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explanatory and latent covariates. In this study, we propose a Bridge 

technique in Bayesian quantile regression, compare it with a Bayesian 

least absolute shrinkage and selection operator (Lasso) and perform 

simultaneous estimation and variable selection in the context of quantile 
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Introduction  
Structural equation models (SEMs) are widely applied in the fields of social, behavioral and 

medical sciences to analyze latent variable that are measured by multiple highly correlated 

covariates. Structural equation modeling (SEM) is a popular multivariate technique for analyzing 

the interrelationships between latent variables.In classical SEMs, the effects of explanatory latent 

variables on outcome latent variables are assumed to have predefined parametric forms. 

In quantile regression, the conditional quantiles of the response variable are assessed, given the 

explanatory variables. The main purpose of quantile regression is to obtain a highly comprehensive 

analysis of the relationship between variables by using different measures of central tendency and 

statistical dispersion. Although quantile regression has been rarely studied in structural equation 

models (SEMs).  

Quantile regression has emerged as a useful supplement to classical mean regression, In recent 

years, variable selection based on penalty likelihood methods has used widly. Based on the Gibbs 

sampling algorithm of asymmetric Laplace distribution, this paper considers the quantile regression 

with Lasso penalty from a Bayesian point of view with proposed the Bridge technique in Bayesian 

quantile regression for Structural equation model. 
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1. Structural equation modeling (SEM) 
The structural equation model consists of two components, as follows:  

Let  yi = ( yi1 ,….., yip)
T
 be a( px1 ) vector representing the ith observation in a random sample 

of size n, and ωi = (ωi1,….., ωip )
T
 be a (qx1) vector of latent variables with  (q<p) 

The link between yi and ωi is defined by the following measurement equation: 

1)  yi = Aci + Ʌ ωi + εi     ,            i = 1,….., n (1) 

2)    ηi can be assessed in the following structural equation 

 

   ηi=β di + Γη ξi + δi           i = 1,….., n                                                          (2) 

 Then the Structural equation model (SEM) is defined by Equations (1) and (2). 

Where A (p × r1) and Λ (p × q) are matrices of unknown coefficients, ci (r1× 1) is a vector 

of fixed covariates, and εi (p ×1) is a random vector of error terms.To analyze the interrelationship 

among latent variables, let partition    ωi = (ηi, ξi )
T
   ,where ηi (q1 ×1) denote outcome latent 

variables and  ξi (q2 × 1)  is explanatory latent variables. 

To simplify we assume that q1 = 1. The primary goal of SEM is to analyze the behavior of 

latent variable ηi given the information contained in a set of explanatory latent variables ξi . The 

purpose of the measurement equation in an SEM is to relate the latent variables in ω to the observed 

variables in y. It represents the link between observed and latent variables, through the specified 

factor loading matrix Λ, the vector of measurement error εi is used to take the residual error into 

account. The important issue in formulating the measurement equation is to specify the structure of 

the factor loading matrix Λ, based on the knowledge of the observed variables in the study. Any 

element of Λ can be a free parameter or fixed parameter with a preassigned value [18].  

The positions and the preassigned values of fixed parameter are decided based on the prior 

knowledge of the observed and latent variables, and they are also related to the interpretations of 

latent variables. It can also be known from previous studies [18]. 

In the traditional Structural equation model (SEM), the error term εi is assumed to follow a 

normal distribution with mean zero. And therefore the conditional mean of yi is assumed to be a 

linear combination of latent factors ωi and covariates ci, with the error having a normal distribution. 

While this assumption is common and reasonable in many instances, it may induce biased estimates 

when the true underlying distribution of εi is highly non-normal, such as skewed. For this, the 

quantile regression for SEM will be adopte upon, which will be explained in the section (2). The 

rest of the paper is organized as follows. In section (2), we present Quantile Structural equation 

model (QSEM), In section(3) we present Bayesian lasso technique in a model,in section (4) we 

present Lasso technique in Bayesian quantile regression, in section (5) we present Bayesian 

Modeling for Lasso Quantile Structural Equation Model and and finding the conditional 

distributions of parameters and latent variable within the Bayesian lasso analysis by using Gibbs 

sampling, in section (6) we Proposed Bridge technique in Bayesian quantile regression for 

Structural equation model, in section(7) we present Bayesian model of the Bridge quantile SEM, A 

simulation study is conducted to evaluate the empirical performance of the proposed method in 

section 8 and in section 9 we report a real data on the determination of the risk factors of CKD 

patients. We conclude with brief conclusions in section (10). 

2. Quantile Structural equation model (QSEM) 
The primary aim of SEM is to analyze the behavior of latent variable ηi given the information 

contained in a set of explanatory latent variables ξi. This is done in traditional SEM by evaluating 

the conditional mean of (ηi\ξi) and fixed covariates di (r2 × 1) as follows [20]:  

 E( ηi \ ξi , di ) =  B di + Γ ξi                        i = 1,….., n                              (3) 

 

Where B (q1 × r2) and Γ (q1 × q2) are the matrices of unknown coefficients to be estimated. 
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The conditional mean does not provide a complete description of the interrelationship 

among latent variables. A more comprehensive analysis can be achieved from a combination of 

Q(ηi \ ξi ,di) the conditional quantile of   ηi, under some different quantiles  η ϵ (0,1), as follows: 

 Qη ( ηi \ ξi , di )  = Bη di + Γη ξi                        i = 1,….., n                              (4) 

The coefficients matrices Bη and Γη have a subscript η because they might not be equal for 

different quantiles. Thus, the model of quantile structural models is as follows: 

1)  1-   yi = Aci + Ʌ ωi + εi     ,            i = 1,….., n                                    (5) 

2) ηi can be assessed in the following structural equation 

   ηi=βη di + Γη ξi + δi                  i = 1,….., n                                  (6) 

Where A (p × r1) and Λ (p × q) are matrices of unknown coefficients, ci (r1× 1) is a vector of fixed 

covariates, and εi (p ×1) is a random vector of error terms. Then the Quantile SEM is defined by 

Equations (5) and (6). 

