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Abstract  

         Several scientific and engineering applications are usually described as integral equations.  A  new 

approach for solving the type of linear and nonlinear Fredholm integral equation of the second kind is 

proposed. Although many methods  provide an analytic solution,  there are different types  of integral 

equations are difficult to solve. Therefore, the numerical approach for solving integral equations is used. 

Fredholm integral equations  of the second kind have been converted to unconstrained optimization 

problems to find their approximate solutions. This work employs particle swarm optimization  combined 

with padé expansion to find an approximate solution of the Fredholm integral equation. This is applied by 

minimizing the fitness function value. The fitness function is calculated using the discrete least squares 

weighted function. The proposed algorithm is applied to solve linear and non-linear FIE. The  results are 

compared to exact solutions. The stability of the proposed algorithm is also presented. The results are 

promising in terms of convergence , stability and accuracy of the approximate solution. 
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باستخدام امثلية سرب الجسيماتبالاعتماد على تقريبات بادي و حل معادلة فريدهولم التكاملية   

 
 2عزام صلاح الدين يونس العدول ،    *1شيخو إسراء ابراهيم محمد

 
 العراق  الموصل،  قسم الرياضيات، كلية التربية للعلوم الصرفة، جامعة الموصل، 1*, 2

 المستخلص: 
 . حيث تم اقتراح نهج جديد لحل معادلة فريدهولم التكامليةتكامليةمعادلات  على شكلتم وصف العديد من التطبيقات العلمية والهندسية ي

ئق لحل معادلة فريدهولم التكاملية تحليليًا، إلا أن هناك االخطية  والغير الخطية  من النوع الثاني. على الرغم من وجود العديد من الطر 
. تم  تكامليةلحل المعادلة ال  ة. لذلك يتم استخدام الطرائق العدديتكاملية و التي من الصعب ايجاد حلا لهامن المعادلات ال  مختلفة  انواع

غيرمقيدة للحصول على حلول تقريبية لها. في هذا البحث تم استخدام    سائل امثليةتحويل معادلات فريدهولم التكاملية من النوع الثاني إلى م
لإيجاد حل تقريبي لـمعادلة فريدهولم التكاملية. يتم تطبيق ذلك عن طريق تقليل قيمة دالة اللياقة   ي ع باديمع توس  سرب الجسيمات امثلية

تطبيق الخوارزمية المقترحة لحل معادلة فريدهولم التكاملية  تم .طعةو يتم حساب دالة اللياقة باستخدام دالة ترجيح المربعات الصغرى المتق
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مقارنة النتائج بالحلول الدقيقة. كما تم ايضا عرض استقرار الخوارزمية المقترحة. اظهرت هذه الدراسة نتائج جيدة   تمالخطية وغير الخطية.  
 .من حيث تقارب الحل التقريبي واستقراره ودقته

 معادلات فريدهولم التكاملية  ، امثلية سرب الجسيمات ، تقريب بادي  الكلمات المفتاحية:
 

1.INTRODUCTION 

Equations with an unknown function that have the integral sign are known as  integral equations [1]. 

The literature on integral equations and their applications is extensive since integral equations are one of 

the key instruments in many fields of applied mathematics, physics, and engineering [2].  Additionally, 

these equations can be reformulated from other mathematical issues such as ordinary differential equations 

and partial differential equations, As a result understanding integral equations and how to solve them is 

extremely useful in applications [3].  

It is increasingly common for engineers and mathematicians to use numerical simulations to model 

phenomena, especially when analytical solutions are unavailable[4].  One of the oldest problems in applied 

mathematics is to find numerical solutions to Fredholm integral equations of the second kind[5].   There 

are many methods to solve Fredholm integral equations of the second kind including[6] homotopy 

perturbation method(HPM)[7]. Modified Neumann series[8]. Adomian Decomposition method[9]. Taylor 

series method[1], Monte Carlo method[10].Space kernel approximation methods [11].Quadrature 

method[12]. q-homotopy analysis method[5]. Numerical solutions of integral equations are often 

complicated and require extensive arithmetic Operations[13].  

