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Abstract:

In this paper we find the Brauer trees of the groupS, modulop=11 which can give the
irreducible modular spin characters of S,; modulo p = 11, also we give the 11-decompostion

matrix of spin characters ofS,; .
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1. Introduction:

One of the oldest example of
permutation representation is furnished by
Cayley'stheorem [8]. A group
representation of finite group G over a filed
K is a group homomorphism T:G -
GL(n, K) [2].Schur showed that the
symmetric group S, has a representation
group S, which is of order 2(n!), and it has
a central subgroup Z={1,-1} such that
So/Z = S, [12] . The representations of S,
fall into two classes [9] , [12]:

1) Those which have Z in their kernel ;
these are called the ordinary
representation of S, the irreducible
representations and characters of S,
are indexed by the partitions of n .

2. Preliminaries:
Let p be prime and G be a group of
order p®.m where (p,m) = 1

43

2) The representations which do not
have Z in their kernel ; these
representations are called
spin(projective) representations of
Sn the irreducible spin
representations are indexed by the
partitions of n with distinct parts
which are called bar partitions of n
[10].

For p=11 Yaseen [13] was found the
modular irreducible spin character of S,
forl11 <n <14 and for n= 15,16 was
found by Yaseen[14] and for n = 17,18
was found by Jassim[5] and for n=19 by
Jassim and Taban[7] and for n=20 by
Jassim[6] .

In this paper we found the Brauer trees for
the spin characters for S,

1. Any spin character ofS, can be
written as a linear combination, with
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non-negative integer coefficients, of

the irreducible spin characters [2].

Let H b a subgroup of Gthen [4].

a) If y is principal character of H,
then Y TG is principal
character of G .

b) If ¥ is principal character of G,
then Y lH is principal
character of H .

c) If ¢ is a modular character of H,
then ¢ TG is a modular
character of G.

d) If ¢ is a modular character of G,
then ¢l H is a modular
character of H.

Let a, 8 be bar partitions of n which
are not p-bar cores.
Then{a)(and {(a)’ if a is odd) and
B(and B’ if B is odd) are in the same
p-block if an only if {a) = (B) . if a
be a bar partition of n and (a) = (a)
, then (a)(and (a)’ if a is odd )
forms a p-block of defect 0[13].

Let a=(ay,..,a,) be a bar
partition of n. The values of
characters (a) and (a)’ differ only
on the class corresponding to a on

which they have values
n-m+1

+i 2 J(ag..ap)/2;i=

v—1[9].

The degree of the spin characters

(a) = (aq, ..., apy) IS:
deg{a) =

n—-m

2=

n!
™ @) Hlsistm(ai -
i=1 i

a;)/(a; + a;) [9].[10].

Let B be the block of defect one and
let b be the number of p-conjugate
characters to the irreducible
character y of G then [11].

There exists a positive integer
number N such that the irreducible
ordinary characters of G are lying in
the block B divided into two disjoint
classes :

d)

b)

B, ={x€Blbdeg y =

N mod p“}, B,={x€
B|bdeg y = —N mod p%}

Each coefficient of the
decomposition matrix of B is one or
zero.

If @, and a, are not p-conjugate
characters and belong to the same
classesabove, then they have no
irreducible modular spin character
in common.

For every irreducible ordinary
character y in B; , there exists
irreducible ordinary character ¢ in
B, such that they have one
irreducible modular character in
common with one multiplicity .

If C is principle character of G for
an odd prime p and all the entries in
C are divisible by a non-negative
integer g , then (1\g)C is a
principal character of G [4].

Let a=(ay,..,a,) be a bar
partition of n not a p bar core , let B
be the block containing () then :

If n—m-—m, is even , then all
irreducible modular spin characters
in B are double.

If n—m-—-mgy is odd, then all
irreducible modular spin characters
in B are associate.

(Herem,ythe number of parts of a divisible
by p)[4]
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9.

10.

If C is principal character of G for a
prime pthen:deg C =

0 mode p%,[3].