3. Bayesian lasso technique in a model 
(Tibshirani 1996) proposed a penalty function for the linear regression model known as Lasso), 

which is abbreviated for (Least Absolute Shrinkage and Selection Operator). It is one of the 

important techniques that were used in estimating the parameters of regression models. This 

technique is of great importance in controlling the variance of the model parameters and selecting 

the important variables in the model. It was proposed to estimate the parameters of the linear 

regression model and to perform the variable selection simultaneously. 

The principle of (Lasso method) is to reduce the sum of squares of the residuals according to a 

constraint representing the absolute sum of the coefficients which are less than a certain constant. 

For the linear regression model The Lasso estimator is the solution to the following L1- penalized 

least squares problem: 

     ∑        
       ∑ |  |

 
   

 
                                                           (7) 

Where ∑ |  |
 
      is penalty function or It is sometimes called Regularization function,  ̂       

  ̂   ̂     ̂                                                                                    

  is a tuning parameter (  ≥0) that controls the penalty amount, such that the Lasso estimator is 

equal to the least squares estimator when   = 0 and shrinks towards zero as   increases. 

The Bayesian inference in Lasso technique has gained great interest in recent years in 

estimating the regression model because of its great importance in achieving the accurate inference 

of this model, Park and Casella (2008)[16] proposed a Bayesian framework of the Lasso (BLasso), 

they assumed the error term of the model is follow the normal distribution (0, ζ
2
),they proposed the 

Bayesian Lasso estimator of β is defined as the posterior mode of β by assuming that conditionally 

independent double-exponential prior distribution by the following [10]: 

      ⁄   ∏
 

  

 
     

 |  |

                                                                                      (8) 

 

So that produces the same effect in contraction as in the original equation of Lasso as in equation 

(7). As it is known that in achieving the Bayesian analysis with this technique, the Laplace 

distribution is assumed independently as a prior distribution of the model parameters.In order to 

facilitate Gibbs sampling in Bayesian inference, in most research, the mixed representation of the 

Laplace function assumed by Andrews and Mallows 1974  is used, so that the probability density 

function of the Laplace distribution is written with a mixed representation of the two distributions 

(Normal & exponential), as follows [10]: 

 
 

  
   |  |  ⁄   ∫

 

√      

 

 

     
 (     )⁄  

  

 
       ⁄     (9) 
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According to the hierarchical formula, β has a normal distribution, as follows: 

    ⁄                  Where Sj ~ exponential ( 2/ϒ
2
) Sj is diagonal matrix (s1, …,sp ), The tuning 

parameter                   When a1ϒ, b1ϒ are predefined hyperparameters, where it was 

specified by (Feng et al., 2015, we set a1ϒ=1 and b1ϒ= 0.05 for obtaining dispersed priors)[10;] 

Based on the previously described hierarchical structure, Blasso may be easily used in more 

complex models, such as quantile regression models or quantile SEM, to conduct simultaneous 

estimation and variable selection.  

4. Lasso technique in Bayesian quantile regression 
As we explained in section 3 that the Quantile regression presented by       Koenker and Bassett 

Jr (1978)[11] where the frequentist approach to the estimation of coefficients, is to solve the 

following optimization problem:  

    
 

∑        
 

 

   

   (10) 

 

Where ρη(x) = x(η – I(x<0)) is the quantile loss function ( so-called check function) 

Li and Zhu (2008) proposed the regularized quantile regression to achieve estimation and variable 

selection, which uses the Lasso type penalty function, as follow [11]: 

    
 

∑  

 

   

       
     ∑|  |

 

   

 (11) 

In a Bayesian quantile regression framework, we need to specify a working likelihood 

function for the model. According to Yu and Moyeed (2001)[23], they proposed the Bayesian 

inference of quantile regression by introducing the ALD as a parametric link between the likelihood 

function of the quantile regression model is equivalent to minimizing the problem in equation (10). 

The Asymmetric Laplace (ALD) has its probability density function (pdf) as follows: 

             
      

 
   ,   (

   

 
)- (12) 

Where µ is the location parameter, ζ is the scale parameter and η (0 < η < 1) is the skewness 

parameter. According to Yu and Moyeed (2001) implementing Bayesian inference for quantile 

regression, if the error term εi are follow AL(0, ζ, η), then the likelihood function for the quantile 

regression model as follows: 

             
         

  
   {  

∑           
     

   

 
} (13) 

Hence the solution of equation given by equation (10) is equivalent to maximizing the likelihood 

function (13), For the likelihood function equation (13), we suffer computation difficulty. 

Nevertheless, Kozumi and Kobayashi (2011) provided that the skewed Laplace distribution 

equation (13) can be viewed as a mixture of normal and exponential distribution as follow [11]: 

          √       (14) 

 

Where           (      )⁄                         ⁄      

ς ~ N[0,1]     ,  e ~exp(1/ζ)  

The resulting conditional distribution of y is normal, with a mean (μ+k1e) and variance (k2ζe). The 

posterior distribution of β can be expressed as follows: 

                { 
∑         

    
   

 
}⁄  (15) 

Where π (β) is a prior distribution, The prior distribution of β is not unique, but there have been 

many attempts by researchers, initially Yu and Moyeed (2001) employed non-informative prior 

(π(β)   1) which yielded a proper joint posterior distribution, and the posterior mode of β is also 

identical to the solution to quantile regression in equation (10). And based on the aforementioned 



PISSN (1681-6870) EISSN (2790-2293) (2023); Issue 54 Journal of AL-Rafidain University College for Sciences  

 

476 
 

normal mixture representation of (εi) Kozumi and Kobayashi (2011) specified a conjugate normal 

prior for β, and the posterior of a normal distribution. 

Feng et al.(2017)
 
[15]  have adopted  Li et al. (2010)

 
[11]

 
 proposing the Bayesian 

regularized quantile regression by employing the double-exponential prior in equation (8), such that 

the maximization of the posterior of β is equivalent to the minimization of equation (11) in Lasso 

technique. 

