
Design And Implementation Of Linux Character Device Driver To Provide
Extra IPC

Nada A.Z. Abdullah *

Abstract

In this paper we will design and Implement a character device driver which uses two

device special files to allow a pair of processes to send short variable-length text message

to each other. The driver should make sure that multiple readers and multiple writers are

not permitted and also that read () s will not block even when there are no messages to

read and that write ()s will not block however many messages are written before the next

read () occurs .This device driver is just going to control some system memory as its

“hardware device” and effectively provide an extra IPC mechanism in addition to those

already available.

*Baghdad University/ College of Science/ Computer science Department

 1

1 Introduction
One of the purposes of an operating system is to hide the peculiarities of the system's

hardware devices from its users. For example the Virtual File System presents a uniform

view of the mounted filesystems irrespective of the underlying physical devices.

The CPU is not the only intelligent device in the system; every physical device has its

own hardware controller. Each hardware controller has its own control and status

registers (CSRs) and these differ between devices. The CSRs are used to start and stop

the device, to initialize it and to diagnose any problems with it. Instead of putting code to

manage the hardware controllers in the system into every application, the code is kept in

the Linux kernel. The software that handles or manages a hardware controller is known

as a device driver. The Linux kernel device drivers are, essentially, a shared library of

privileged, memory resident, low level hardware handling routines. It is Linux's device

drivers that handle the peculiarities of the devices they are managing. [Rus 99]

All hardware devices look like regular files; they can be opened, closed, read and

written using the same, standard, system calls that are used to manipulate files. Every

device in the system is represented by a device special file. Linux supports three types of

hardware device: character, block and network.

2 Character Device Drivers
Character devices, the simplest of Linux's devices, are accessed as files, applications use

standard system calls to open them, read from them, write to them and close them exactly

as if the device were a file. As a character device is initialized its device driver registers

itself with the Linux kernel by adding an entry into the chrdevs vector of

device_struct data structure as shown in figure (1). The device's major device

identifier (for example 4 for the tty device) is used as an index into this vector. The

major device identifier for a device is fixed [LRU03].

Each entry in the chrdevs vector, a device_struct data structure contains two

elements; a pointer to the name of the registered device driver and a pointer to a block of

file operations. This block of file operations is itself the addresses of routines within the

device character device driver each of which handles specific file operations such as

open, read, write and close. The contents of /proc/devices for character devices is

taken from the chrdevs vector.

When a character special file representing a character device (for example

/dev/cua0) is opened the kernel must set things up so that the correct character device

driver's file operation routines will be called. Just like an ordinary file or directory, each

device special file is represented by a VFS inode . The VFS inode for a character special

file, indeed for all device special files, contains both the major and minor identifiers for

the device. [Aivazian02]

When the character special file is opened by an application the generic open file

operation uses the device's major identifier as an index into the chrdevs vector to

retrieve the file operations block for this particular device. It also sets up the file-data

 2

structure describing this character special file, making its file operations pointer point to

those of the device driver. Thereafter, all of the application’s file operations will be

mapped to calls to the character device set of file operations. [Rus 99]

3 The file operations Structure[Salzman03]
The file_operations structure is defined in linux/fs.h, and holds pointers to functions

defined by the driver that perform various operations on the device. Each field of the

structure corresponds to the address of some function defined by the driver to handle a

requested operation. The file_operations structure holds the address of the module's

function that performs that operation. Here is what the definition looks like:

struct file_operations {

struct module *owner;

loff_t (*llseek) (struct file *, loff_t, int);

ssize_t (*read) (struct file *, char *, size_t, loff_t *);

ssize_t (*write) (struct file *, const char *, size_t, loff_t *);

int (*readdir) (struct file *, void *, filldir_t);

unsigned int (*poll) (struct file *, struct poll_table_struct *);

int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);

int (*mmap) (struct file *, struct vm_area_struct *);

int (*open) (struct inode *, struct file *);

int (*flush) (struct file *);

int (*release) (struct inode *, struct file *);

int (*fsync) (struct file *, struct dentry *, int datasync);

int (*fasync) (int, struct file *, int);

int (*lock) (struct file *, int, struct file_lock *);

ssize_t (*readv) (struct file *, const struct iovec *, unsigned long,

loff_t *);

ssize_t (*writev) (struct file *, const struct iovec *, unsigned long,

loff_t *);

Figure1: Character device driver structure

 3

};

4 Registering Character Devices[LFQ01]

Each device driver gets the opportunity to initialize itself and its hardware at system boot

time. For character device drivers, this is achieved by having an initialization function

(init ()) in the driver and then placing a call to this function into the kernel chr_dev_init ()

function..