Let 1,02, B2 B3 f3 be modular
spin characters where 7 is a double
character , B, # [, are associate
modular spin characters (real), and
B3 # B3 are associate modular spin
characters  (complex) Let
01,92, 03, ¢@3,¢3 be irreducible
modular spin character , where ¢; is
a double character , ¢, #
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@5 and @3 # @3 are  associate contains ¢, and ¢; with the same
irreducible modular spin characters multiplicity .
(real  ),(complex)  respectively b) B3 and B3 contains ¢, @,, @, with
then[13]: the same multiplicity.
a) Pi, B2 B contains @3 and @3 with C) ¢sis constituent of B; with the same

the same multiplicity , B; which multiplicity as that of ¢3 in S3.

3. Notation:

p.s. principle spin character.

p.i.s. Principle indecomposable spin character.

m.s. Modular spin character.

I.m.s. Irreducible modular spin character.

= Equivalence mod 11 .

d; The p.i.s. of S,,.

D

The p.i.s. of S,,_;.

o~

4. The Brauer trees of the symmetric groupS,,,p=11:
The group S,; has 114 of irreducible By using (preliminaries 3) , there are 34 11-

spin characters and S,; has 99 of (11, a)- blocks of S,;, these block are B;,B,,B53, ...
regular classes , then the decomposition , B34 ,24 of them of defectzero which are
matrix of the spin characters of S,; , p=11 B:1,B12 . ... ,Bgsand the others of defect
has 114 rows and 99 columns[13]. one .

Lemma (4.1):

The Brauer tree for this blockB; is:
(21)*_(11,10) = (11,10)' _(10,9,2)_"(10,8,3)_"(10,7,4)_"(10,6,5)"
Proof:
deg(21)* = deg(10,9,2)* =deg(10,6,5)* =1 mod 11
;deg((11,10) + (11,10)") =deg(10,8,3)* =deg(10,6,5)" = -1.
By using (r, 7)-inducing of p.i.s. of S,,[see appendix 1] to S,; we have :
D, 1210 s, =d,, D, 1?10 5, =d,,D, 12105, =d, , Dy 12105, =d, :
Dgo 132 S, = ds ; (no sub sum of these p.c.=0)
So we have theBrauer tree for the block B, , and the decomposition matrix for this block in
Table (1).
Lemma (4.2):
The Brauer tree for this block B,is:

(20,1)_(12,9)\ (9,8,3,1)_(9,7,4,1)_(9,6,5,1)

(11,9,1)*/
(20,1)_(12,9Y \9,8,3.1)(9,7.41)_(9,6,5,1)'
Proof:
deg{(12,9), (12,9),(9,8,3,1),(9,8,3,1),(9,6,5,1), (9,6,5,1)'} =7;
deg{(20,1), (20,1),(11,9,1)*,(9,7,4,1), (9,7,4,1)'} =-7;

By using (0,1)-inducing of p.i.s. for S,, to S,; we have:

Dy 1OV 8§51 = ky,Dy 1O §y1 = ky,D5 10V S,; = d5,Dg 10V Syy = dg,D; 101 55 =
d7,Dg 1o Sz1 = dg,Dg T Sz1 = do, D; T S21 =dyo -

Since (12,9,1),(12,9,1)" are p.i.s. of S,,(of defect zero in S,,, p=11) , and

(12,9,1) L(0,1) S21 = (12,9) +(11,6,1)" = d3are p.s. (Preliminaries 2)

(12,9,1)" L(0,1) S21 = (12,9)" +(11,6,1)" = d,are p.s. .Eitherd, is subtracted from k; or not
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Suppose d, is not subtracted from k;, , in this case we have (12,9)" — (20,1) — (20,1)" is m.s.
for Sp; , but ((12,9)" —(20,1) —(20,1)") d(o,1) S20 = (11,9)" —(20) —(20)" is not m.s.
forS,,, then d, is subtracted from k;and dssubtracted from k, (d;,d, and kq, k,are

conjugate) .And the decomposition matrix for the block B, is given in Table (2).

Lemma (4.3):
The Brauer tree for this blockB; is :
(19,2)_(13,8) \
(11,8,2)"
(19,2 (13,8y"/
Proof:

deg{(19,2),(19,2),(11,8,2)",(8,7,4,2),(8,7,4,2)'} =8
deg{(13,8),(13,8)",(10,8,2,1),(10,8,2,1)",(8,6,5,2),(8,6,5,2)'} =-8

By inducing

/ (10;8;2;1)—(877;4;2>—<876;5;2>

\(10,82,1)_(87,4,2) (8,6,5,.2)

Di6 T8 S21 = kq,D13 1(210) S21 =k, D71 T S31 = ds,D7; T Sy1 =

de,D14 1(210) S21 = k3 ,D15 1(210) Sy1 =Ky .