In order to implement the Gibbs sampling we need to generate the unknowns from the fully 

conditional posterior distributions. The fully conditional posterior distributions are provided below. 
Thus, by using this prior distribution, an easy posterior distribution analysis is obtained, as well as an easy 

possibility to apply the Gibbs sampling method
 
[10]. 

5. Bayesian Modeling for Lasso Quantile Structural Equation Model 
The Bayesian hierarchical model based on the hierarchical model presented by Feng et al. 

(2017) used in estimating the parameters of the structural equation as well as the measurement 

equation within the structural equations model using the Lasso technique, which was explained in  

section  (4). 

Based on the hierarchical representation, the Bayesian Lasso can be conveniently implemented 

in a more complex Bayesian model by simply adding extra steps to the Gibbs sampling. 

The common conjugated prior distributions were used in the Bayesian analysis of the structural 

equations model, as follows [10] [18]: To simplify the expression of the distributions we define 

several notations: 

For the measurement equation (5), we let Ω = (ω1, . . . , ωn), Λy = (A, Λ) = {λykj}, and define 

Ly = {lykj} as its identification matrix. That is, lykj = 0 if the value of λykj is prefixed for 

identification purposes, and lykj = 1 if λykj is subject to estimation. 

We let ui = (ci
T
, ωi

T
)

T
, U = (u1, . . . , un), and define Uk as the submatrix of U after removing the 

rows corresponding to lykj = 0. We let Y∗
k = (y∗

1k , . . . , y∗
nk)

T
 with: 

  

    
∗      ∑     

     

   

            (16) 

For the median regression in measurement equation (5), we can be expressed as follows:  

 (            ⁄ )  
   
 

                  (17) 

To simplify the notations, let ui = (ci
T
, wi

T
)

T
, θ1y =(A, Λ), θ1yk 

T
 be the kth row of θ1y for k=1,….,p  

Then the equation (5) is in the following form: 

 (            ⁄ )  
   
 

                (18) 

and 

θ1yk ~  N r1+q (Λ0yk , H0yk ) eyik ~ exp (ζyk)  ζyk
-1

 ~ Gamma (a0ϒk  , b0ϒk)    

Where a0ϒ , b0ϒ , Λ0yk and H0yk (positive-definite matrix)are the hyperparameters and   

                  , Ψi= diag (8ζy1eyi1,…, 8ζypeyip) 

And the structural equation (6) with Bayesian Lasso as follow: 

Let        
     

   ,        (  
    

 )
 
 

 (         ⁄     )  
   
 

       
                    (19) 

    
   
 

                                                 , where  S= diag( s1,…,sr2+q2) 

                
   

                          
                                         

Where a0ϒ , b0ϒ , Λ0yk and H0yk(positive-definite matrix) are the hyperparameters and     

             . 

As is known, a Bayesian estimate for parameters is obtained from the posterior joint 

distribution p (Ω, θ \ Y, C, D, eη) by iterative sampling of the parameters and latent variables, each 
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component of the posterior distribution is generated by the Gibbs sampling method From the 

conditional complete post hoc distribution iteratively. Bayes estimates for and were taken to be the 

sample mean for the random observations generated [10].
 

Then the full conditional posterior for the latent variable and parameters in QSEM: The full 

conditional posterior for the parameters of measurement equation (5) was derived, and the full 

conditional posterior for latent variable and parameters of structural equation (6) as follows: 

The Gibbs sampling algorithm is implemented with the following full conditional posterior 

distribution of parameters and latent variable
 
[20].               

Let  θ1y =( A,Λ), θ2ω = (Bη, Γη),  ui= (ci
T
 , ωi

T
)

T
  vi = (di

T
,ξi

T
 )

T
,  U= (u1,…,ui ) where Uk be its 

submatrix with rows corresponding to Iykj =0 are deleted,   
∗        

∗        
∗    where     

∗  

      ∑                   
    
     

1) The full conditional posterior distribution of the latent variable Ω 

(                ⁄ )  
   
 

                  

                           
  
    { 

 

 
∑           

   
   (        )

 

   

} (20) 

It is known that                                 ⁄⁄    

Then, the full conditional posterior distribution of the latent variable is 

 (                       )           
  ∗  (21) 

Where : 

      
∗      

             
∗     

   (
          

 
) 

  
∗     

       
    

    (
     

            

    
)                                                  

2) The full conditional posterior distribution of the eyik :  for ( i=1,…,n , k=1,…,p) 

 (    
                  )   (               )            

  (    
                  )  {

    
  

       
    

}

 
 

   

{
 

     
       

    
 

|          |
   

 * |          |
  

 +
 

    
  

}
 

 

 (22) 

Thus, the full conditional distribution of eyih is an inverse Gaussian distribution (4│yik- θ1ykui│
-1

, 

2ζ
-1

yk) 

3) The full conditional posterior distribution of the θ1y:    for (k=1,…,p) 

  (               )       
   

  
      

  

 
          

     
                 (23) 

  Where            
       

      ∑
     

        

 
                           

 And         
    ∑

    
 

        

 
          Thus, The full conditional posterior distribution of the θ1y is a 

normal distribution (MuΛk,Σ
-1

Λk )  

4) The full conditional posterior distribution of the ζyk :    for (k=1,…,p) 

  (   
          )      

              {(     
 

 
∑|          |

 

   

)   
  } (24) 

Thus, the full conditional posterior distribution of the ζyk is  

Gamma distribution              
 

 
 ∑ |           |

 
     

5) The full conditional posterior distribution of the Φ:  
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             ∏       

 

   

 (25) 

 
        | |             ⁄    { 

 

 
            

    
    } (26) 

6) The full conditional posterior distribution of ζη  

(  
             )                        ∑  

 

   

      
     

  

 
∑   

     

   

  

7) The full conditional posterior distribution of the eηi is a  

 
Inverse Gaussian distribution (

  

 |            |
  

  

   
)                                                                    (27) 

8) The full conditional posterior distribution of βη: 

                (          )      

