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The majority voting approach is one of divide and conquers
technologies that have the capacity to analyzing, understanding, and
then decision making of big data. Big regression data is massive not
only in terms of volume where P and n tend to infinity, but in terms of
intensity, and complexity too. For instance, the collection of massive
data from different subpopulations results in a heterogeneity problem
that definitely leads to the presence of outliers. Moreover, tackling such
a volume of data exceeds the capacity of standard analytic tools.
therefore, the processing requires the proposed algorithm to have two
main properties, rapid and accurate. Unfortunately, the majority voting
approach is not reliable where outliers are present in the data.
Furthermore, the curse of dimensionality causes the multicollinearity
problem which yields misleading results This paper proposes a fast and
robust majority voting approach that is a new version of the original
one with some steps. The first step is to vertically divide the design
matrix into a number of blocks to conquer the curse of ultra-
dimensionality. Voting on choosing the best subset of variables should
be considered by using a robust variable selection method as a
dimensional reduction procedure and resistant to the presence of
outliers. The second step is to aggregate all best subsets in one linear
regression model, and then using majority vote algorithm to get the best
variables e. A simulation study has done in this paper to know the
performance of the proposed technique is compared with Big-lasso
which is well-known as the fastest method in the statistical literature
right now. The result shows outperforming of the proposed algorithm
which is faster than Big-lasso and more accurate than it.

https://doi.org/10.55562/jrucs.v54i1.616

1. Introduction

Analysis of the daily streaming of data from multiple online and other sources exceeds the
capacity of the known statistical analytics methods due to its volume, intensity, and complexity.
This type of large-scale data is so-called Big data that formed a big challenge for the statisticians in
many scientific fields. The problem of big data has given the attention of researchers in the
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statistical literature that presented some of the methodologies to discover its pattern and analysis.
The proposed methodologies can be classified into three groups: subsampling-based, divide and
conquer, and online updating for stream data. see, Bag little bootstrap (Kleiner et al. [2]),
Leveraging (Ma and Sun, [3]), Majority voting (Chen and Xie [5]), and Screening with ultrahigh
dimensions (Song and Liang,[6]).

It is obvious that the databases of big data are growing in volume per day, so employing
statistical tools requires integration between computer networks and programming styles, such as
employing parallel programming with high-performance computing. Another style is used with a
high-quality computer which possesses ultra-high storage and parallel processors such as the
mainframe computer with high specifications.

Regardless of the distribution and processing systems of big data such as Hadoop and spark or
something else, the researcher’s objective is to reduce the ultra-high dimensional of features and
deal with properly the huge number of observations. One important attractive dimensional reduction
method in the statistics literature is Iterated sure independence screening (ISIS), which was
proposed by Fan and Lv (2008). ISIS is a very effective procedure to tackle ultrahigh dimensional
feature problem. In the context of least squares regression, the SIS algorithm starts with a very
simple procedure that is so-called screening. The screening means ranking features that having the
best marginal correlation with the response and then pick up the top features that indexed from the
first rank to the feature that has been ranked at d where d = n/log(n). Lasso or SCAD can be
applied in the second stage to selects the important features among d of them. Wang et al. (2016)
pointed out that the ISIS method is particularly suited for big data where the number of covariates
P, is much larger than the sample size n, B, > n , and possibly increasing with n.

The screening step of ISIS transforms the dimensionality feature space from ultrahigh B, to
ultra-low d in which the sample size n is more than d. As a result of this procedure selection of
important features cannot exceed d, where d < nand d « p (Uraibi, 2020). A new cutoff point

which is denoted as d; = n + (log"(n)) introduced by Uraibi (2020) to modify the ISIS cutoff point

of screening step. With big data where n — oo , both cut-off points d and d; are not relevant for
reasonable dimension reduction due to this situation yields n > d. In other word, it transforms the
dimensionality feature space from ultrahigh B, to high dimension or perhaps to other extreme
dimensions too. Consequently, when the screening step rely on n leads to the curse of
dimensionality, multicollinearity problem which yields misleading results.

It is well known in the statistical literature that variable selection is hard to argue, the problem
not only providing faster and more cost-effective predictors and improving the prediction
performance, but with definitely extended to providing a better understanding of the underlying
process that generated the data, see (Hesterberg et al ;2008, Isabelle Guyon; 2003, Uraibi et
al;2015). Here, obtaining a short model with a small number of predictors can be satisfied this
objective, therefore, thinking should be riveted for choosing a reasonable cutoff point to reduce the
ultra-dimension of independent variables.

The VIF-regression for ultra-high feature space algorithm has been proposed by Uraibi (2020)
as an alternative to the ISIS method and showed it is more efficient than it. Unfortunately,
collecting large scale data from different subpopulations results-in heterogeneity problem which
leads to the presence of outliers. Consequently, VIF-regression, ISIS and other statistical methods
of dealing with such data would breakdown. Unfortunately, these methods are sensitive to the
presence of outliers and leverage points. In spit of robust variable selection methods are presented
in robust statistics literature such as Khan et al. (2007), Uraibi et al. (2017), Uraibi (2019), Uraibi
and Midi (2020), but the robust VIF-regression that suggested by Dupuis et al. (2013) is adopted in
this paper.