 Recently, researchers are interested to solve some mathematical problems by using  intelligence  

algorithms such as Genetic Algorithm(GA), Neural Networks (NN), particle swarm optimization 

(PSO)[14]. [15]. Optimizing refers to  the process of determining the most optimal solution for a given 

problem [16]. It appears that converting some mathematical problems into optimization problems offered 

interesting results for finding approximate solutions to some problems[17]. Algorithms that use intelligent 

processes have been successfully applied in solving ordinary differential equations[18] , systems of 

ordinary differential equations[19]. 

 Many optimization techniques are improved to solve mathematical problems iteratively based on a 

given measurement of quality  [20]. Ordinary differential equations (ODEs) and systems of ordinary 

differential equations(SODEs) are solved by applying intelligent algorithms based on function expansions 

[14]. Evolution Strategies and even expansions of the Fourier series are utilized to solve initial and 

boundary value problems [21]. A particle Swarms  Optimization(PSO)  based on the Fourier series is used 

to solve nonlinear ordinary differential equations and integral equations [14].  Accurate results are 

obtained by converting ordinary differential equations into constrained optimization problems [22].  In 

this study Fredholm integral equation of the second kind (FIE) is solved using Padé expansion. it is 

possible to use [-1,1] as a search space by  Padé expansion which is fraction expansion. To obtain a highly 

accurate Padé approximation, a small number of variables is typically required[19].  This paper aims to 

demonstrate that  particle swarm optimization(PSO) algorithm can also be adapted to find an approximate 

solution of the Fredholm integral equation of the second kind based on the Padé expansion.  

In this work, different examples of linear and nonlinear Fredholm integral equations are discussed. 

After this introduction work principles are presented in the next section, followed by the methodology for 

solving ODEs. The examples are then presented along with the settings, and the results are shown. Then 

conclusions are drawn. 

 

2.PRELIMINARY 

 In this section, an explanation of the Fredholm integral equation of the second kind is 
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presented. The fundamentals of particle swarm optimization algorithms are also discussed. 

Afterward, the PSO algorithm is described. 

 

2.1Fredholm integral equations of the second kind(𝐅𝐈𝐄𝒔)  

The Fredholm integral equations (FIEs) of the second kind are considered:  

                                𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡, 𝑢(𝑡)) 𝑑𝑡   

𝑏

𝑎

  𝑎 ≤ 𝑥 ≤ 𝑏                         (1) 

Where 𝜆 ∈ 𝑅,   𝑘  𝑖𝑠 the kernel  , 𝑓 is the known function and 𝑢 is the unknown function [12]. 

 

2.2Particle swarm optimization 

Kennedy and Eberhart presented particle swarm optimization (PSO) in 1995[23]. A particle 

swarm optimization (PSO) algorithm is a population-based stochastic optimization algorithm 

inspired by the collective behavior of animals such as birds and fish [24]. There is a velocity 

and a position for each member of the swarm (called particle), particles adjust their positions 

in the search space based on time by two equations as in the references [23][25].  

𝛿𝑖(𝑡 + 1) = 𝜔 × 𝛿𝑖(𝑡) + 𝒸1 × 𝑟𝑎𝑛𝑑1 × (𝜎𝑖(𝑡) − 𝛾𝑖(𝑡)) + 𝒸2 × 𝑟𝑎𝑛𝑑2 × (𝜆(𝑡) − 𝛾𝑖(𝑡))       (2)                   

  

                                                          𝛾𝑖(𝑡 + 1) = 𝛾𝑖(𝑡) + 𝛿𝑖(𝑡 + 1)                                          (3) 

 

         In this case, 𝛾𝑖   represents the position of the  𝑖𝑡ℎparticle, and 𝛿𝑖   represents its velocity. 

There is a previous best particle referred to as 𝜎𝑖(𝑡)  and a global best particle referred to 

as 𝜆(𝑡), within the interval [0,1] , rand1 and rand2 represent random vectors, 𝜔 represents 

inertia, it is important to note that  𝒸1 and 𝒸2  are positive constants, referred to as 

‘’acceleration coefficients”, each velocity vector is  clamped within the range 
[𝑣𝑎𝑟𝑚𝑎𝑥 , 𝑣𝑎𝑟𝑚𝑖𝑛] decrease the probability that a particle leaves search space, and 𝑡 =
1,2,3 … . 𝑀𝑎𝑥𝑖𝑡  , represents the number of iterations, and (𝑀𝑎𝑥𝑖𝑡) is the max iteration. The 

number of populations in a swarm is called 𝑛𝑃𝑜𝑝 . 