                         
     

   ∗   
    (28) 

Where   
           

        

9) The full conditional posterior distribution of S:  

 
(  

           )                  
 

√ |   |
 
  

  
  (29) 

10) The full conditional posterior distribution of ϒ:                   

             (      )       

 
 (        )                     

∑   
     
   

   
 (30) 

 

6. Proposed Bridge technique in Bayesian quantile regression (Proposed method) 
Frank and Friedman (1993) proposed Bridge regression which is a broad class of the penalized 

regression method, The Bridge regression of frank and Friedman (1993) estimates linear regression 

coefficients β through Lq penalized least-square estimates. They achieve [2]: 

 

   
 

               ∑|  |
 

 

   

 (31) 

Where y= (y1, …, yn) and X = (x1,….,xn). Whereas the subject of interest is the quantile regression 

presented by Koenker and Bassett (1978), the quantile regression coefficients β can be estimated 

consistently by solving the following loss objective function: 

 
   

 
∑        

 

 

   

   (32) 

Where ρη(u)= u(η-I(u<0)) is the quantile check function, and I(.) is an indicator function, which 

equals 1 if the argument is true and 0 otherwise
 
[2]. 

In quantile regression model, to select significant covariates for improving prediction 

accuracy, we can select different of penalty functions, such as L1 penalty (Lasso and Adaptive 

Lasso), L2 penalty (ridge regression). Lξ (0 < ξ < 1) penalty (Bridge regression), which result in the 

penalized quantile regression loss function as following:    

               | |  (33) 

Where γ > 0 is a penalty parameter, and pϒ (|β|) is a penalty function on β. 

The Bridge penalized regression is an important method that utilizes the Lξ-norm penalty. In 

general, the Bridge regularization regression with Lξ-norm penalty of quantile regression models can 

be expressed as follows: 
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∑        
 

 

   

    ∑|  |
 

 

   

 (34) 

Where γ > 0 is a tuning parameter, and ξ is the penalty exponent of the Lξ-norm penalization 

function. 

The Bridge penalized regression equation (34), penalization function    | |  

 ∑ |  |
 
  

             Includes three popular special cases[2]: the best subset selection if ξ =0, 

Lasso (Tibshirani 1996) if ξ = 1, and ridge regression (Hoerl and Kennard 1970)    if ξ = 2. (Xu et 

al. 2010) showed that if 0 < ξ < 1, the Lξ regularizer equation (34) keep many desirable statistical 

properties such as sparsity, oracle and unbiasedness [2]. And they detect that L1/2 penalty is the most 

sparse and robust among the Lξ (1/2 ≤ ξ ≤ 1) and has similar properties to the Lξ (0 < ξ < 1/2) 

regularizers.  

In the subject of Bayesian analysis, Polson et al. (2014) proposed a Bayesian Bridge 

estimator for regularized regression, they proposed a Bayesian inference which using a prior for β 

that decomposes as a product of independent exponential power prior as following
 
[2]: 

 
         ∏       |

  

 
|
 

  
      , where         ⁄     (35) 

They utilize the Markov Chain Monte Carlo (MCMC) methods to obtain the posterior 

inference based on two different scale mixture representation of the Bayesian Bridge prior in 

equation (35), this mixture consists of the scale mixture of normal representation and the scale 

mixture of triangular representation, Mallick (2016) proposed an efficient Gibbs sampling method 

for bridge regression utilizing a scale mixture of uniform (SMU) representation of the Bayesian 

bridge prior, A connection with a particular gamma distribution provides tractable full conditional 

distributions so that β has a truncated multivariatnormal distribution. Alhamzawi and Algamal 

(2018) studied Bayesian Bridge Quantile regression with fixed penalty exponent (ξ = 0.5)
 
[2]. 

To conduct the fully Bayesian inference of Bridge regularized model in the equation, we 

need to specify the prior distribution. The analyze Bayesian Bridge quantile regression in equation 

(34), If we put an exponential power prior to equation  

 

               ∑|  |
 
 

 

   

 (36) 

On the regression coefficient and assume that the error term εi follow the ALD [33], then 

the posterior distribution of β as follows: 

 

                {  ∑  (     
  )   ∑|  |

 
 

   

 

   

} (37) 

As it was previously mentioned that minimizing the Bridge QR equation (34) is equivalent 

to maximizing the likelihood in equation (37), to conduct the fully Bayesian inference of Bridge 

regularized models we need to specify the prior distribution, Mallick and Yi (2016) proposed the 

scale mixture of uniform distribution, whereas the exponential power distribution can be 

represented as a scale mixture of uniform distribution as follows [2]: 

 
 

 
 

   
 
 

   
       | |   ∫

 
 
 
  

  
 
   

 
 

   

 
 
     

  | | 
   (38) 

This representation Mallick and Yi (2016) of the exponential power distribution results in an 

easy and efficient Gibbs sampler with traceable full conditional posterior distributions, which are 

used. For the scale parameter, we also assign the gamma prior for the scale parameter ζ, to 

summarize the following is the proposed Bayesian hierarchical representation [2]: 
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            √   

         

  ∏
 

√  
      

 

 
  
 

 

   

  

 
     ∏                          

 

   

 (39) 

                   
 

    
 

        

         ∏       
 

 

       

                    

                   

In addition to the prior distributions of the rest of the parameters of the measurement 

equation (5), which was mentioned in section (5) (Lasso), For the median regression in 

measurement equation (5), is as follows [10] 

The common conjugated prior distributions were used in the Bayesian analysis of the 

structural equations model 

In this section of the thesis, it was proposed to use the hierarchical Bayesian with Bridge 

Lasso technique to Quantile Structural Equations model (QSEM)and by mixed representation by 

Mallick and Yi(2016) and by proposing that the exponent parameter is a constant value equal to 

(0.5) in Equation (34) and this method is considered one of the commonly used organization 

methods, but according to the researcher’s knowledge it has not been applied within Bayesian 

analysis quantile Structural Equation Models. 

