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Abstract 
 One of the most difficult tasks in image processing is the determination of a 

suitable set of features which can be used to segment images. In this research, the 

standard deviation that represents feature of image has been used in image segmentation 

as indicator to determine the isolation of one object from another or an object from a 

background. This feature has been used by a Genetic Algorithm (GA) to become a fitness 

function that will help in searching process for the optimal solution. The value of 

standard deviation is high in the case of a difference between various diverse regions of 

the image and small in one region. Using this feature in maximizes the difference among 

different regions and minimizes the interclass variance, a GA is used to evolve a sub-

image convolution kernel to produce kernel with a best features that can be used in the 

segmentation of image. The space-filling curve approach has been used to convert the 

kernel from a one dimensional (1-D) form into a two dimensional (2-D) form. The 

evolution process of a genetic algorithms are done on a kernel in array form, while the 

convolution process between a kernel and image is used a kernel in a matrix form.  
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    Data reduction encompasses the 

process of image segmentation, 

filtering and feature extraction [1]. 

 

     Feature extraction is the process of 

taking an image and producing 

another image which has areas with a 

defining characteristic highlighted 

with respect to the background.  

Features such as edges, gradients, 

other spatial features can be detected 

by the application of convolution 

kernels and represented by the 

convolution kernel itself. Many of the 

more common feature extraction 

methods rely on this method of 

representation [2]. 

 

While many features can be extracted 

using a convolution kernel, finding an 

appropriate kernel is not an easy task. 

Specific kernels exist for edges or 

lines in a single direction, while other 

exists for zero-crossings and textures. 

To find one for a specific feature 

requires identifying the aspects of the 

feature that distinguish it from all the 

others and characterizing it in terms 

that can be represented in a 

convolution kernel. This generally 

requires intense study of a group of 

already classified or segmented 

images before an acceptable solution 

can be discovered [3, 4].  
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2. Image segmentation 
 

     Segmentation subdivides an image 

into its constituent parts or objects. 

The level to which this subdivision is 

carried depends on the problem being 

solved. That is, Segmentation should 

stop when the objects of interest in an 

application have been isolated. It is 

one of the most difficult tasks in 

image processing and acts as the first 

step in image analysis. This step in the 

process determines the eventual 

success or failure of the analysis. In 

fact, effective segmentation rarely 

fails to lead to a successful solution. 

For this reason, considerable care 

should be taken to improve the 

probability of rugged segmentation[5]. 

 

3. Genetic Algorithm  
 

     Genetic Algorithms are adaptive 

methods which may be used to solve 

search and optimization problems. 

They are based on the genetic 

processes of biological organisms. 

This algorithm maintains a population 

of structures, that evolve according to 

rules of selection and other operators, 

that are referred to as "search 

operators", (or genetic operators), 

such  as  recombination  and  mutation  

which operates by combining and 

mutating the representations of 

solutions in one population to form a 

next population of possible solutions 

for evaluation. Each individual in the 

population receives a measure of its 

fitness in the environment. 

Reproduction focuses attention on 

high fitness individuals, thus 

exploiting the available fitness 

information. Recombination and 

mutation perturb those individuals, 

providing general heuristics for 

exploration. An effective GA 

representation and meaningful fitness 

evaluation are the keys of the success 

in GA applications [6, 7]. 

 

4. Image segmentation using    

    Genetic Algorithm  
  

      This research presents a method of 

applying GAs to the problem of 

finding an appropriate feature which 

can be used to segment images. The 

GAs includes the methods of 

measuring performance and a suitable 

representation of convolution kernels 

for the application of the GA approach 

[8, 9]. 

 

4.1 Representation of kernels 

      A fundamental problem of GAs is 

the representation of the solution, or 

genome that will be optimized. The 

representation which is chosen will 

affect all the aspects of the breeding 

process, since the breeding operations 

of necessity operate on this 

representation with no knowledge of 

the problem. Many genomes are 

represented in the form of a vector 

due to the simplicity of defining 

storage and working with the 

elements. The crossover and mutation 

operation conceptually work on a 

stream of data in array format. This 

means that no special algorithms for 

performing these two basic GA 

processes need to be developed. 