Suppose our device driver has the name prefix tdd_, then the init () routine would be

called tdd_init (). The registration is performed by calling the kernel's register_chrdev ()

function as follows: [Aivazian02]

register_chrdev (major , name , file_op)

Where major is the major device number to be used by this driver, name is the string that

gives the name of the driver, and file_op is the pointer to the driver's file_operations

structure.

5 Basic Entry Points[Cornes97]

The main system calls which can be used with a character device or a file are: open (),

close (), read (), write (), and ioctl () each of this system calls, when it has been

established that they are intended for the proposed driver can result in the appropriate

driver function being executed .

5.1 open Function

The driver’s open () function is called when a user process executes an open () system

call on a device special file associated with this driver. The prototype of the open ()

function is:

int open (struct inode *inode , struct file *file) ;

where the inode parameter is pointer to the inode structure of the device special file and

file is a pointer to the file structure for this device.

5.2 close Function

The driver’s close function is called when the last user process which has the device open

close ()s it. The prototype of the close() function is:

void close (struct inode *inode , struct file *file) ;

where inode is pointer to the inode structure of the devise special file and file is a pointer

to the file structure for this device .

5.3 read Function

The drivers read () function is called whenever a read () system call is executed on a

device special file associated with this character device driver. The prototype of this

function is:

void read (struct inode *inode , struct file *file, char *buf , int cont) ;

 4

where inode is a pointer to the inode structure of the device special file, file is a pointer to

the file structure for this device, buf is a pointer to a buffer in the user, and count is the

number of bytes required by the user process.

5.4 write Function

The write() function is performed on a device special file belonging to this driver. The

prototype of this function is:

void write (struct inode * inode, struct file *file, char *buf, int count) ;

Where inode is a pointer to the special file's inode structure, file is a pointer to the file

structure, buf is a pointer to a buffer in user space passed into the write () system call,

from which user characters will be written, and count is the number of bytes to transfer .

5.5 Special Control Functions[Cornes97]
In addition to the basic open, close, read and write operations, it is sometime desirable to

send control information to the device driver or to take status information from it. In this

case (and many others like it) the solution is to use the ioct1() system call. This system

call is implemented by just calling an ioct1 () function in the device driver. ioct1 ()

function has the following prototype:

int ioct1 (struct inode *inode, strut file *file, usigned int cmd,usigned long arg) ;

where inode and file are the same as before , cmd is a device driver specific command

code to be performed, and arg is any data of 4-byte (typically an int or a struct *) which

provides a parameter for the particular cmd value. The cmd and arg parameters are

obtained from the second and third parameters to the ioct1 () system call .

6 Implementation

In this paper we implement a character device driver which uses two device special files

to allow a pair of processes to send short variable-length text message to each other. The

driver should make sure that multiple readers and multiple writers are not permitted and

also that read () s will not block even when there are no messages to read and that write ()

s will not block however many messages are written before the next read () occurs.

Unlimited write capacity is dangerous as it is possible for some kind of error to stop

the consumer process from reading any data. This leaves the producer process writing

messages unchecked until, eventually, the system runs out of space to store them.

Unlimited write capacity also requires more complex physical implementation. In fact for

long lived processes there doesn't even need to be any kind of error for this problem to

occur eventually. All that is required is that, on average, the producer is generating

messages faster than the consumer can use them up. With this in mind, it might be

sensible to set some arbitrary, but large, limit on the number of message that can be

stored simultaneously within the device driver.

 5

6.1 Header Information

In order to implement the requirement of the specification, the first task is to decide what

the device driver's internal data structures will look like. What is required is that the

device driver should be capable of storing a number of messages of short text messages

which are in transit between two processes. The number of messages the driver is

required to hold is supposed to be infinite (infinite on a computer usually means ' until we

run out’) but in practice it would probably only hold a few messages until they could be

read. This means that we really want to use a variable number of dynamically allocated

buffers which can be built up a FIFO queue which is best implemented as a linked list .