7. Bayesian model of the Bridge quantile SEM 
The Bayesian hierarchical model based on the hierarchical model presented by Alhamzawi and 

Algamal (2018)
 
[2] used in estimating the parameters of the quantile regression by applying Bridge 

Lasso technique, and applied this technique in structural equation model, which was explained in  

section (1). 

There is no available explicit formula of the joint posterior distribution of the unknown 

parameters, to update the unknowns from the posterior distribution, we utilize Gibbs sampling. 

Let θ = [β1,ω s, γ, ζ, ξ] be a vector of unknown parameters. The joint posterior distribution of 

the unknowns (parameters and latent variables) is not available in explicit form. Given that θ 

includes multiple components, p(θ|y, x, v) is complicated, Thus, we utilize the Gibbs sampling  to 

update the unknown parameters from the posterior distributions. Based on the hierarchical model 

and prior specifications, the full conditional posterior for the parameters of measurement equation 

(5) was derived within the section (5) and the full conditional posterior for latent variable and 

parameters of structural equation (6) as follows: 

1) The full conditional posterior distribution of the Φ as mentioned in the equation (25)   is 

given by:                  
    

                                       
2) Updating β1ω 

The full conditional posterior distribution of βη is truncated normal (TN): 

                   (          )           

    { 
 

       
[                  ]

 
(       )

  
[                  ]} ∏  |  |   

 

 
 

     

   

 

then  

 

                         
   ∏  |  |   

 

 
 

     

   

 (40) 

Where mean:                ̃  ,                                           
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variance- covariance matrix:        
 

   
   

 

   
  

  ̃                                 

and      

     
            , and I(βj) denotes an indicator function 

3) Updating eηi: for i=1,..,n 

The full conditional posterior distribution of eηi 

 (   
             )   (           

     )     
        

 

(   
            )  {
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Thus, the full conditional posterior distribution of the eηi is a          
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4) Updating ζη 

The full conditional posterior distribution of ζ:  
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5) Updating sj 

The full conditional posterior distribution of sj,(j=1…r2+q2)is a left-truncated exponential 

distribution given by: 

                       |   |  

Updating sj can be done by using the inversion method as follows [2]. 

1) Update s*j from Exponential (γ) 

2)  Set       
∗  |   |

 
   (43) 

π(sj ) is a left-truncated exponential distribution, sampling from which is accomplished by using the 

inverse transformation method with two substeps: 

a) Generate   s i
 ∗   Exp(λ)    and  

b) si = s i
 ∗ + |βi |

n1
               , i = 1, · · · , p 

3) Updating γ : The full conditional posterior distribution of the γ  
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Thus, the full conditional posterior distribution of  γ   is 
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8. Simulation studies  
The performance of the lasso method and proposed Bridge lasso method was illustrated using 

simulation studies with different sample sizes, the simulation study’s main goal is to estimate the 

quantile regression coefficients b1, γ1 and γ2  

 For structural equations model (SEM) at different quantiles:  

We consider the quantile structural equations model (QSEM) given by (5) and (6) with p=9 , 

q=3 , q1=1, q2=2  , r1= r2= 1 and n= 50, 100 with three different values of quantity were used, 

which are (0.25, 0.5, 0.75). For measurement equation (5) the true value was determined as follows:  

A= (0.5, …, 0.5) and the fixed covariate ci , we can generate it by drawing from N(0,1) and the 

factor loading matrix Λ has the common non-overlapping structure  

λ21= λ31= λ52= λ62= λ83= λ93= 0.7, then the factor loading matrix Λ will be in the following, The true 

values of parameters λjk and aj in the measurement equation are taken to be:  

   [
 ∗        ∗  ∗  ∗  ∗  ∗  ∗

 ∗  ∗  ∗  ∗        ∗  ∗  ∗

 ∗  ∗  ∗  ∗  ∗  ∗  ∗       
] 

For structural equation (6) the true value is:  

The true values of parameters Bη= (b1) = (0.1) ,  Γη =[γ1,γ2] = [0.1, 0.3] 

And the explanatory latent variable ξi = (ξi1 , ξi2)
T
  is  assumed to follow a normal distribution  N(0, 

Φ) where      *
    

      
+  Also the fixed covariate di, we can generate by drawing from N(0,1). 

The distributions for the error term in each equation of the structural equation model (SEM), 

equation (5) and (6), they are assumed as follows: 

i. εi and δi ’s follow the normal distribution  N (0, 0.4) 

ii. εi and δi ’s are distributed as the heavy- tailed central t-distribution t(5) 

The sampling was carried out using the Gibbs Sampler algorithm with the Metropolis 

Hastings algorithm (10,000 iterations with the initial 2000 observations dropped in the burn-in) 

from the posterior conditional distributions and The performance of the proposed method is 

assessed by the (Bias) and root mean square error (RMS) 

The conjugate normal prior of θ1yk ~ Nr1+q (Λ0yk, H0yk) where the mean Λ0yk is 0.7 and the 

covariance matrix H0yk is a diagonal matrix with diagonal element 10. Also θ2ωη ~ Nr2+q2(Λ0ω, H0ω) 

where the mean Λ0ω is= [1, 0.4, 0.4] and the covariance matrix H0ω is an identity matrix. The 

conjugate inverse gamma prior of  ζ
-1

yk ~ Gamma (a0yk , b0yk) and  ζ
-1

η ~ Gamma ( a0ζ , b0ζ) we 

specified a0yk= a0ζ=1, b0yk= b0ζ=1 and the tuning parameter was mentioned in BLasso and BALsso 

                   we specified a1γ =1 and b1γ= 0.05 ,The inverse Wishart prior of Φ
-1

 ~ 

Wishart (R0,ρ0 ) we specified R0= 5 I2 and ρ0=4.  
 