 

4.1.1 Kernel values mapping 

          A space-filling curve is one 

approach that has been used to 

overcome the discontinuities problem 

which appears at the end of each row 

of the matrix in using the computers 

array representation of a matrix & 

sporadic insertion or deletion of 

elements when changing kernel size.  

Each array element in this approach is 

related to its neighbors within its local 

group in two dimensions. While 

convolution kernels can be either even 

or odd sized, odd is often more 

desirable from an implementation 

sense due to its symmetry and its 

clearly denoted center element. 
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     An approximation to a space-

filling curve was chosen which 

minimizes the effects of these 

difficulties while still allows a GA to 

operate on the kernel. This 

concatenation of convolution kernel 

elements will be called a spiral kernel 

and is shown in figure (1). 

 

4.1.3 Weighted kernels 

          All kernels in each generation 

must have been weighted in order to 

discriminate them from each others, 

and to make sure that the kernel does 

not repeat. The equation of the 

weighed kernel is 
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where     :nn  is kernel size  

                :)(sA  is a kernel value     

     (one of three cases -1, 0, and 1) 

                 :KW   is kernel weight 

 

Figure (1)   Spiral kernel for mapping 

kernel values to GA genome 

 

The spiral kernel starts in the 

center of the matrix and can take one 

step in any direction; this case will 

then turn perpendicular to its previous 

direction and travel one more element. 

It will continue to turn in the same 

direction after each n steps, n will 

increment for every other turn. This 

continues until the matrix has been 

filled. 

 

4.1.2 Kernel size 

Change of size operations translates to 

resetting the array length, and center 

operations on the matrix can be 

bounded by two points on the array. 

There are no hard discontinuities, and 

each element is moved a relatively 

small distance with respect to most of 

its neighbors. The limitation which 

remains is that the row and column 

size must be the same. This is quite 

acceptable since zero padding a 

convolution matrix does not affect its 

results if the center does not change , 

and row/column size will always be 

the same in the populations given to 

the algorithm. 

 

Figure (2)   Flow Chart of subroutine 

calculate a kernel weight 
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4.2 Measure of performance [10] 

      (GA Fitness Function) 

      One approach of evolving a 

segmentation convolution kernel is to 

maximize the difference among the 

numerical values which results from 

the application of the kernel to various 

diverse regions of the image. This can 

be done while at the same time 

minimizing the interclass variance. 

This approach will result in the 

maximum probability of correct 

classification and minimum 

probability of incorrect classification 

for linearly separable regions. The 

standard deviation is a fitness function 

obtained by convolving the complex 

region of image with a kernel value, 

and then computing the following 

equation that illustrated in figure (3): 
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where :),( jiI


is convolution pixel 

(result of convolution kernel with 

image region) 

:M is   mean   of  convolution  

        pixel 

:CR is region size (R is         

              Row and C is column) 
: is standard deviation 

 

To  evaluate  the fitness function,  the  

image is  manually  segmented. This  

is  done  by replacing  all pixels  of  a 

specific   feature,   or   region,   with  a  

distinct  integer value. All  Pixels  not  

covered  during this process are set to  

zero to characterize them as 

background noise. The resulting map 

clearly defines which region each 

pixel is in, so that the statistics can be 

found by region rather then by image. 

The mean and variance is then 

calculated for each region. 

The overall effect is that as the 

region converges to a single value 

from the transform, the variance will 

approach zero. In early trial runs the 

variance was the only measure of 

fitness. The GA quickly evolved an all 

zero matrix which always has a small 

variance; no matter which image is 

being convolved.  

 

Start 

Convolve the kernel with an 

image to calculate a fitness 

function (standard deviation) 

Return   

 

Image Region )( CR  

  and kernel mask 

Repeat with a 

size of image 

region  

End 

Figure (3)   Flow Chart of 

subroutine calculate a fitness 

function of kernel 

 

4.3 The Evolutionary process [11] 

      Each   iteration   of   the  GA  ends  

with  the  creation  of  a new set of 

genome /kernels based on the fitness 

of members of the previous 

generation. Each  kernel  is  converted  

from its  matrix  form  into the array 

form of the genome.  Three methods 

are then applied to create a new set of 

genomes, i.e, the  next population. 
An   elitist  approach  is used in which  

the  kernel  with the maximum  fitness  

is  copied    into  the   new  population   

without   alteration.   The     remaining   
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and a constant  variance, and using the 

absolute value as an index into the list 

of genomes ordered by fitness. If 

crossover occurs often enough, then  

an  offspring  will be  produced  that  

contains  the good parts of both 

parents and  the  other  offspring  will  

die  off  due  to their  receiving  only  

the  bad genetic  material. Crossover  

also  has  the effect of randomizing 

genomes so that   other   areas   of   

the  solution  space  are  searched  by  

default  for  an optimal  genome  

while  retaining at least some common 

thread to part of the population. 