         A particle swarm optimization (PSO) algorithm   can search in N dimensions depending 

on the number of variables 𝑛𝑉𝑎𝑟 , the values of 𝒸1 and 𝒸2  and  𝜔 are determined as 

follows:[22]  

 

                                            𝜒 = {

2𝑘

|2−𝜗−√𝜗2−4𝜗|
     𝑖𝑓  𝜗 > 4

𝑘                          𝑖𝑓 𝜗 ≤ 4
              }                                (4) 

and 

                                         𝜗 = 𝜗1 + 𝜗2 ,   𝒸1 = 𝜗1 × 𝜒    , 𝒸2 = 𝜗2 × 𝜒   ,𝑤 = 𝜒              (5) 

Then  𝑘 ∈ [0,1] , and the values 𝜗1 , 𝜗2 are chosen randomly to achieve 𝜗 > 4. 

Using the following parameter 𝜀 , the non-converging behavior of PSO can be avoided by 

continuously damping the velocity in each iteration. 

                                                           𝑤(𝑡 + 1) = 𝜀 × 𝑤(𝑡)                                                     (6) 

We can obtain the velocity space by following these steps: 

𝑀𝑎𝑥 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =  𝛼 × (𝑉𝑎𝑟𝑀𝑎𝑥 − 𝑉𝑎𝑟𝑀𝑖𝑛) ,                
                                                            𝑀𝑖𝑛 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = −𝑀𝑎𝑥 𝑉𝑒𝑙𝑜𝑐𝑖𝑡 𝑦                              (7)               

and  𝛼  is a positive parameter. 
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2.3Algorithms of PSO 

PSO consists the following steps:[26][27] 

i) Parameters  and inputs are initialized, 𝜗1, 𝜗2, 𝑘 , 𝜀   , 𝛼 , 𝑉𝑎𝑟𝑀𝑎𝑥 , 𝑉𝑎𝑟𝑀𝑖𝑛 , 𝑛𝑉𝑎𝑟 

, 𝑀𝑎𝑥𝑖𝑡 𝑎𝑛𝑑 𝑛𝑃𝑜𝑝 

ii) Let the initial velocity is equal to zero. 

iii) Initializing an arbitrary particles’ position in the search space. 

iv) The fitness function of  the swarm particles is evaluated  

v) Find the global optimal position (gbest)of the particle swarm, and the particles’ optimal position 

(pbest𝑖),where 𝑖 = 1,2, … 𝑁. 

vi) The position and velocity of particles are updated according to Eq. (2) and Eq. (3). 

vii)  Go to step (iv) if the number of iterations is less than 𝑀𝑎𝑥𝑖𝑡.  
 

3.METHODOLOGY 

                        An approach for finding the approximate solution of FIE is presented. This 

work starts by defining the expansion function. FIE is also converted into unconstrained 

optimization problems. In addition, the fitness function and the discrete least squares 

weighted function. Lastly, the algorithm for obtaining an approximate FIE solution is 

presented. 

3.1.The Padé expansion approximation 

A systematic method for determining the optimal Padé Degree for a given problem that may 

be not studied [28]. Consider the following expression of Padé expansion to approximate the 

solution of FIE:[29].  

𝑢(𝑥) ≅ 𝑈𝑎𝑝𝑝𝑟𝑥(𝑥) =
f(𝑥)

𝑔(𝑥)
=

∑ 𝑝𝑚𝑥𝑚𝑛1
𝑚=0

∑ 𝑞𝑚𝑥𝑚𝑛2
𝑚=0

                                                    (8 ) 

Where 𝑥 ∈ 𝐼 = [𝑥0, 𝑥𝑛] , 𝑛1 + 𝑛2 = 𝑛𝑉𝑎𝑟 and  𝑝𝑚 , 𝑞𝑚 are real coefficients which belong to 

the search space[𝑉𝑎𝑟𝑀𝑖𝑛, 𝑉𝑎𝑟 𝑀𝑎𝑥] , 𝑈𝑎𝑝𝑝𝑟𝑥(𝑥) ,𝑢(𝑥) are the approximate solution and the 

exact solution respectively, 𝑔(𝑥) ≠ 0 ∀ 𝑥 ∈ 𝐼. 
3.2.Convert 𝐅𝐈𝐄 into an  unconstrained optimization problem 