This will required a kernel mechanism for the dynamic allocation and release of blocks of

memory. The structure from which the linked list of messages will be built has the

following layout:

struct tdd-buf

{

 int buf_size

 char buffer[MAX_BUF]:

 struct tdd_ buf *link:

};

where buffer [] is the array that holds one of the short messages, buf_size says how many

characters in the buffer [] array, and link is the linked list pointer to the next tdd_buf. The

symbolic MAX_BUF will be set to whatever marches our idea of the maximum length of

a 'short messages' ,by default is 120 characters. The developed device driver header

information is as follows :

#define KERNEL

#include ‹Linux / kernel .h ›

#include ‹Linux /sched .h ›

#include ‹ Linux/ tty .h ›

#include ‹ Linux/ signal .h ›

#include ‹ Linux/errno . h ›

#include ‹Linux /malloc .h ›

#include ‹asm /io .h ›

include <asm/segment.h>

include <asm/system.h>

include <asm/irq.h>

include "tdd.h"

static int tdd_trace ;

static int write_busy

static int read_busy;

static struct tdd_buf *qhead;

static struct tdd_buf *qtail;

static int tdd_read (struct indo *, struct file *, char *, int);

static int tdd_write (struct indo *, struct file *, char *, int);

 static int tdd_ioctl (struct indo *, struct file *, unsigned int unsigned long)

static int tdd_open struct (struct inode *, struct file *).

Static void tdd_realised (struct inode *, struct file *);

Extern void console_print (chare *);

struct file operation tdd fops =

{

null;

 6

tdd_read;

tdd_write;

null;

null;

tdd_ioctl;

null;

tdd_open;

tdd_release;

null;

null;

 null;

 null;

};

Over and above this header code there is also header file called tdd.h which contains

the #defines and structure declaration require by the devise driver and also by user code

wishing to use this driver :

#ifdef KERNEL /* if we are in kernel code */

#define trace_txt(txt) \

{ \

if (tdd_tace) \

{ \

 console_print(text);\

console_print("\n");\

} \

}

#define trace_chr(chr) \

{ \

 if (tdd_trace) \

console_print (chr) ; \

}

#define TDD_WRITE 0 /* /dev/tddw minor device number */

#define TDD_READ 1 /* / dev/tddw minor device number */

#endif

#define FALSE 0

#define TRUE 1

#define MAX_BUF 120 /* size of struct tdd_buf buffer */

#define TDD_TRON (('m'<<8) |0x01) /* trace on cmd for ioctl () */

#define TDD_TROFF (('m'<<8)|0x02) /* trace of cmd for ioctl () */

struct tdd_buf

{

int buf_size;

char buffer [MAX_BUF] ;

struct tdd_buf *link;

};

6.2 init Function

Moving on into the driver code proper the first thing to look at is the initializing function

tdd_init():

 7

void tdd_init(void)

{

 tdd_trace = TRUE;

if (register_chrdev (30, "tdd", &tdd_fops))

TRACE_TXT ("cannot register tdd as major device 30 ")

else

trace_txt (" developed device driver registered successfully 30 ")

qhead = 0;

write_busy = false;

read_busy = false;

tdd_trce = false;

return;

}

This routine is executed at system boot time remember that a call to the routines

needs to be added to the chr_dev_init() function in the file :

 /user/src/linux/drivers/char/mem.c

When tdd_init() is executed it calls a kernel function register_chrdev() to add its

file_operations structure to the character device routine address table.

6.3 open Function

The device drivers open function (tdd_open()) is called whenever an open () system call

is performed on one of the two device special file associated with this driver:

static init tdd_open (struct inode *inode, struct file *file)

{

 trace_txt("tdd_open")

switch (MINOR(inode->i_rdev))

{

case TDD-WRITE:

 if (write_busy)

 return –EBUSY;

else

 write_busy = TRUE;

 returne 0;

case TDD-READ:

if (read_busy)

 return –EBUSY;

else

 read_busy = TRUE;

 returne 0;

default:

 return –ENXIO;

 }

}

If there where any hardware involved with the device driver then this routine would

arrange to bring it into service.

 8

6.4 release Function

The release function tdd_release () is called when the last process that is holding open

each of the device special files associated with this device driver closes it with the close()

call. In fact since only one process at a time can open each of the device special files for

this driver then a close() from this process will also call the drive release routine

(tdd_release()):

static void tdd_release (struct inode *inode, struct file *file)

{

 trace_txt("tdd_release")

switch (MINOR(inode->i_rdev))

{

case TDD-WRITE :

 write_busy = FALSE;

 return;

case TDD-READ:

 read_busy = FALSE;

return;

 }

}

6.5 write Function

The write function tdd_write () is called every time a process uses the write () system call

on an open file descriptor associated with one of the device special files belonging to this

devise driver:

static init tdd_write (struct inode *inode, struct file *file,char *buffer, int count)

{

 int i, len;

 struct tdd_buf *ptr;

 TRACE_TXT ("tdd_write")

