -0.2864561 0.292456 -0.28934
n=50 &i N(00.4) 7=0.25
BQLsso BBQL
par RMS Bias RMS Bias
A21 0.2593113 0.2570893 0.251187 0.247329
231 0.2333437 0.2326273 0.221791 0.225761
252 0.1849664 0.1835414 0.166788 0.17758
262 0.1740932 0.1530985 0.174100 0.154244
183 0.1865514 0.1852896 0.185234 0.182456
293 0.3096126 0.2998021 0.300421 0.299801
al 0.13464383 -0.13463404 0.134100 -0.14632
a2 0.15630991 -0.15326645 0.156247 -0.14525
a3 0.10781653 -0.09395914 0.100451 0.12473
a4 0.1796170 -0.16328014 0.179145 -0.17254
ab 0.02965436 -0.02953254 0.012745 -0.03548
a6 0.17554002 -0.14131672 0.118263 -0.17452
a7 0.17841525 -0.17834769 0.179354 -0.17654
a8 0.13480558 -0.11624865 0.135246 -0.10345
a9 0.15309283 -0.14982493 0.152481 -0.15324
ol1 0.4849325 -0.4530673 0.18114 -0.46351
ol1 0.2459442 -0.2348389 0.25661 -0.24681
021 0.2459442 -0.2348389 0.25661 -0.23451
022 0.3088758 -0.2826899 0.30547 -0.27485
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n=50 ei N(@004) 7=0.75
BQLsso BBQL
par RMS Bias RMS Bias
A21 0.2607131 0.2587737 0.2401269 0.241268
131 0.2327074 0.2324960 0.2162255 0.217159
A52 0.1927438 0.1906758 0.1891023 0.184923
762 0.1915750 0.1693943 0.1811726 0.158623
183 0.1832952 0.1825820 0.8523691 0.182569
193 0.3018115 0.2933194 0.3025832 0.292568
a; 0.24159014 -0.2375906 0.2421580 -0.300178
a, 0.24527701 -0.2445472 0.2451178 -0.296483
as 0.20127242 -0.1664618 0.2011259 -0.222567
a 0.18907386 -0.1766708 0.1886903 -0.202389
as 0.04522357 -0.0415459 0.0412586 -0.067123
s 0.19082905 -0.1538869 0.1916835 -0.172681
a; 0.18519245 -0.1851555 0.1862549 -0.230183
as 0.14129895 -0.1208219 0.1587738 -0.162884
ag 0.16517565 -0.1628807 0.1724564 -0.210339
ol1 0.5206929 -0.4862106 0.5158144 -0.473691
012 0.2590470 -0.2455439 0.2603473 0.698743
021 0.2590470 -0.2455439 0.2603473 0.698743
022 0.3207422 -0.2874333 0.3203674 0.669811

Table (3): shows the Bayesian estimates of the Quantile regression coefficients in the

structural equation (6) with sample size (n=100) With dik~ N(0, 0.4)

oi n=100 N (00.4)
BQLsso BBQSEM

Par T RMS Bias RMS Bias

Blt 0.25 0.3081547 0.3004298 0.274002 0.252193
0.5 0.34281405 0.34016101 0.314882 0.312361
0.75 0.3873789 0.3868042 0.3469142 0.345682

ylt 0.25 0.3580411 0.3521044 0.3111564 0.301009
0.5 0.38583457 0.38495291 0.3655319 0.336817
0.75 0.3857904 0.3848131 0.3425803 0.332961

Y21 0.25 0.6401845 0.6365365 0.6362781 0.634825
0.5 0.61508492 0.61270257 0.6110293 0.625404
0.75 0.6485689 0.6450752 0.6243691 0.643510