Table (1): shows the Bayesian estimates of the Quantile regression coefficients in the 

structural equation (6) with the RMS Criteria and the BIAS Criteria, with δik~ N(0, 0.4) with 

n=50 

δi n=50            N (0 0.4) 

  BQLsso BBQSEM 

Par η RMS Bias RMS Bias 

B1τ 0.25 0.3203991 0.2034196 0.203687 0.190439 

 0.5 0.31898737 0.22608887 0.256814 0.162779 

 0.75 0.3414035 0.2797307 0.281436 0.218339 

γ1τ 0.25 0.4470690 0.3847818 0.403564 0.335814 

 0.5 0.47278105 0.40327755 0.431297 0.342611 

 0.75 0.4535363 0.3920687 0.403812 0.312782 

γ2τ 0.25 0.6168246 0.5996073 0.605692 0.554468 

 0.5 0.56062748 0.55901562 0.561235 0.0.55218 

 0.75 0.5800023 0.5789627 0.501237 0.569921 
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Tables (2): shows the Bayesian of the parameters for measurement equation (5) with n=50, 

εik~ N(0, 0.4), for τ= 0.25,0.5, 0.75 

 n=50       εi     N (0 0.4)  τ=0.5 

 BQLsso BBQL 

par RMS Bias RMS Bias 

λ21 0.2632676 0.2613677 0.272241 0.256481 

λ31 0.2344360 0.2339240 0.214751 0.214358 

λ52 0.1884731 0.1868658 0.182146 0.183200 

λ62 0.1899072 0.1665583 18234512 0.161478 

λ83 0.1868642 0.1857021 0.184015 0.180245 

λ93 0.3090305 0.2980920 0.310254 0.297250 

a1 0.19255419 -0.1656226 0.180123 -0.165281 

a2 0.20055532 -0.1885822 0.190378 --0.18921 

a3 0.19207265 -0.1159183 0.1720.3 -0.118536 

a4 0.17305769 -0.1682224 0.171023 -0.182456 

a5 0.05667344 -0.0383346 0.023489 -0.05674 

a6 0.19528392 -0.1424781 0.169874 -0.153698 

a7 0.17555317 -0.1681655 0.185641 -0.200158 

a8 0.11800695 -0.1139600 0.124581 -0.169548 

a9 0.17118411 -0.1546713 0.165483 -0.20.158 

φ11 0.5053664 -0.4728446 0.482681 -0.482364 

φ12 0.2484923 -0.2392917 0.668542 -0.260158 

φ21 0.2484923 -0.2392917 0.668542 -0.260158 

φ22 0.3083302 -0.2864561 0.292456 -0.28934 

 n=50        εi        N (0 0.4)     τ=0.25 

 BQLsso BBQL 

par RMS Bias RMS Bias 

λ21 0.2593113 0.2570893 0.251187 0.247329 

λ31 0.2333437 0.2326273 0.221791 0.225761 

λ52 0.1849664 0.1835414 0.166788 0.17758 

λ62 0.1740932 0.1530985 0.174100 0.154244 

λ83 0.1865514 0.1852896 0.185234 0.182456 

λ93 0.3096126 0.2998021 0.300421 0.299801 

a1 0.13464383 -0.13463404 0.134100 -0.14632 

a2 0.15630991 -0.15326645 0.156247 -0.14525 

a3 0.10781653 -0.09395914 0.100451 0.12473 

a4 0.1796170 -0.16328014 0.179145 -0.17254 

a5 0.02965436 -0.02953254 0.012745 -0.03548 

a6 0.17554002 -0.14131672 0.118263 -0.17452 

a7 0.17841525 -0.17834769 0.179354 -0.17654 

a8 0.13480558 -0.11624865 0.135246 -0.10345 

a9 0.15309283 -0.14982493 0.152481 -0.15324 

φ11 0.4849325 -0.4530673 0.18114 -0.46351 

φ11 0.2459442 -0.2348389 0.25661 -0.24681 

φ21 0.2459442 -0.2348389 0.25661 -0.23451 

φ22 0.3088758 -0.2826899 0.30547 -0.27485 
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 n=50          εi     N (0 0.4)    τ=0.75 

 BQLsso BBQL 

par RMS Bias RMS Bias 

λ21 0.2607131 0.2587737 0.2401269 0.241268 

λ31 0.2327074 0.2324960 0.2162255 0.217159 

λ52 0.1927438 0.1906758 0.1891023 0.184923 

λ62 0.1915750 0.1693943 0.1811726 0.158623 

λ83 0.1832952 0.1825820 0.8523691 0.182569 

λ93 0.3018115 0.2933194 0.3025832 0.292568 

a1 0.24159014 -0.2375906 0.2421580 -0.300178 

a2 0.24527701 -0.2445472 0.2451178 -0.296483 

a3 0.20127242 -0.1664618 0.2011259 -0.222567 

a4 0.18907386 -0.1766708 0.1886903 -0.202389 

a5 0.04522357 -0.0415459 0.0412586 -0.067123 

a6 0.19082905 -0.1538869 0.1916835 -0.172681 

a7 0.18519245 -0.1851555 0.1862549 -0.230183 

a8 0.14129895 -0.1208219 0.1587738 -0.162884 

a9 0.16517565 -0.1628807 0.1724564 -0.210339 

θ11 0.5206929 -0.4862106 0.5158144 -0.473691 

θ12 0.2590470 -0.2455439 0.2603473 0.698743 

θ21 0.2590470 -0.2455439 0.2603473 0.698743 

θ22 0.3207422 -0.2874333 0.3203674 0.669811 

Table (3): shows the Bayesian estimates of the Quantile regression coefficients in the 

structural equation (6) with sample size (n=100) With δik~ N(0, 0.4) 

δi n=100    N (0 0.4) 

  BQLsso BBQSEM 

Par η RMS Bias RMS Bias 

B1τ 0.25 0.3081547 0.3004298 0.274002 0.252193 

 0.5 0.34281405 0.34016101 0.314882 0.312361 

 0.75 0.3873789 0.3868042 0.3469142 0.345682 

γ1τ 0.25 0.3580411 0.3521044 0.3111564 0.301009 

 0.5 0.38583457 0.38495291 0.3655319 0.336817 

 0.75 0.3857904 0.3848131 0.3425803 0.332961 

γ2τ 0.25 0.6401845 0.6365365 0.6362781 0.634825 

 0.5 0.61508492 0.61270257 0.6110293 0.625404 

 0.75 0.6485689 0.6450752 0.6243691 0.643510 

Table (4): shows the Bayesian estimates of the Quantile regression coefficients in the 

structural equation (6) with the sample size(n=50) and δik~ t(5) 

