T- SEQUENTIALLY ABSOLUTELY CLOSED SPACES

Hadi J. Mustafa[†],
Mathematical Department,
Collage of Mathematics and Computer Science
Kufa University

Zahra Ismaal Salman[‡]
Mathematical Department,
College of Education
Missan university

Abstract

In this work, we introduce the concept of T- sequentially absolutely closed spaces which is a generalization of the concept of sequentially absolutely closed spaces [1]. Several properties of this new concept are proved.

1. Introduction:

A topological space X is called sequentially compact iff every sequence in X cantains a convergent sub sequence [2]. A topological space (X,τ) said to be sequentially absolutely closed (S.A.C) iff each sequence cantains a weakly convergent sub sequence [1] Now, Let (X,τ) be a topological space, let T be an operator associated with the topology τ on X [5] In the work, we introduce and study the concept of T-sequentially absolutely closed space (T-S.A.C.S) when T is the closure operator, we get the concept of sequentially absolutely closed space.

2. Basic definitions:

In this section, we recall and introduce the basic definitions needed in this work.

2.1. Definitions: [1]

Let (X, τ) be a topological space and $A \subseteq X$, $p \in X$. p is a weak limit point of A means that for each open set U containing P, we have $(\overline{U} - \{p\}) \cup A \neq \phi$.

Now we give the following generalization of the above definition.

2.2 .Definition [5]:

Let (X, τ) be a topological space and let $T: P(X) \to P(X)$ be a function, where P(X) is the power set of X. We say that T is an operator associated with the topology τ on X, if for each open set . $w \subseteq T(w)$ The Triple (X, T, τ) is called an operator topological space.

2.3 .Definition:

Let (X, τ) be a topological space and let T be an operator associated with the topology τ on X, Let $A \subseteq X$, $p \in X$, we say that p is a T-limit point of A if for each open set U containing P, we have $(T(U) - \{p\}) \cap A \neq \emptyset$.

If T is the closure operator then we get definition (2.1).

2.4. Eamples :

i) Let X=R, $\tau=$ the cofinite topology on R, T= The closre operator that is T(A)= cl(A), and let A= { 1, 2, 3, }, p=0. Now p is a T-limit point of A because T(U)= cl(U) = R for each open set U, hence

$$(T(U)-\{p\}) \cap A = (R-\{p\}) \cap A = \emptyset$$

ii) Let $X = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a\}\}$, $\{b,c\}$ }The cofinite topology on R, T = The closre operator then the sequence b, b, b, ..., a, b, b, b... does not T-converge to a, because: If $U = \{a\}$ then $T(U) = cl(U) = cl(\{a\}) = \{a\}$ which contans only a.

2.5. Definition [1]:

A Sequence (x_n) in a topological space (X, τ) is said to converge weakly to p iff the closure of each neighborhood of p contains all but a finite number of the x_n 's. Now we give the following generalization of the above definition.

2.6. Definition:

Let (X, τ) be a topological space and let T be an operator associated with the topology τ on X. A Sequence (x_n) in X is T – converges to p iff T(U) contains all but a finite number of the x_n (U is a neighborhood of p)

2.7. Eamples :

- i) Let $X = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a\}, \{b,c\}\}$ The cofinite topology on R, $T : P(X) \rightarrow P(X)$ is defined as follows: T(A) = Intcl(A), consider the sequence b, b, b, ..., a, b, b, b... let $U = \{a\}$. Now $T(U) = Intcl(U) = cl(\{a\}) = Int X = X$ which means that the sequence T-converges to a.
- ii) Let X=R, $\tau=$ The closure operator Let $A=[3\,,\,5]$, $p=2\in R.$ Now 2 is not a T-limit point of A because if $U=[\,1\,,\,2.5\,]$ then

$$(T(U)-\{p\})\cap A=([1,2.30]-\{2\})\cap A=\phi$$

2.8. Definition [1, 3]:

A topological space (X, τ) is said to be sequential absolutely closed (S.A.C) iff each sequence contains a weakly convergent sub sequence, Now we introduce our definition.

2.9. Definition:

Let (X, τ) be a topological space and let T be an operator associated with the topology T on X, then the triple (X, τ, T) is called an operator topological space. (X, τ, T)

space. (X, τ, T) is called T- sequentially absolutely closed (T-S.A.C) iff each sequence contains a T-convergent sub sequence subsequence.