To convert Fredholm integral equations of the second kind into an unconstrained optimization 

problems, suppose that 𝑈(𝑥) is an approximate solution to (FIE)and is substituted for Eq(9)  
yields: 

𝐸𝑟(𝑥) = |𝑢(𝑥) − 𝑓(𝑥) − 𝜆 ∫ 𝑘(𝑥, 𝑡, 𝑢(𝑡))𝑑𝑡
𝑏

𝑎
|             (9) 

An optimal solution to the FIE can be obtained when  𝐸𝑟(𝑥) near to zero. It is necessary to use 

a quantitative criterion that determines the accuracy of the approximate solution to reduce 

𝐸𝑟(𝑥). This can be minimized using a discrete least squares weighted function[19]. 

3.2.1.The Discrete Least Squares Weighted Function (DLSWF) 

To compute the discrete least squares weighted function, the following steps are 

followed:[19][22] 

Taking the interval 𝐼 and dividing it into N points {𝑥0 = 𝑎 , 𝑥1, 𝑥2, 𝑥3, … . , 𝑥𝑛 = 𝑏} , where  

𝑥𝑘 = 𝑥0 + ℎ𝑘  , ∀ 𝑘 = 0,1,2,3, … . 𝑛 𝑎𝑛𝑑 ℎ > 0 , and 

                                          DLSWF = √∑ (𝐸𝑟(𝑥𝑘))2𝑁
𝑘=1

𝑁
                                        (10) 

 

3.3.𝐅𝐈𝐄 -PSO Algorithm 

Here is an outline of the proposed algorithm for solving FIE: 
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Step(1): Create an array of Padé expansion coefficients 𝑛𝑉𝑎𝑟 as follows: 

[𝑝0 , 𝑝1 , … … , 𝑝𝑛1
 , 𝑞0 , 𝑞1 , … … 𝑞𝑛2

]. 

Step(2): Convert the FIE into the implicit form as in Eq(9). 

Step(3): The fitness function is determined as follows:  

                                            𝐹𝐼𝑇𝐹𝑈𝑁 = 𝐷𝐿𝑆𝑊𝐹                                                              (11) 

Step(4): To determine Padé coefficients, PSO parameters are initialized. 

Step(5):  A PSO algorithm should be applied to minimize fitness. 

Step(6): Do step(5)  until 𝐹𝐼𝑇𝐹𝑈𝑁 < 𝑇𝑂𝐿 or the maximum number of iterations is reached. 

An evaluation of the algorithm is  performed by calculating the Mean Absolute Error (𝑀𝐴𝐸) using   the 

approximate solution 𝑈𝑎𝑝𝑝(𝑥)  and exact solution 𝑢: 

                                     𝑀𝐴𝐸 =
∑ |𝑢(𝑥𝑘) − 𝑈𝑎𝑝𝑝(𝑥𝑘)|𝑁

𝑘=1

𝑁
                                                           (12)      

 

4.NUMERICAL RESULTS: 

         A PSO algorithm combined with a Padé approximant is presented in this section to approximate 

the solution of FIE. Additionally, the algorithm's convergence and stability are explained. 

 

4.1.Numerical Examples 

                In this paper , linear and non- linear (FIE) are included in TABLE1:[11] [30][31][5] [32]: 

 
            TABLE 1: Shows different examples of FIE, with their exact solutions.LFIE and NLFIE are denoted  linear 

and non-linear Fredholm integral equations of the second kind respectively. 

Examples                                     FIE                                                            Exact Solutions 

LFIE1           𝑢(𝑥) = −
2

𝜋
cos(𝑥) +

4

𝜋
∫ cos(𝑥 − 𝑡) 𝑢(𝑡)𝑑𝑡

𝜋

2
0

                            𝑢(𝑥) = sin 𝑥                      

 

LFIE2                        𝑢(𝑥) =
𝜋

2
𝑥 − 𝑥 + 𝑥 tan−1 𝑥 − ∫ 𝑥𝑢(𝑡)𝑑𝑡

1

−1
              𝑢(𝑥) = 𝑥 tan−1 𝑥 

 