δi n=50           t (5) 

  BQLsso BBQSEM 

Par τ RMS Bias RMS Bias 

B1τ 0.25 0.05146601 -0.0450126 0.158015 -0.61843 

 0.5 0.30357562 0.21341256 0.198237 0.093147 

 0.75 0.3355429 0.2732943 0.205831 0.221579 

γ1τ 0.25 0.07086804 0.06567936 0.059147 0.014583 

 0.5 0.47390374 0.40581551 0.371583 0.304811 

 0.75 0.4532014 0.3897087 0.312831 0.301585 

γ2τ 0.25 0.40133747 0.40048270 0.392483 0.421843 

 0.5 0.55726037 0.55564117 0.5029716 0.592411 

 0.75 0.5886226 0.5875550 0.5097126 0.0.62869 
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Table (5) shows the Bayesian estimates of the Quantile regression coefficients in the structural 

equation (6) with the sample size (n=100) and δik~ t(5) 

δi n=100        t (5) 

  BQLSEM BBQSEM 

Par τ RMS Bias RMS Bias 

B1τ 0.25 0.0075931 0.2998867 0.111536 -0.62638 

 0.5 0.0510356 0.34823695 0.1909731 0.091500 

 0.75 0.0845135 0.3841183 0.204897 0.213919 

γ1τ 0.25 0.024999 0.3457980 0.0152866 0.014754 

 0.5 0.38865036 0.38781442 0.3705940 0.3025711 

 0.75 0.3866752 0.3855469 0.302587 0.3570094 

γ2τ 0.25 0.3566731 0.6529677 0.6625849 0.654369 

 0.5 0.30595768 0.60361698 0.5019371 0.5912076 

 0.75 0.3547294 0.6505621 0.502269 0.0619382 

The results showed a better performance of the method proposed (BBQSEM ) in the 

research for estimating the parameters and latent variable within the structural equations Equation 

(5). Compared to the method BQLsso proposed by Feng et al. (2017) [15], where we found that the 

performance of this method is better than the other method. 

The proposed method (BBQSEM ) is better for the quantiles 0.5 and 0.75 in a sample size of 

100 and the distributed error term t(5),the comparison of the proposed method with other method 

(BQLsso). 

9. Real application 
We applied the proposed method was employed in the research to evaluate the serious of 

chronic kidney disease (CKD), by the logarithm urinary albumin-creatinine ratio (ACR) and 

estimated glomerular filtration rate (eGFR), both of which are central for diagnosis and staging of 

CKD They are the most important basic variables that specialist doctors usually rely on in 

diagnosing the patient's condition, taking the necessary measures and determining the appropriate 

treatment. Chronic kidney disease is one of the serious diseases facing the individual, which is a 

gradual loss of the efficiency of kidney work over long periods and this is often not noticed. This 

disease has serious complications on the heart and blood vessels, diabetes and anemia, as well as 

other serious effects, and advanced cases of this disease represent a real threat to a person's life. 

The QSEM was used to evaluate the effects of CDK (Chronic kidney disease) on patients in this 

section .the study’s primary goal was to study potential CKD risk factors such as Hypertension, 

Glycemia, Obesity and body shape 

The studied variables are measured as possible risk factors as follows: 

 ξ1: Blood pressure, it contains SBP and DBP 

 ξ2: Glycemia, it contains glycated hemoglobin (HbAc) and fasting glucose (FBG) 

 ξ3 Body Shape, including weight and height 

 η: CKD(Chronic kidney disease), It includes a combination of two factors, albumin-

creatinine ratio (ACR) and estimated glomerular filtration rate (eGFR) 

A smaller eGFR value or a greater ACR value indicates a more severely impaired kidney 

function, which may lead to kidney failure. 

The clear interpretation of each latent variable suggests the measurement equation (5), 

Where ωi = (ηi, ξi1, ξi2, ξi3)
T
 , A = (a1,a2,a3,a4,a5,a6,a7,a8)

T
 and the factor loading matrix Λ takes the 

following non-overlapping structure: 

    [
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Where the zeros and ones with an asterisk were fixed in advance to identify the model and unify the 

scale of the latent variable. To assess the effects of latent variables ξ1 to ξ3 and fixed covariate 

“Disease period” (d1) on CKD (η) under different quantiles, the structural equation can be show as 

follows: 

                                     (45) 

Where b1η , γ1η , γ2η and γ3η , are the regression coefficients under η -quantile. We collected 77 

observations of chronic kidney patients, the estimation was conducted for the quantiles of (0.05, 

0.25, 0.3, 0.5, 0.75). 

The proposed method was applied in the research to estimate the parameters of the SEM 

model that was used to analyze the relationship between the latent variables that represent the risk 

factors for the disease referred to in the previous paragraph. Table (8) shows the estimated values of 

the model parameters in each quantile: 

Table (8): Bayesian estimates of quantile SEM parameters in the analysis of CKD data 