 

     In this research, a crossover 

operator (i.e. single point crossover) is 

done 25 times between each pair. The 

crossover point that will be passed in 

a crossover process is chosen 25 times 

in each kernel. The value of cross site 

is from 1 to 25. 

 

     In the case of using a population 

size 50, the crossover rate that will be 

chosen is 0.6. Thus  the crossover 

operator  is done between fifteenth 

pair  ( i.e. 50 * 0.6 = 30). The kernel1 

to kernel20 have been copied without 

alteration in each generation from the 

previous generation to the next 

generation. 

 

While In the case of using a 

population size 20, the crossover rate 

that will be  chosen is  0.7. Thus  the 

crossover operator  is done  between  

seven  pair ( i.e. 20 * 0.7 = 14). The 

kernel1 to kernel6 have been copied 

without alteration in each generation.  

 

Figure(4) shows two individuals in a 

population of 8-bit strings undergoing 

single-point crossover; the point of 

exchange is set between the fifth and 

sixth positions in the genome, 

producing two new individuals that 

are a hybrid of their progenitors. 

slots    in    the    population   are  then  

filled   by   applying   the      crossover 

operator    to    the    other   population   

members.    Each    slot   filled   by    a  

crossover  generated    kernel  is   then  

passed   through  a   mutation operator  

occasionally. 

  

     Elitist  is a mechanism which 

ensures that the chromosomes of the 

most highly fit member(s) of the 

population are passed on to the next 

generation without being altered by 

genetic operators. Elitist can very 

rapidly increase performance of GA 

and brings about a more rapid 

convergence of the population, 

because it prevents losing the best 

found solution. If they do lose the best 

genome, then the GA could take many 

generations to rediscover this genome. 

It is important to note that the GA 

does not operate by converting a 

random string from the initial 

population into a globally optimal 

string via a single mutation. Only 

advance after enough generations had 

passed to have mutation provide a 

better solution to converge towards. 

When the convergence never saturates 

the population, the speed at which it 

happens allows other advances to 

occur before the population becomes 

stagnant. 

 

4.3.1 The Crossover operator 

Crossover  is  used   to  swap  parts  

among   genomes  to  produce new 

kernels.  By selecting a point between  

the first  and last genome  elements, a  

crossover  point  is  established.  Two  

genomes  are  passed  to the crossover  

operator  and  two children are 

returned. Each of the children receives 

all the genome   preceding   the  

crossover  point   from  its   respective  

parent,  and everything  past  that  

point on the genome from the other 

parent. Parents are chosen by 

generating two random Gaussian 

distributed numbers, with a zero mean   
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    Figure (4): Single-point crossover 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            Parent1 

 

           Parent2 

 

      Offspring1 

 

     Offspring2 

0 0 1 0 1 1 0 1 

1 0 1 1 0 0 1 1 

0 0 1 0 1 0 1 1 

1 0 1 1 0 1 0 1 

4.3.2 The Mutation operator 

          Each  element  in  the genome is  

considered  for  mutation  individually  

via      a    uniform    random    number   

generator.   If    the    probability     for   

mutation is greater than  the generated  

generated  number,    then   a mutation  

occurs.  If  not,  the  next   element   in    

the   genome  is  considered.  When an  

element   is    mutated,   a      Gaussian  

random  number  is  generated  with  a   

mean  equal  to  the  original  element,   

and variance specified in the program. 

The  generated number  is  rounded to  

An  integer  and placed in the genome.  

This  has   the effect  of  attempting  to  

hill-climb  to  a     local solution  when  

small     deviations     are     generated. 

Random alteration on one element at a 

time    will   equivalently   try  random    

directions to see which one produces a   

better fitness.  Larger deviations in the  

element   due   to  mutation  may  also  

alter the location of the genome in the 

solution   space  where   other  optimal 

solutions   might   be found, much like 

crossover. 