LFIE3                        𝑢(𝑥) = −
1

2
+ 𝑠𝑒𝑐2𝑥 +

1

2
∫ 𝑢(𝑡)𝑑𝑡

𝜋

4
0

                              𝑢(𝑥) = 𝑠𝑒𝑐2𝑥 

 

NLFIE 4                       𝑢(𝑥) = 𝑒𝑥 −
(1+2𝑒3)𝑥

9
+ ∫ 𝑥𝑡𝑢3(𝑡)𝑑𝑡

1

0
                          𝑢(𝑥) = 𝑒𝑥 

 

NLFIE5                          𝑢(𝑥) =
7

8
𝑥 +

1

2
∫ 𝑥𝑡𝑢2(𝑡)𝑑𝑡

1

0
                                          𝑢(𝑥) = 𝑥 

 

NLFIE6        𝑢(𝑥) = 1 + 𝑥 + (1 −
3

2
ln(3) +

√3

6
𝜋) 𝑥2 + ∫ 2𝑥21

0
𝑡𝑙𝑛(𝑢(𝑡))𝑑𝑡   𝑢(𝑥) = 𝑥2 + 𝑥 + 1 

 

4.2.Setup of the program 

TABLE2 shows examples of parameter values. After running the algorithm ten times, its reliability is 

verified. To implement the algorithm,  Matlab R2020a software is used, There is a type of computer 

Lenovo laptop, Intel (R) Core(TM) i5-7200U CPU @ 2.50GHz   2.71 GHz with RAM 4.00 GB, 

Windows 10 Pro and system type 64-bit. 
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TABLE2: The following parameters are used in all examples: 

Parameter 𝜗1 𝜗2 𝑘 𝜀  𝛼 ℎ 𝑇𝑂𝐿 𝑀𝑎𝑥𝑖𝑡 𝑛𝑝𝑜𝑝 

Value 2.05 2.05 1 0.8 0.4 0.01 1e-10 300 300 

 

4.3.𝐅𝐈𝐄 Solutions 

As a result of the PSO algorithm, the coefficients for approximate solutions of FIE for all examples are 

listed in TABLE 3. For example, the best approximated solution to equation ( 13) can be found by 

LFIE1   (u)  is shown, where 𝑛𝑉𝑎𝑟 = 20 , and 𝑥 𝜖 [0,1] as follows: 

 

𝑢(𝑥) ≅
  0.000561  +  𝑥 + 𝑥2 −0.13998 𝑥3+ 0.923627 𝑥4−0.36192𝑥5−𝑥6+ 0.828749𝑥7 −0.1865𝑥8+𝑥9     

  1+  𝑥+0.257652𝑥2 +0.218963 𝑥3+0.098654 𝑥4+0.112121𝑥5+0.343289𝑥6−0.49893𝑥7+0.109897𝑥8+𝑥9    ( 13 )                                                

 
TABLE 3: Displays variables based on their values using by  𝐅𝐈𝐄 - PSO algorithm. 

The number of variables, 𝒏𝑽𝒂𝒓 = 𝟐𝟎 , [𝑽𝒂𝒓 𝒎𝒂𝒙, 𝑽𝒂𝒓 𝐦𝐢𝐧] = [𝟏, −𝟏]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Examples 

 𝑐𝑜𝑓𝑓. LFIE1 LFIE2 LFIE3 NLFIE4 NLFIE5 NLFIE6 

 

𝑚 = 0 

𝑝𝑚 0.000561 -0.00166 -0.99964 0.234767 0.000115 0.594451 

𝑞𝑚 1 -0.99994 -1 0.23349 0.816768 0.595102 

 

𝑚 = 1 

𝑝𝑚 1 0.012421 -0.35876 0.404484 0.8083 0.762303 

𝑞𝑚 1 -0.78956 -0.29384 0.16751 0.609462 0.153907 

 

𝑚 = 2 

𝑝𝑚 1 -0.94264 -1 0.213982 0.686411 0.999954 

𝑞𝑚 0.257652 -0.16965 -0.55942 0.093998 0.99996 0.245754 

 

𝑚 = 3 

𝑝𝑚 -0.13998 -0.96643 -0.95151 0.756128 0.764937 0.13353 

𝑞𝑚 0.218963 -0.38035 0.999977 0.12931 0.253347 0.000274 

 