In this paper, we suggest a new methodology in three steps, first splitting features into number
blocks, the block size should not exceed fifteen variables and are associated with a dependent
variable. In each block, all variables are standardized and then the p-values of robust regression
coefficients have to be computed. The second step is to aggregate the significant p-values of all
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blocks in one vector and choose only those ones that are less Bonferroni significant level. The last
step is using robust VIF-regression with a new design matrix of features to avoid collinearity
problem and select the best features.

2. Fast and Robust Majority Voting Algorithm (FRMV)

The main target of this algorithm is to get interpretable model for big data in short time.
Moreover, this algorithm is not need to memory mapping technique or computer network for
computing. It is high speed computational algorithm is implemented on core i7 personal computer
with 8 GB installed RAM. It can be considered as a divide and conquer algorithm for ultra-high
dimensional data sets. The FRMV algorithm can be formulated into three steps, reducing the ultra-
high dimensional variable space by using screening procedure, divide the new dimension of
variables into some blocks which would be used with approximate robust VIF-regression results
should be conquered using majority vote, and finally the non-zero variables have to select when the
average of its selection exceeds 10% using majority vote.

Marginal correlation based on screening

Marginal correlation-based ranking is widely used for variable selection methods to reduce the
ultra-high dimensional variables space. Run et al (2020) proved that the marginal correlation
screening may miss the true variables in the presence of correlated predictors. It is noted that the

results of Run et al (2020) were associated with three cutoff points, {log%,nl/z,nl/ 3}, through

which it was proved that some important variables exceed the cutoff points, and therefore they are
not selected in this step. The size of the simulation sample did not exceed 1000 observation, in other
words, the highest cut-off point does not reach 145, and there is certainly an important variable after
this point that cannot be imagined less than the other cut-off points. Employing real data with
sample sizes higher than the simulated sample does not prove the purpose of the researchers. This is

because the results showed the superiority of the cut-off point —=—over its counterparts

log(n)
{n1/2,n'/3}, and this is inevitable because the values of the other cut-off points when the sample
size 3951 did not exceed (64) and (16), respectively. From the foregoing, this paper suggests fixing
the cut-off point of marginal correlation at 200 when the sample size at least 1000 observation as
follows.

Consider the following linear regression model,
y=Xp+g, )

where y is an nx1 vector of the response variable, X=(x...,X,) is an nxp known design

matrix of independent variables, g = (Bl,...,Bp)T is a px1 vector of unknown regression
coefficients, and ¢ is an nx1 vector of random errors with mean 0 and variance o”. Suppose
that|§j | is the absolute values of Spearman’s correlations (as robust correlation method) between X
and y are ordered from the largest to lowest value,|R}| > |R3| >, ....,> |R§| >, ....,> |R;|. The

. . . . p*
new cut-off point of marginal correlation equivalents to S = Sy x1ooETe T3] ~ 200, where

P* = 10'°810(P) and y = [P/P*] . However, the screening variables are those associated with
R}, ..., Rs,will construct the new matrix design X, where X* = {X;: |R;| < |Rs|}.

Majority Vote
Depending on the previous step, the number of blocks can be determined by dividing 25—0 = 10,

meaning that each block will contain 20 variables. Since these variables are arranged in descending
order according to their marginal correlations with the dependent variable, the variables that have
the greatest influence on the dependent variable will be in the first block. As for the second block, it
may include some important variables if their number exceeds 20, or if they have a parameter that
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differs from zero, but their covariances with y are equal to zero. The probability of this case
appearing in other blocks may tend to zero. Based on the foregoing, the variables of each block will
be combined with the variables of the first block each time and subjected to a method robust VIF-
regression. Then with this procedure being repeated with the number of (9) times and each time a
random sub-sample of 1000 is drawn, randomly. The majority vote will be conditioned on a specific
significant level to ensure control over the false selection error of robust VIF-regression. This
procedure can be described in the following algorithm.

e Start with Screening 200 variables rely on their marginal correlations

e Partition these variables into 10 blocks, b, where k = 1,2, ...,10

e Fork=2t010

- LetX, = (X;;l,X;k) and ¢ is a 1000 random samples drawn from the original
one.

- Implementing robust VIF-regression for X,SO and y(Oand the best variable are
selected.
- Next
e The threshold of the algorithm of majority vote will be 0.10, the variable that has exceeded
this threshold be included with variables that would construct the new model. It is obvious
that the majority vote of variable selection role is a dimension reduction for the second
time.
e End
3. Simulation
A simulation study similar to the simulation of Frank and Friedman (1993), Khan, Van Aelst, and
Zamar (2007) , Agostinelli and Salibian-Barrera (2010) and Alfons et al. (2011), is carried out to
assess the performance of our proposed FRMV method.
Assuming that the latent variables are Xl.(L) where i = 1,2, ..., p, and p is the of regressors in the true
model.
In this study, we consider a multiple linear regression model
y =X +xP + o+ X + e
where the random error term € are generated from a standard normal distribution N(0,1), and the
tuning parameter o is chosen such that the signal-to-noise ratio is 5:

\/Var(Xl(L) + x4t Xé”) Jp

—_— — 5
Var(e) o

A set of d independent variables X;, X5, ...., X4 is generated using d independent standard normal
variables g, , ,, ..., g4 as follows,

X; X '1(L) £
X:p X ;(L) s;,
Xp.+1 _ Xz(L) +r Ep:+1
X .zp X;(L) EZ.p
Xiexp X;éoL) €kxp

The tuning parameter T is chosen such that T < § to construct the k x p collinearities variables,
since k of low-noise perturbations add to each latent variables. The degree of correlation between
the predictors is based on the distance between t and &, high distance yields high collinearity and
vise  versa. Therefore, the correlation of kXxp should be close; since
cor(Xy,X,) = cor(X3,X,) ... = cor(Xx_q, Xx) = p. The parameter 6 is sufficiently greater than t to
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create k x L weak collinearities variables by adding high-noise perturbations to the latent variables
L time. The correlations of this group is low.

The simulation design considers the degree of collinearites [0.95 < p < 0.99 ], this case
can be happened where the pair (t,56) is chosen to be (0.05,25).

/ Xiexp+1 Xl(L) Ekxp+1 \

| kap+L ):Z Xl(L) +5| Erxp+L )

\XZ()L) \Ekxp+k><L

We consider the remaining variables Xy.p,x.«z+1, -, Xq t0 be noise; they are generated from a
standard normal distribution, where d > p x (k + L), as follows,

HEH

where ¢~N(0,1) Vi=kx*p+k*xL+1,..,d
In order to know the performance of the RFMV algorithm with big data, various simulation
scenarios are carried out in the presence of 0.05 outliers and leverage points as follows,
Casel:n=2000,p=2,d=1000,K=1,L =2
Case2:n=2000,p=2,d =1000,K =2,L =2
Case3:n =4000,p =5,d =2000,K=1,L =2
Case4 :n =10000,p =10,d =5000,K =2,L =2
In order to create outliers in both Xl.(L) and y, the first 0.05 observations of Xl(L),XéL),X
times by number (10). Similar to the pervious procedure the first 0.05 of € vector times by 10 too.
The proposed method is compared with biglasso which the fast and more accurate than
others available in literature. Biglasso is parallel computing used memory mapping technique.

kap+k><L

)
3

Table 1 the results of biglasso and FRMV methods with three simulation scenarios

n d Method Length CS FPS Time
biglasso 9 2 ! 3.51
15 2 13 3.82

2000 1000
REMV 2 2 9E12 1.42
2 2 6E12 1.40
biglasso 16 5 11 12.75
23 10 13 13.1
4000 2000 5 5 3E16 6.00
RFMV 5 5 9E16 6.13
biglasso 71 10 61 59.01
83 10 73 60.6
10000 5000 10 10 7E32 8.68
RFMV 10 10 2E32 8.92

Table 1 shows the results of three scenarios of simulation over 50 big data sets. The average of
model length (Length), the average of Correct Selection (CS), the average of False Positive
Selection (FPS) and the average of computation time (Time) are computed for both methods. It is
clear that the biglasso in the first scenario when K =1, involved (7) false positive selection,
therefore, the Length becomes (9) even the informative variables are not correlated with each other
or with other variables. When K = 2 the FPS increases to (13) and its Time little pit increases too,
While the performance of RFMV method is perfect even K = 1,2 no FPS and the time of
consuming is less than the time of biglasso. From the results of second scenario when K = 1 the
biglasso method is faulted in choosing (11) variable should be having zero coefficients, and it
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could not recognize the correlated variables when K = 2, so in addition to (5) correlated variables,
there are (13) FPS variables are included to final model. On the other hand, the FRMV method is
selected the correct variables without FPS and shorter time than biglasso computation time. Finally,
the high performance continue with the third scenario, while biglasso suffers from increasing of
dimensionality and multicollinearity problem.

4. Conclusion and Recommendation

The main purpose of this paper is to develop a novel robust and fast variable selection method

for linear regression big data where n and d tends to infinity. The proposed method is constructed
in two steps involved divide and conquer technique, the marginal correlation based on screening,
splitting the variable space divide into (10) blocks and the majority vote is applied. The simulation
study has been done and the proposed method compared with biglasso which memory mapping
algorithm. From the result that is displayed in table 1, the FRMV method is not only has the ability
to select the most significant model, but has scalability to determine the useful covariates among the
extremely correlated covariates in the presence of outliers and high multicollinearity problem.
Particular attention is paid to the specific case of multicollinearity problem where the correlation
between the covariates ranges from 0.95 to 0.999. The originality of our solution lies in two facts;
first, the RFMV has the capability to deal with big data on the personal computer and not requires
to be within mapping reducer technique, and the results of table 1 reported that RFMV is faster than
biglasso. Secondly, our proposed cut-off point helps to reduce the dimensionality to a reasonable
dimension.  However, no informative variable lies exceed the proposed -cut-off point.
Consequentially, this paper prefers that is to recommend using the RFMV method for regression
analysis of big data.
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