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Abstract
The Maxwell distribution plays an important role in physics, chemistry and other

allied sciences. In this paper used the maximum likelihood estimation and Bayesian
using different priors information for estimating the scale parameter of Maxwell
distribution of life time are presented. Monte — Carlo simulation is used to compare
of these estimators with respect to the Mean Square Error (MSE) ,and the results of
comparison showed that for all the varying sample size, the estimators of Bayes
method when the prior distribution is inverted gamma is smaller MSE compared to
others, and in all cases for both methods the MSE decrease as sample size

increases.
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Introduction

The Maxwell distribution is usually thought of as the distribution for molecular
speeds, and it can also refer to the distribution for velocities, momenta, and
magnitude of the momenta of the molecules, each of which will have a different
probability distribution function.

Maxwell distribution™ (2008), and Maxwell- Boltzmann'® (2008) are giving a
summary of this applications. In (2005) Bekker and Roux''" studied empirical Bayes
estimation for Maxwell distribution, and we have assumed that complete sample
information is available, Sanku Dey!® (2011) studies on Bayes estimators of the
parameter of a Maxwell distribution and obtain associated based on conjugate prior
under scale invariant symmetric and a symmetric loss functions.

The object of the present paper is to obtain on maximum likelihood and Bayes

estimators of the parameter § using two prior distributions. And a simulation study



has been performed in the last section of this paper to compare between these
estimators according to the measure of statistics Mean Square Error (MSE).
Model Description!*!/ !

The Maxwell (or Maxwell — Boltzmann) distribution gives the distribution of
speeds of molecules in thermal equilibrium as given by statistical mechanics.
Defining @ = % , where K is the Maxwell constant, T is temperature, m is the mass
of a molecule. The probability density function and the cumulative distribution

function of Maxwell distribution over the rang x € [0, o) are given by:
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where [(x, a) = fo e ™™ W1 dw, is the incomplete gamma function.

It can also be expressed as follows:—
2 x X?

F(X;@) = Zerf(\/%)—\/—E 7 e 3
2

Where erf (x) = = fo
Properties of Maxwell distribution

1- The nth row moment is :

o =2 [(29) oEin > -3
So that :

If n=1, then u; = 2\/%

If n=2, then ,u'2 = 3% : etc.

2- Mean = 2\/E
s

3- Variance = % (3T —8)
4- Mode =0
5- Median = %(Mode + 2 Mean)
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Where | (t,k,0) = ftoo e~ & wkdw , is the Jacobian function
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Estimation of Parameter

In this section we can used two methods to estimation parameter 9
Maximum likelihood estimation'?
We introduce the concept of maximum likelihood estimation with Maxwell

distribution. Let n items have an independent and identically distributed, then the

likelihood of the sample from Maxwell distribution with parameter 6 is given by:
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From which we calculate the log-likelihood function:
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Now, differentiating partially equation( 4 ) with respect to 6:
dInL(x;;6) _ —3n | YL, xf
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The MLE of @ is the solution of the likelihood equation( 5 )equal to zero, then the
maximum likelihood estimator of @ is:
~ 2
f=23n,x2 ..(6)
Bayes Estimation
Let Xy , X5 ,..., X, be a random sample of size n with probability density function

[6]

given in equation (1) and likelihood function given in equation( 3 ).
We consider the Bays estimation of the parameter 6 under different prior
distributions which is mentioned below, here we consider two types of priors:
(@) when the prior distribution of § can be taken as general uniform distribution with
pdf:
g1(9)=%-9—2;0<asesﬁ<w,a>0 .. (7)
Then the posterior distribution of  given the data (xy,...,X,) is
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substituting the equation(3 ) and the equation( 7 )in equation( 8 ) ,we get:
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by using squared error loss function #(8 — ) = (§ — 9)2 , the risk function is:
RO-0)=E[¢(6-0)]
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Then after substitution we find that :