𝑚 = 4 

𝑝𝑚 0.923627 -0.16219 0.121869 0.532422 0.501501 1 

𝑞𝑚 0.098654 -0.35364 -0.76838 0.330257 1 0.380442 

 

𝑚 = 5 

𝑝𝑚 -0.36192 0.535447 -0.38403 0.373091 1 0.80171 

𝑞𝑚 0.098654 1 0.281965 0.163921 0.977373 0.016396 

 

𝑚 = 6 

𝑝𝑚 -1 0.138245 -0.99335 0.106877 0.999994 0.233356 

𝑞𝑚 0.343289 -0.65668 -0.66001 0.097573 0.966248 0.454073 

 

𝑚 = 7 

𝑝𝑚 0.828749 0.255614 -0.99796 0.344359 0.704551 0.679155 

𝑞𝑚 -0.49893 0.373171 -0.84193 0.134048 0.836949 0.473395 

 

𝑚 = 8 

𝑝𝑚 -0.1865 -0.92336 0.01119 0.360563 0.768608 0.999999 

𝑞𝑚 0.109897 -0.22828 0.898963 0.032124 0.491111 0 

 

𝑚 = 9 

𝑝𝑚 1 -0.04433 -0.67931 0.743734 0.952863 0.972592 

𝑞𝑚 1 -0.46648 0.171335 0.112907 0.2361 0.07274 
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Figure 1: Exact and approximate solutions are compared 

 

The exact solutions to several examples are shown in  Figure 1. Within the defined domain, the 

approximate solutions in Figure 1 were consistent with the exact solution. Hence, the FIE -PSO 

algorithm can solve linear and non-linear FIE. 

 

 

(a)  LFIE1 (b)   LFIE2 

  

(c)   LFIE3 (d) NLFIE 4 

 

 

(e)   NLFIE5 (f)    NLFIE6 
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      The algorithm  may  reach  the exact solution. However, the approach frequently leaves an error rate 

derived from the approximation. The value of TOL and calculated by considering the value of Mean 

Absolute Error (𝑀𝐴𝐸) shown in TABLE 4.   

 
TABLE 4: Indicates the Mean Absolute Error between the approximate and exact solutions 

 

 

 

As a result of this method, convergence occurs rapidly.FIGURE 2 shows the convergence of the FIE-

PSO algorithm over 300 iterations for all examples, acceptable solutions are obtained with less than 100 

iterations and are stable to 300 iterations (see FIGURE 2). Display the convergence of the algorithm 

 
Figure 2: Display the convergence of the algorithm 

5.CONCLUSIONS 

                     The particle swarm algorithm is practical for solving Fredholm integral 

equations of the second kind. FIE has been converted into an unconstrained optimization 

problem by using approximate expansions. POS algorithm was used with fitness function to 

find an approximate solution to linear and non-linear Fredholm integral equations of the 

second kind. To describe approximate solutions, the proposed algorithm used the fractions 

expansion as an approximation based on the Padé approximation. By the use of the proposed 

FIE-PSO algorithm, approximate solutions are found using Padé approximants. Based on the 

results, the algorithm successfully solves linear and non-linear Fredholm integral equations of 

the second kind. There are many advantages to using this approach, including accurate 

convergence, stability, and accuracy. As a result, this method is recommended for solving 

Volterra integral equations. 

Examples 𝑀𝐴𝐸 

LFIE1 9.43E-04 

LFIE2   1.83E-03 

LFIE3 6.60E-04 

NLFIE4 0.00418301 

NLFIE5 6.00E-05 

NLFIE6 6.68E-04 



Journal of Education and Science (ISSN 1812-125X), Vol: 32, No: 01, 2023 (81-90) 

89 
 

6.ACKNOWLEDGMENT 

 It is the authors’ pleasure to express their gratitude to both the technical and academic staff of the 

University of Mosul as the College of Education for pure Science. This work would not have been 

possible without their support. 
 

7.REFERENCES 

 

[1] H. H. Hameed, H. M. Abbas, and Z. A. Mohammed, “Taylor Series Method for Solving Linear 

Fredholm Integral Equation of Second Kind Using MATLAB,” J. Babylon Univ., vol. 19, no. 1, 

pp. 14–23, 2011. 