Table (4): shows the Bayesian estimates of the Quantile regression coefficients in the

structural equation (6) with the sample size(n=50) and dik~ t(5)

oi n=50 t(5)
BQLsso BBQSEM

Par T RMS Bias RMS Bias

Blt 0.25 0.05146601 -0.0450126 0.158015 -0.61843
0.5 0.30357562 0.21341256 0.198237 0.093147
0.75 0.3355429 0.2732943 0.205831 0.221579

ylt 0.25 0.07086804 0.06567936 0.059147 0.014583
0.5 0.47390374 0.40581551 0.371583 0.304811
0.75 0.4532014 0.3897087 0.312831 0.301585

v2t 0.25 0.40133747 0.40048270 0.392483 0.421843
0.5 0.55726037 0.55564117 0.5029716 0.592411
0.75 0.5886226 0.5875550 0.5097126 0.0.62869
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Table (5) shows the Bayesian estimates of the Quantile regression coefficients in the structural
equation (6) with the sample size (n=100) and dik~ t(5)

oi n=100 t (5)
BQLSEM BBQSEM

Par T RMS Bias RMS Bias

Blt 0.25 0.0075931 0.2998867 0.111536 -0.62638
0.5 0.0510356 0.34823695 0.1909731 0.091500
0.75 0.0845135 0.3841183 0.204897 0.213919

vlt 0.25 0.024999 0.3457980 0.0152866 0.014754
0.5 0.38865036 0.38781442 0.3705940 0.3025711
0.75 0.3866752 0.3855469 0.302587 0.3570094

2t 0.25 0.3566731 0.6529677 0.6625849 0.654369
0.5 0.30595768 0.60361698 0.5019371 0.5912076
0.75 0.3547294 0.6505621 0.502269 0.0619382

The results showed a better performance of the method proposed (BBQSEM ) in the
research for estimating the parameters and latent variable within the structural equations Equation
(5). Compared to the method BQLsso proposed by Feng et al. (2017) [15], where we found that the
performance of this method is better than the other method.

The proposed method (BBQSEM ) is better for the quantiles 0.5 and 0.75 in a sample size of
100 and the distributed error term t(5),the comparison of the proposed method with other method
(BQLss0).

9. Real application

We applied the proposed method was employed in the research to evaluate the serious of
chronic kidney disease (CKD), by the logarithm urinary albumin-creatinine ratio (ACR) and
estimated glomerular filtration rate (eGFR), both of which are central for diagnosis and staging of
CKD They are the most important basic variables that specialist doctors usually rely on in
diagnosing the patient's condition, taking the necessary measures and determining the appropriate
treatment. Chronic kidney disease is one of the serious diseases facing the individual, which is a
gradual loss of the efficiency of kidney work over long periods and this is often not noticed. This
disease has serious complications on the heart and blood vessels, diabetes and anemia, as well as
other serious effects, and advanced cases of this disease represent a real threat to a person’'s life.

The QSEM was used to evaluate the effects of CDK (Chronic kidney disease) on patients in this
section .the study’s primary goal was to study potential CKD risk factors such as Hypertension,
Glycemia, Obesity and body shape

The studied variables are measured as possible risk factors as follows:

» &l: Blood pressure, it contains SBP and DBP

» &£2: Glycemia, it contains glycated hemoglobin (HbAc) and fasting glucose (FBG)

» &3 Body Shape, including weight and height

» m: CKD(Chronic kidney disease), It includes a combination of two factors, albumin-

creatinine ratio (ACR) and estimated glomerular filtration rate (eGFR)

A smaller eGFR value or a greater ACR value indicates a more severely impaired kidney
function, which may lead to kidney failure.

The clear interpretation of each latent variable suggests the measurement equation (5),

Where o; = (0, &1, &2, (:ig)T JA = (a1,ag,a3,a¢1,,a5-,,a6,a7,ag)T and the factor loading matrix A takes the
following non-overlapping structure:

1* AZ,, 0o*0* 0 0"0* O
AT = |0 0" 17 Ay 0° 07 07 0:
0* 0* 0* 0" 0° 01" Ag3
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Where the zeros and ones with an asterisk were fixed in advance to identify the model and unify the
scale of the latent variable. To assess the effects of latent variables &; to &; and fixed covariate
“Disease period” (d1) on CKD (1) under different quantiles, the structural equation can be show as
follows:

N = biedin + V181 + Varliz + Vac$iz + 6 (45)
Where bi;, vi: , v2: and vy3, , are the regression coefficients under t -quantile. We collected 77
observations of chronic kidney patients, the estimation was conducted for the quantiles of (0.05,
0.25,0.3, 0.5, 0.75).