 Estimation of the parameters at quantiles 

Parameters 0.05 0.25 0.3 0.5 0.75 

 measurement equation 

λ2η 0.921 0.901 0.933 1.120 1.074 

λ41 0.642 0.682 0.676 0.751 0.762 

λ62 0.211 0.312 0.3011 0.250 0.399 

λ83 0.334 0.294 0.298 3.446 1.226 

a1 6.285 4.197 0.510 5.119 6.441 

a2 5.221 5.009 4.498 4.827 4.260 

a3 3.442 3.110 3.349 4.081 2.116 

a4 2.003 2.846 2.199 3.117 2.996 

a5 5.113 5.004 5.121 6.113 5.994 

a6 2.006 2.887 2.989 3.441 3.007 

a7 6.772 8.441 6.998 7.119 6.996 

a8 7.836 6.043 6.221 6.245 6.111 

 structural equation coefficients (parameter and latent variables ) 

b1η 0.2151 0.1745 0.2011 -0.1254 -0.7451 

γ1η 0.4256 0.2561 0.2145 0.2499 0.2400 

γ2η 0.1642 0.0542 0.0321 0.02584 0.0141 

γ3η 0.0455 0.0566 0.1004 0.1564 0.9836 

 Covariance matrix of the latent variable 

ϕ11 0.7871 0.8534 0.8529 0.8751 0.8241 

ϕ21 0.1593 0.1856 0.1872 0.1456 0.1431 

ϕ22 -0.058 -0.0521 -0.0531 -0.0412 -0.0410 

ϕ31 0.8233 0.8801 0.8124 0.9751 0.9102 

ϕ32 0.0490 0.0723 0.0426 0.0367 0.0187 

ϕ33 0.1552 0.1747 0.1647 0.1743 0.1729 

1. Blood pressure is positively correlated with the severity of kidney disease, and the association is 

stronger in light of higher quantities and this is confirmed by doctors through examinations of 

patients, and high blood pressure is the main cause of chronic kidney disease, and that poor 

kidney function, in turn, will increase blood pressure. 

2. Glycemia has a weak positive correlation with CKD for lower quantiles, but not for higher 

quantiles. 

3. There is very little association between body shape and chronic kidney disease. This is true, but 

the severity of the disease and its danger by overweight 

  To summarize, in order to slow down the progression of CKD it is important to effectively control 

the risk factors, such as hypertension and hyperglycemia especially for patients with advanced 

stages of CKD and to reduce weight. Quantile SEM provides a more comprehensive picture of the 

relationship between CKD development and various risk factors. Results with some medical 

knowledge provide deeper insight that cannot be achieved with traditional SEMs. 
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10. Conclusions 
In this paper, we introduce a QSEM to provide a comprehensive analysis of the 

interrelationships among latent variables, and develop a BB approach to make statistical inference 

on QSEM. In the QSEM, latent variables are imputed through the estimated density function and 

the linear interpolation method. 

The MCMC algorithm is presented to sample observations required for statistical inference by 

combining the Gibbs sampler and the Metropolis-Hastings algorithm. A simulation study is 

conducted to investigate the finite sample performance of the proposed methodologies. An example 

is illustrated the proposed methodologies. The proposed method has the following characteristics. 

First, the method does not depend on the distribution of random errors and latent variables, and is 

robust. The empirical likelihood is employed to establish the working likelihoods so that the 

proposed method is less vulnerable to extreme distributions. Second, the proposed method can 

estimate parameters in the QSEMs when simultaneously considering multiple quantiles, and can be 

used to investigate the effect of explanatory latent variables on outcome latent variables under 

various quantiles. Although we only consider linear quantile for the structural equation model, the 

above proposed method can be used to analyze a QSEM with nonlinear, nonparametric or 

semiparametric quantiles.  
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مع التطبٍق لتجزٌئًا الهٍكلٍةالمعبدلة  لأنموذجزي ٍبالجسر تقنٍة ال  
 بلسم مصطفى شفٍق لقبء علً محمد

lekaa.ali.1968@gmail.com balsammustafa95@mtu.edu.iq 

جبيعت بغذاد،  -كهٍت الإداسة ٔالالتصبد  -لسى الإحصبء 

 انعشاقبغذاد، 

لسى تمٍُبث انًعهٕيبتٍت، انكهبت انتمٍُت الاداسٌت، انجبيعت 

 ، العراقبغداد انتمٍُت انٕسطى،

 

 

 المستخلص  معلومات البحث

( عهى َطبق ٔاسع بأَّ أْى أداة إحصبئٍت نتمٍٍى SEMٌعشف ًَٕرج انًعبدلاث انٍٓكهٍت )  تواريخ البحث:

انعلالبث انًتببدنت بٍٍ انًتغٍشاث انكبيُت ْٕٔ أحذ ًَبرج انًتغٍشاث انكبيُت. ٔكتمذو 

ب كًٍبً شبيلاً  ًً حذٌث ، ٌٕفش ًَٕرج انًعبدلاث انٍٓكهٍت ضًٍ الاَحذاس انكًً انببٌزي تمٍٍ

شاث انتفسٍشٌت ٔانكبيُت. فً ْزِ انكبيُت فً ضٕء كم يٍ انًتغٍ-نهًتغٍشاث انششطٍت

انذساست ، تى التشاح تمٍُت جسش انبٍزٌت فً الاَحذاس انكًً ، َٔمبسَٓب يع عبيم ببٌزي 

( َٔمٕو بئجشاء تمذٌش يتزايٍ ٔاختٍبس يتغٍش Lasso) انعبيمالألم اَكًبشًب يطهمبً ٔاختٍبس

( انكًً. ٔتى استخذاو عٍُبث جٍبس لإجشاء SEMفً سٍبق ًَٕرج انًعبدلاث انٍٓكهٍت )

الاستذلال ببٌزي. تظٓش عًهٍبث انًحبكبة بأحجبو عٍُبث يختهفت أٌ انطشٌمت انًمتشحت 

تعطً َتبئج جٍذة. تى تطبٍك انطشٌمت انًمتشحت عهى يجًٕعت يٍ يشضى انفشم انكهٕي 

 نذساست انعٕايم انًؤثشة عهى ْزا انًشض.

 11/12/2022تبسٌخ تمذٌى انبحث: 

 3/3/2023تبسٌخ لبٕل انبحث: 

 31/12/2023تبسٌخ سفع انبحث عهى انًٕلع: 

 

 

 
 الكلمات المفتاحية:

 ،ًالاَحذاس انتجزٌئ ،ًَبرج انًعبدلاث انٍٓكهٍت

 لاسٕ انبٍزي, تمٍُت انجسش ،انًتغٍشاث انكبيُت

 

 للمراسلة:
  نمبء عهً محمد
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