[2] Q. Wang, K. Wang, and S. Chen, “Least squares approximation method for the solution of Volterra–

Fredholm integral equations,” J. Comput. Appl. Math., vol. 272, pp. 141–147, Dec. 2014, doi: 

10.1016/j.cam.2014.05.010. 

[3] M. M. Rahman, M. A. Hakim, M. K. Hasan, M. K. Alam, and L. N. Ali, “Numerical Solutions of 

Volterra Integral Equations of Second kind with the help of Chebyshev Polynomials,” Ann. Pure 

Appl. Math., vol. 1, no. 2, pp. 158–167, 2012. 

[4] A. A.M. and A. M. Muhammad, “Cubic Spline for SolvingVolterra Integral Equation with Delay,” 

J. Misan Res., vol. 14, no. 27–4, pp. 470–480, 2018. 

[5] R. K. Jbr and A. Al-Rammahi, “Q-homotopy analysis method for solving nonlinear fredholm 

integral equation of the second kind,” Int. J. Nonlinear Anal. Appl., vol. 12, no. 2, pp. 2145–2152, 

2021, doi: 10.22075/ijnaa.2021.5355. 

[6] Z. Mahmoodi, J. Rashidinia, and E. Babolian, “Spline Collocation for Nonlinear Fredholm Integral 

Equations,” Int. J. Math. Model. Comput., vol. 1, no. 1, pp. 69–75, 2011. 

[7] J. Biazar and H. Ghazvini, “Numerical solution for special non-linear Fredholm integral equation 

by HPM,” Appl. Math. Comput., vol. 195, no. 2, pp. 681–687, Feb. 2008, doi: 

10.1016/j.amc.2007.05.015. 

[8] M. Amirfakhrian and S. M. Mirzaei, “Modified Neumann series for solving Fredholm integral 

equation,” Appl. Math. Sci., vol. 3, no. 13–16, pp. 623–628, 2009. 

[9] A. K. Hussain, “Approximation Solution of Fredholm Integral Equation Using Adomian 

Decomposition Method,” J. Madenat Alelem Univ. Coll., vol. 2, no. 1, pp. 13–22, 2010. 

[10] H. ZhiMin, Y. ZaiZai, and C. JianRui, “Monte Carlo Method for Solving the Fredholm Integral 

Equations of the Second Kind,” Transp. Theory Stat. Phys., vol. 41, no. 7, pp. 513–528, Dec. 2012, 

doi: 10.1080/00411450.2012.695317. 

[11] A. A. Mohammed, “The Numerical Solution of Fredholm integral Equations of the Second Kind,” 

Int. J. Res., vol. 3, no. 17, pp. 1332–1354, 2016, doi: 10.1137/0704029. 

[12] R. Katani, “Numerical solution of the Fredholm integral equations with a quadrature method,” 

SeMA J., vol. 76, no. 2, pp. 271–276, 2019, doi: 10.1007/s40324-018-0175-z. 

[13] M. H. A. Sathar, A. F. N. Rasedee, A. A. Ahmedov, and N. Bachok, “Numerical solution of 

nonlinear fredholm and volterra integrals by Newton–Kantorovich and haar wavelets methods,” 

Symmetry (Basel)., vol. 12, no. 12, pp. 1–13, 2020, doi: 10.3390/sym12122034. 

[14] M. Babaei, “A general approach to approximate solutions of nonlinear differential equations using 

particle swarm optimization,” Appl. Soft Comput., vol. 13, no. 7, pp. 3354–3365, Jul. 2013, doi: 

10.1016/j.asoc.2013.02.005. 

[15] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization,” Swarm Intell., vol. 1, no. 1, 

pp. 33–57, Oct. 2007, doi: 10.1007/s11721-007-0002-0. 

 



Journal of Education and Science (ISSN 1812-125X), Vol: 32, No: 01, 2023 (81-90) 

90 
 

[16] S. Sivanandam, SN and Deepa, SN and Sivanandam, SN and Deepa, Introduction to Genetic 

Algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. doi: doi.org/10.1007/978-3-540-

73190-0_2. 

[17] A. H. Borzabadi and O. S. Fard, “Approximate Solution of Nonlinear Fredholm Integral Equations 

of the First Kind via Converting to Optimization Problems,” World Acad. Sci. Eng. Technol., vol. 