 

Uniform  and   large  variance random  

numbers   were   tried with   mutations   

resulting   in  damaged  genome  ( low   

fitness   on    the   next iteration).  This   

appears   to  be due to  the fact that the  

majority  of  successful  genomes   use   

the  value  1,0, and -1  exclusively and  

when  a  number  far away from  these   

three   values   appears   it   causes   an   

unbalancing   of   the kernel.  Multiple 

mutations    might    find   a    solution 

 

outside     the     locality  of the origin, 

but  this is unlikely to occur in theGA.       

Higher probabilities of mutation   lead     

to  a  large    group    of        unsuitable 

genomes  and  a   degenerate behavior 

for  the population as a whole. 

 

5. Results 
   After 22 generations of a population 

size20 in image1, the optimal kernel 

with the best fitness function of a 

minimum standard deviation 

( 1 =45.067) which is shown in figure 

(6) is obtained. (The population is said 

to be converged when all of the genes 

have converged and the average fitness 

will approach that of the best 

individual) .This kernel has been used 

to segment the original image1 (see 

figure (5)) into three perfect separate 

regions as in figure (7) by the 

convolution process between these 

images and the best kernel and then 

extract the features for each region (the 

mean and variance are then calculated 

for each region). Figure (8) illustrate 

the result of a histogram of the 

segmented image1. 

     

          
a- image1 (256*128) 

 

 
b- Histogram 

 

Figure (5) image1 and the 

corresponding histogram 
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     Figure (6) the optimal kernel in 2-D   
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      If  result <= T1 then region1 

      If  T1 < result <= T2 then region2 

      If  result > T2 then region3 

 

After  the assurance  of a perfect 

seperation, the mean and  variance are 

calculated for each region in image1. 

 

 

6-Conclusions 

 
1. The  first,    and    most    important,    

    consideration   in  creating  a GA  is  

    defining  a    representation  for  the   

    problem.  The   language   used    to      

    specify   candidate  solutions   must    

    be    robust; i.e.,  it must  be  able to   

    tolerate  random  changes  such that   

    fatal    errors   or   nonsense  do  not 

    consistently result. 

 

2. The   problem  of   how  to write the   

    fitness function  must  be   carefully  

    considered   so  that   higher  fitness   

    is    attainable    and   actually   does   

    equate  to  a better solution   for  the   

    given    problem.     If    the   fitness  

    function    is    chosen     poorly    or  

    defined  imprecisely,  the  GA  may  

    be   unable to  find  a solution to the  

    problem,  or may end up solving the  

    wrong problem. 

 

3. In    addition    to  making   a   good  

    choice  of fitness function, the other  

    parameters  of  a GA -   the  size  of   

    the     population,      the     rate    of  

    mutation   and   crossover   must  be  

    also     chosen      with     care.   The  

    performance of GA’s appear to be a  

    nonlinear   function   of   the    these  

   control parameters. 

 

4. The   filters   that are   used   in  this   

    research are   implemented      with  

    convolution   masks.       Because  a 

    convolution      mask         operation  

    provides  a  result that is a weighted  

    sum  of  the values of a pixel and its  

    neighbors,  they  are    called  linear   

    filters.   

 

 

          
                     a- region1 

          
                    b- region2 

          
                   c- region3 

Figure (7) separated regions of image1 

 

          

                      T1           T2 

 Figure (8) the histogram of a final    

      result of the segmented image1 

 

From the histogram of a 

convolution result in figure(8), the 

value of threshold is derived by using 

the triangle algorithm. This algorithm 

has been used to derive a threshold 

value from a segmented histogram. A 

line is constructed between the 

maximum of the histogram at the 

highest brightness and the lowest value 

in the image. The distance between the 

line and the histogram is computed for 

all values from the maximum and 

minimum of the histogram. The 

brightness value b0 where the distance 

between h[b0] and the line is maximal 

is the threshold value. 

 

The segmented histogram in 

this thesis has three peak (two weak 

peak and one high peak) and two 

valley. Two theshold values have been 

derived from this histogram at a two 

valley, then these threshold values are 

used to separate the image into three 

regions as in the following equation:- 
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5. In    Edge  Detection   operator  that   

    will be used in image segmentation,  

    the summations of  the convolution  

    mask  coefficients  are    equal zero. 