2.10. Remarks and examples:

It is clear that if a space X is sequentially a compact then it is T-sequentially absolutely closed. The converse is not necessarily true.

Let
$$X = R$$
 $\tau = [(-\infty, a) | a \in R] \cup [\phi] \cup [R]$

T =the closure operator that is

$$T(A) = \overline{A}, A \subset X$$

That is clear that this space is T-sequentially absolutely closed since that closure of every non-empty open set is all of R. Now let $(x_n) = (n)$, this sequence has no convergent sub sequence, this prove that (X, τ) is not sequentially compact.

3. Main Results:

In this section , we prove several properties of T-sequentially absolutely closed space (T-S.A.C.S). First, we recall the following definition.

3.1. **Definition**[4, 5]:

Let (X, τ, T) be an operator topological space we say that X is T-Regular if for each $P \in X$ and W an open set containing p then there exists an open set V $P \in V \subseteq T(v) \subseteq W$ such that, That is X is T-Regular if: W is open in X iff W is T-open [5].

3.2. Theorem:

Let (X, τ, T) be T-Regular operator topological space then (X, τ, T) is T-sequentially absolutely closed iff it is sequentially compact.

Proof:

Let (x_n) be any sequence in X, X is T- sequentially absolutely closed, then there exists a sub sequence (X_{nk}) which T-converges to a point say p. To show that (X_{nk}) converges to p.Let v be any open set containing p. X is T-Regular ,so there exists V open such that, $p \in V \subset T(v) \subset U$

Now (x_{n_k}) T- converges top. Therefore T(V) contains all but a finite number of (x_{n_k}) Accordingly U contains all but a finite number of (x_{n_k}) .thus (X, τ, T) is sequentially compact. The other direction is $W \subseteq T(w)$ clear because for every open set W. Before , we state the next result We recall the following definition.

3.3. Definition[4]:

An operator topological space (X, τ, T) is said to be T- countably absolutely closed iff each countable open cover $\{Gi / i=1,2,...\}$ of X has a finite sub family $\{Gi,Gi_1,...Gi_n\}$ such that

$$X = \bigcup_{k=1}^{n} T(Gi_K)$$

3.4. Theorem:

If (X, τ, T) is T- sequentially absolutely closed then it is T-countably absolutely closed space

Proof:

Assume X is infinite ,for otherwise the proof is trivial. Assume there exists acountable open cover $\{Gi \mid i=1,\,2,\,\dots\}$ of X with no finite sub family $\{Gi_1,\,Gi_2,\,\dots,\,Gi_n\}$ such that

$$X = \bigcup_{k=1}^{n} T(Gi_{K})$$

Define a sequence (x_n) as follows, choose $x_1 \in T(G_1)$, $x_2 \in T(G_2) - T(G1)$ such a point always exists ,for otherwise $T(G_1)$ covers X, continuing in this manner ,we obtain a sequence (x_n) with the property that

$$X_i \in T(G_i) \text{ and } X_i \notin \bigcup_{j=1}^{i-1} T(G_j)$$

Claim:

$$p \in X$$
, then there exists G_k .
such that $p \in T(G_k)$

$$but, X_k \not\in T(G_i) \text{ for } J < k$$

So no sequence of X has a T- convergent sub sequence and this contradicts the hypothesis, So (X, τ, T) must be T- countable absolutely closed.

References

- [1] S. AbdulHalim, " **on absolutely closed spaces** ", M.Sc. thesis university of Baghdad,1972.
- [2] C. Adams "Topology", pure and applied Pearson, 2008.
- [3] C. Lin, " **Absolutely Closed spaces**", Trans Am, math. Soc., vol.130(1968),86-97.
- [4] H. J. Mustafa, "T-countably absolutely closed spaces", conference Arbil 2011.
- [5] H. J. Mustafa, and A. Abdulassan, "**Topen set**", M.sc thesis, Mutta University, Jordan, 2004.

المستخلص:

في هذا العمل قدمنا مفهوم T الفضاءات المغلقة تماما المتتابعة التي هي تعميم لللفضاءات المغلقة تماما المتتابعة. برهنا مجموعة الخصائص الجديدة لهذه الفضاءات.