1, no. 9, pp. 459–462, 2007. 

[18] D. A. Diver, “Applications of genetic algorithms to the solution of ordinary differential equations,” 

J. Phys. A. Math. Gen., vol. 26, no. 14, p. 3503, 1993. 

[19] R. H. S. Alazzawi and A. S. Y. Aladool, “Solving Systems of Ordinary Differential Equations Using 

Particle Swarm Optimization Based on Padé Approximant” to appear in AlP Conference 

Proceedings(ISSN: 0094-243X,1551-7616),2023. 

[20] C. Annie, Padé Approximants for Operators:theory and applications, 1st ed. Springer Berlin, 

Heidelberg, 2006. doi: https://doi.org/10.1007/BFb0099706. 

[21] A. Akyüz-Daşcıoğlu and H. Çerdik Yaslan, “An approximation method for the solution of nonlinear 

integral equations,” Appl. Math. Comput., vol. 174, no. 1, pp. 619–629, Mar. 2006, doi: 

10.1016/j.amc.2005.04.108. 

[22] A. T. Abed and A. S. Y. Aladool, “Applying particle swarm optimization based on Padé 

approximant to solve ordinary differential equation,” Numer. Algebr. Control Optim., vol. 12, no. 

2, p. 321, 2022, doi: 10.3934/naco.2021008. 

[23] A. Sahu, S. K. Panigrahi, and S. Pattnaik, “Fast Convergence Particle Swarm Optimization for 

Functions Optimization,” Procedia Technol., vol. 4, pp. 319–324, 2012, doi: 

10.1016/j.protcy.2012.05.048. 

[24] D. Wang, D. Tan, and L. Liu, “Particle swarm optimization algorithm : an overview,” Soft Comput., 

vol. 22, no. 2, pp. 387–408, 2018, doi: 10.1007/s00500-016-2474-6. 

[25] N. Taher, A. Babak, J. Olamaei, and Ai. Arefi, “An efficient hybrid evolutionary optimization 

algorithm based on PSO and SA for clustering,” J. Zhejiang Univ. Sci. A, vol. 10, no. 4, pp. 512–

519, 2009, doi: 10.1631/jzus.A0820196. 

[26] D. Yong, W. Chuansheng, and G. Haimin, “Particle Swarm Optimization Algorithm with Adaptive 

Chaos Perturbation,” Cybern. Inf. Technol., vol. 15, no. 6, pp. 70–80, 2015, doi: 10.1515/cait-2015-

0068. 

[27] S. Shabir and R. Singla, “A Comparative Study of Particle Swarm Optimization and Genetic 

Algorithm,” Int. J. Electr. Eng., vol. 9, no. 2, pp. 215–223, Nov. 2016, doi: 10.48161/qaj.v1n1a7. 

[28] H. Vazquez-Leal et al., “Direct application of Padé approximant for solving nonlinear differential 

equations,” Springerplus, vol. 3, no. 1–11, p. 563, Dec. 2014, doi: 10.1186/2193-1801-3-563. 

[29] M. Thiagarajan and K. Senthilkumar, “DTM-Pade Approximants for MHD Flow with 

Suction/Blowing,” J. Appl. Fluid Mech., vol. 6, no. 4, pp. 537–543, Oct. 2013, doi: 

10.36884/jafm.6.04.21211. 

[30] A.-M. Wazwaz, Linear and Nonlinear Integral Equations, Edition, 1. Berlin, Heidelberg: Springer 

Berlin Heidelberg, 2011. doi: 10.1007/978-3-642-21449-3. 

[31] J. A. Othman and S. kareem Rabiha, “Solving Nonlinear Fredholm Integral Equation of the Second 

Type via Solving Nonlinear Fredholm Integral Equation of the Second Type via Nonlinear 

Programming Techniques,” Int J Appl Mat, vol. 29, no. 1, pp. 1258–1262, 2014. 

[32] N. Karamollahi, M. Heydari, and G. B. Loghmani, “Approximate solution of nonlinear Fredholm 

integral equations of the second kind using a class of Hermite interpolation polynomials,” Math. 

Comput. Simul., vol. 187, pp. 414–432, 2021, doi: 10.1016/j.matcom.2021.03.015. 

 