    This  results  in  regions of constant 

    brightness being   reduced    to zero, 

    and  regions  of  abrupt  changes  in 

    gray level   returning    large values, 

    which indicates prominent edges.  

 

6. Starting   from a number of  random  

    convolution   kernels,   it    has been   

    shown  that a  kernel  that  meets   a 

    specific  feature extraction         

problem,    

    which   is   equivalent   to   a  linear 

    transform,   can  be evolved   before    

    hand.  

 

7. Due  to  the  size   limitations of the   

    kernels    evolved   here,   three    to  

    eleven row/column size  with  most 

    being  five has been used. This size 

    is not very small and not very large. 

    Because    in  the    field    of  image 

    processing small filters result in too 

    many   noise points and large filters 

    tend to   dislocate the edges. In   the 

    field of GAs, the smallest kernel  

    will   be   developed   regardless   of   

    the   performance  and large kernels  

    should     give   good   results,    but 

    require more computational time. 

 

8. The       changing    process    in     a   

    population   size    from  20  kernels   

    to     50   kernels    is    helped      in  

    improving   the values of fitness but  

    this   changing   is    required   more   

    computational  time.   

 

9. While   convolution kernels   can be  

    either   even   or   odd sized,   odd is  

    often   more     desirable   from    an  

    implementation     sense    due to its  

    symmetry   and   its clearly denoted  

    center element. 
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 تقســـيم الصورة باســــتخدام خوارزميـــة الجينــات
 

 
 

 د.جٍٛ جهٛم اسطٛفبٌ

 عبٛش ضٛبء انُقشبُذ٘

 

 انٓٛئت انعشاقٛت نهحبسببث ٔانًعهٕيبحٛت

 يعٓذ انًعهٕيبحٛت نهذساسبث انعهٛب

 

                                     

                                                                                        

 يهخص انبحث

أغهب انًًٓبث انصعبت فٙ يعبنجت انصٕس ْٙ يعشفت انخصــبئص انًُبســــبت انخٙ      

حسـخخذو فٙ حقســٛى انصٕس. فٙ ْزا انبحث، يقٛبط الأَحـشاف انز٘ ًٚثــم احذ صـفبث انصــٕسة 

ـخخذايّ كذنٛم نًعشفـت عضل يُطقت عٍ يُطقـت سـٕف ٚخى اسـخخذايّ فٙ عًهٛت حقسـًٛٓب ٔرنك ببس

اخشٖ أٔ عضل يُطـقت عٍ الأسضـٛت. ْزِ انصـفت اســخخذيج يٍ قبم خــٕاسصيٛت انجُٛبث كذانت 

يُبسـبت نٓب فٙ عًهٛـت انبحث لأٚجـبد انحم الأيثـم. قًٛت يقٛبط الأَحشاف حكٌٕ عبنٛــت فٙ حبنــت 

حكٌٕ قهٛهت فٙ انًُطقت انٕاحذة. ببسخخذاو ْزِ انصـفت  فٙ ٔجٕد اخخلاف بٍٛ انًُبطـق انًخخهفـت ٔ

صٚبدة الأخخلاف بٍٛ انًُبطـق انًخخهفــت ٔحقهٛم الأخخلاف فٙ انًُطقــت انٕاحــذة، اسخخذيج         

 خٕاسصيٛت انجُٛبث فٙ حطٕٚش انـkernelانز٘ ٚهخف ببنصٕسة لأَخبج kernelبأحسٍ انخصبئص

انصٕسة.انخٙ حًكُّ فٙ عًهٛت حقسٛى   

                               

kernel فٙ عًهٛت ححٕٚم انـ  Space-filling curve approach اســــــــخخذيج انـ        

kernel انبعذ الأٔل انٗ ثُبئٙ الأبعبد. ففٙ عًهٛت انخطٕس فٙ خٕاسصيٛت انجُٛبث اسخخذو 

Kernelبعذ ححٕٚهّ انٗ  ًهٛت الأنخفبف حى اسخخذاو انـبشــــكهّ احبد٘ الأبعبد. بًُٛب فٙ ع  

 يصفٕفت رٔ بعذٍٚ.