Let y = ===
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Hence , the Bayes estimator of @ is :
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(b) when the prior distribution of § can be taken as inverted gamma with pdf:
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Then the posterior distribution of § given the data (x;, ...,x,) is:
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The risk function is:
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Then after few steps we get:
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Hence , the Bayes estimator of @ is :
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Simulation Results

In this section. Monte — Carlo simulation study is performed to compare the

methods of estimation by using mean square Error(MSE) where:

(MsE)(g) = ZisCum0-

The number of replication was used R=1000, and we have chosen n=20,50,100
to represent small moderate and large sample size, with §=3.0 , 4.5 , a=1.5, 3.3
and p=2.0,a=1,5

In each row of Tables(1,2) we have three values of estimators that is the Bayes
estimator when prior distribution is general uniform distribution and Bayes estimator
when prior distribution is inverted gamma and maximum likelihood estimator. The

best method is the method that gives the smallest value of (MSE).
We report the results in the following tables:

Table(1): MSE estimated parameters of Maxwell distribution with a=1.5, f=2.0

size 0 a 0, 0, Oy, | MSE; | MSE, | MSEy
1 | 3.093 | 2.942 | 2.989 | 0.330 | 0.285 | 3.290

20 | 3.0 | 5 | 2718 | 2.942 | 2.989 | 0.328 | 0.285 | 3.290
1 | 4.639 | 4.388 | 4.484 | 0.743 | 0.646 | 5.161

45 | 5 | 4.077 | 4.388 | 4.484 | 0.738 | 0.646 | 5.161

1 | 3.034 | 2.974 | 2.994 | 0.118 | 0.112 | 3.108

50 | 3.0 | 5 | 2.878 | 2.974 | 2.994 | 0.120 | 0.112 | 3.108
1 | 4.551 | 4.451 | 4.490 | 0.266 | 0.252 | 4.747

45 | 5 | 4.318 | 4.451 | 4.490 | 0.270 | 0.252 | 4.747

1 | 3.018 | 2.988 | 2.998 | 0.061 | 0.059 | 3.057

100 | 3.0 | 5 | 2.939 | 2.988 | 2.998 | 0.064 | 0.059 | 3.057
1 | 4.527 | 4.477 | 4.497 | 0.136 | 0.133 | 4.631

45 | 5 | 4.409 | 4.477 | 4.497 | 0.137 | 0.133 | 4.631




Table(2): MSE estimated parameters of Maxwell distribution with a=3.3, f=2.0

size 0 a 0, 0, Our | MSE; | MSE, | MSEy
1 | 3.039 | 2.999 | 2.989 | 0.330 | 0.281 | 3.290

20 3.0 | 5 | 2.718 | 2.999 | 2.989 | 0.328 | 0.281 | 3.290
1 | 4.639 | 4.446 | 4.484 | 0.743 | 0.636 | 5.161

4.5 | 5 | 4.077 | 4.446 | 4.484 | 0.738 | 0.636 | 5.161

1 | 3.034 | 2.998 | 2.994 | 0.118 | 0.111 | 3.108

50 3.0 | 5 | 2.878 | 2.998 | 2.994 | 0.120 | 0.111 | 3.108
1 | 4.551 | 4.745 | 4.490 | 0.266 | 0.250 | 4.747

4.5 | 5 | 4.318 | 4.745 | 4.490 | 0.270 | 0.250 | 4.747

1 3.018 2.999 2.998 0.061 0.058 3.057

100 3.0 5 2.939 2.999 2.998 0.064 0.058 3.057
1 4.527 4.489 4.497 0.136 0.132 4.631

4.5 5 4.409 4.489 4.497 0.137 0.132 4.631

Discussion

When we compared parametric estimators of Maxwell distribution by mean square
Error (MSE) we find that the best estimator is Bayes when the prior is inverted
gamma, followed Bayes when the prior is general uniform, and when the number of
sample size increases the (MSE) decrease in all cases.

We find the values Bayes estimator of & when the prior distribution is general
uniform decrease as value of (a) increases, and when the value of ¢ increases we
find that the (MSE) of Bayes estimator when the prior is inverted gamma decrease,

also same that to value of £.
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