The proposed method was applied in the research to estimate the parameters of the SEM
model that was used to analyze the relationship between the latent variables that represent the risk
factors for the disease referred to in the previous paragraph. Table (8) shows the estimated values of
the model parameters in each quantile:

Table (8): Bayesian estimates of quantile SEM parameters in the analysis of CKD data

Estimation of the parameters at quantiles

Parameters | 0.05 | 0.25 | 0.3 | 0.5 | 0.75
| measurement equation
Aon 0.921 0.901 0.933 1.120 1.074
A4y 0.642 0.682 0.676 0.751 0.762
Ae2 0.211 0.312 0.3011 0.250 0.399
As3 0.334 0.294 0.298 3.446 1.226
al 6.285 4.197 0.510 5.119 6.441
a2 5.221 5.009 4.498 4.827 4.260
a3 3.442 3.110 3.349 4.081 2.116
ad 2.003 2.846 2.199 3.117 2.996
ab 5.113 5.004 5.121 6.113 5.994
a6 2.006 2.887 2.989 3.441 3.007
a7 6.772 8.441 6.998 7.119 6.996
a8 7.836 6.043 6.221 6.245 6.111
structural equation coefficients (parameter and latent variables )
b1 0.2151 0.1745 0.2011 -0.1254 -0.7451
Yie 0.4256 0.2561 0.2145 0.2499 0.2400
Yo 0.1642 0.0542 0.0321 0.02584 0.0141
Y3 0.0455 0.0566 0.1004 0.1564 0.9836
Covariance matrix of the latent variable

$11 0.7871 0.8534 0.8529 0.8751 0.8241
$21 0.1593 0.1856 0.1872 0.1456 0.1431
$22 -0.058 -0.0521 -0.0531 -0.0412 -0.0410
$31 0.8233 0.8801 0.8124 0.9751 0.9102
$32 0.0490 0.0723 0.0426 0.0367 0.0187
$33 0.1552 0.1747 0.1647 0.1743 0.1729

1. Blood pressure is positively correlated with the severity of kidney disease, and the association is
stronger in light of higher quantities and this is confirmed by doctors through examinations of
patients, and high blood pressure is the main cause of chronic kidney disease, and that poor
kidney function, in turn, will increase blood pressure.

2. Glycemia has a weak positive correlation with CKD for lower quantiles, but not for higher
quantiles.

3. There is very little association between body shape and chronic kidney disease. This is true, but
the severity of the disease and its danger by overweight

To summarize, in order to slow down the progression of CKD it is important to effectively control
the risk factors, such as hypertension and hyperglycemia especially for patients with advanced
stages of CKD and to reduce weight. Quantile SEM provides a more comprehensive picture of the
relationship between CKD development and various risk factors. Results with some medical
knowledge provide deeper insight that cannot be achieved with traditional SEMs.
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10. Conclusions

In this paper, we introduce a QSEM to provide a comprehensive analysis of the
interrelationships among latent variables, and develop a BB approach to make statistical inference
on QSEM. In the QSEM, latent variables are imputed through the estimated density function and
the linear interpolation method.

The MCMC algorithm is presented to sample observations required for statistical inference by
combining the Gibbs sampler and the Metropolis-Hastings algorithm. A simulation study is
conducted to investigate the finite sample performance of the proposed methodologies. An example
is illustrated the proposed methodologies. The proposed method has the following characteristics.
First, the method does not depend on the distribution of random errors and latent variables, and is
robust. The empirical likelihood is employed to establish the working likelihoods so that the
proposed method is less vulnerable to extreme distributions. Second, the proposed method can
estimate parameters in the QSEMs when simultaneously considering multiple quantiles, and can be
used to investigate the effect of explanatory latent variables on outcome latent variables under
various quantiles. Although we only consider linear quantile for the structural equation model, the
above proposed method can be used to analyze a QSEM with nonlinear, nonparametric or
semiparametric quantiles.
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