If (MINOR (inode->i_rdev) != TDD-WRITE)

return –EINVAL;

if ((ptr = kmalloc(sizeof(struct tdd_buf) , gfp_kernel)) = =0)

retune –ENOMEM;

len = count<max_buf ?count:MAX-BUF;

if (verify_area (VERIFY-READ , buffer , len))

return –EFAULT;

for (I = 0; i<count && i<MAX_BUF; ++i)

{

 ptr->buffer [i] = get_user_byte(buffer+i);

 TRACE_CHR("w")

}

ptr->link = 0;

if (qhead = =0)

 qhead = ptr;

else

 qtail->link = ptr;

 qtail = ptr;

 9

 TRACE_CHR("\n")

ptr->buf_size =i ;

return i;

}

The third and further parameters to tdd_write() are the buffer and character count passed

by the user process into the write () system call the contains of this buffer need to be

copied into the device drivers internal linked list of messages.

6.6. read Function

the tdd_read function is called when user process calls the read() system call to read from

a device special file controlled by this device driver:

static int tdd_read(struct inode *inode, struct file *file, chr *buffer, int count)

{

 int i, len;

 struct tdd_buf *ptr;

TRACE_TXT("tdd_read")

if (MINOR(inode->i_rdev)!=tdd_read)

 return –EINVAL;

if (qhead= =0)

return –ENODATA;

ptr = qhead;

 qhead = qhead->link;

len = count<ptr->buf_size?count : ptr->buf_size;

if (verify_area(VERIFY_WRITE, buffer, len))

 return –EFAULT;

for (I = 0; i<count && i<ptr->buf_size; ++i)

{

 put_user_byte (ptr->buffer [i] , buffer+i);

TRACE_CHR("r")

}

TRACE_CHR("\n")

kfree_s(ptr, sizeof(struct tdd_buf));

return i;

 }

Once the buffer and count parameters into tdd_read () pointer to a buffer in user space

and a character count which were passed a parameters into the associated read () system

call the obvious difference between this and the tdd_write function being that this time

the buffer is to receive character from a message structure in the device driver.

6.7 ioctl Function

The ioctl () function for this driver is very simple but it does serve to illustrate the idea.

Two new ioctl() calls are provided by this driver to switch the trace facilities on and off

this is done using the TDD_TRON and TDD_TROFF commands to ioctl () respectively:

static int tdd_ioctl(struct inode *inode, struct file *file, unsigned int cmd , unsigned long arg)

{

TRACE-TXT("tdd_ioctl")

 11

switch (cmd)

{

case TDD_TRON:

 tdd_trace = TRUE;

 return 0;

case TDD_TROFF:

 tdd_trace = FALSE;

 return 0;

default :

 return -EINVAL;

 }

}

This cmd and arg parameter to tdd_ioctl () are the same values as were passed in the user

process to the ioctl () system call . in this case the value of arg is not significant. Only the

two values TDD_TRON and TDD_TROFF have any special significance to this driver

and that is when they are used as cmd values the only action performed by this ioctl ()

commands is to set and reset the tdd_trace flag.

7 Conclusion

From developing the device driver the following concluding remarks can be drawn:

 In this paper a new IPC mechanism is developed.

 A device driver is just a collection of routines with various specific tasks to perform.

 Each device driver has essentially the same set of routines and so some mechanism is

required to prevent name clashes between drivers. A simple mechanism is to make all the

names unique. This is done by choosing a simple unique prefix for each device driver

which will be added to the function names in the driver. This means that even though

most device drivers will provide an open () routine, for instance the prefix for each driver

will make all the open () routine names unique within the kernel.

 The proposed device driver is going to control some system memory as its 'hardware

device' and effectively provide an extra IPC mechanism in addition to those already

available with Linux Operating System. The IPC semantics provided by this new driver,

however, are quite different from those available with the existing IPC mechanisms.

 The proposed device driver has been tested, and since the developed device driver

running in the kernel, thus communication is secure and fast.

References

 [Rus 99] “The Linux Kernel” ,David A Rusling 1999,Internet online.

 [Salzman03]”The Linux Kernel Module Programming Guide” Peter Jay Salzman,Ori

Pomerantz, ver. 2.4.0, 2003.

 [LFQ01]”Linux Frequently Asked Questions with Answers”, Robert

Kiesling,2001,Internet online.

 [LRU03]“LINUX Rute Users Tutorial and Exposition”, Paul Sheer, Version 0.9.1

,2003.

 [Cornes97] “The Linux A-Z”, Phil Cornes ,Prentice Hall ,1997.

 [Aivazian02] “Linux Kernel 2.4 Internals” ,Tigran Aivazian,Internet,2002.