Thus, we have the approximation matrix inTable (3i)

Table (3i)
/21 Y, Ps Pe Y3 Yy P1 P2
(19,2) 1 a
(19,2)' 1 a
(13,8) 1 1 b
(13,8)' 1 1 b
(11,8,2)° 2 1 1 c c
(10,8,2,1) 1 1 d
(10,8,2,1)’ 1 1 d
(8,7,4,2) 1 1 f
(8,7,4,2)' 1 1 f
(8,6,5,2) 1 h
(8,6,52) 1 h
ky k, ds dg ks ks X Y
Since (19,2) # (19,2)' on (11, a)- b € {0,1} , otherwise we have
regular classes then either k; is split or contradiction .
there are other two columns. Suppose there 2) Since (11,8,2)" | S, =
are two columns such as X and Yto describe ((10,8,2) + ((10,8,2)")* +
columns Xand Y : (11,7,2)? + ((11,7,2)")? +
(19,2) L $,,=({18,2)")* + ((19,1)")'has 2 ((11,8,1))% + ((11,8,1)")? has 10 of
of im.s.in S,, (see appendix I ) and from i.m.s. we have c € {0,1,2,3}.
Table (3i) we have a € {0,1}. 3) (10,8,2,1) 1 S,0=({9,8,2,1)*)? +
If a = 1, k;musthave a conjugate p.c. so ((10,7,2,1))% + ((10,8,2))* has 5
(19,2)has 3 m.c. contradiction since (19,2) of i.m.s. we have d € {0,1,2}.
have at most two m.c. so a = 0 and k; split 4) (8,7,4,2) 1 5,0=(8,6,4,2))* +
to give (19,2) + (18,3) and (19,2) + ((8,7,3,2))% + ({10,8,2)*)? has 5
(18,3)" . of i.m.s. we have f € {0,1,2}.
Either k, split or there are other columnsX 5) (8,6,5,2) | S,0=({7,6,5,2)")! +
and Y (as above with a=0) ((8,6,4,2)) + ((8,6,5,1)*)* has 3
1) Since (13,8) I S50 = ((12,8)*)? + of i.m.s. we have h € {0,1}.
((13,7)*)? has 4 of i.m.s. we have Now if b = 1



Journal of Basrah Researches ((Sciences)) Vol.( 39). No.(4)A ...... (2013 )

1) Thereisnoi.m.s.in(13,8) ! S, N
(10,8,2,1) 1 S,5,50d=0;
2) Thereisnoim.s.in(13,8) | S,o N
(8,7,4,2) 1 S5y ,s0f=0;
3) Thereisnoi.m.s.in(13,8) ! S,, N
(8,6,5,2) 1 S5 ,s0h=0.
We,get the possible columns :
X =(13,8) + ¢(11,8,2)",

Y = (13,8) + ¢(11,8,2)%, ¢ € {0,1,2,3}
degX =0anddegY = 0 only when b =
c=1.

So k, splits to give (13,8) + (11,8,2)" and
(13,8)" + (11,8,2)* which is the same when
b=0.

Since (8,6,5,2) # (8,6,5,2,) on (11, @)-
regular classes then either k, is split or
there are other two columns. If we Suppose
there are two columns such as X an Yas in
Table (3i) with a=b=0. To

describe X an 'Y :

If h =1:

Lemma (4.4):

The Brauer tree for this block B,is:

1) Thereisnoi.m.s.in (8,6,52) 1
S,0N(11,82)" 1 S,,,50Cc=0;
2) Thereisnoi.m.s.in(8,6,52) 1
S,0N(10,8,2,1) L S,y ,50d=0.

We, get the possible columns :
X = £(8,7,4,2) + (8,6,5,2)
Y = £(8,7,4,2) +(8,6,52), f €{0,1,2,3}.
,degX = 0anddegY = 0 only when f =
1.
So k, splits to
(8,7,4,2) + (8,6,5,2) and (8,7,4,2) +
(8,6,5,2)" which is the same when h = 0.
Since (10,8,2,1) # (10,8,2,1) on (11, a)-
regular classes then the last column k5 must
split to
(10,8,2,1) + (8,7,4,2) and (10,8,2,1)" +
(8,7,4,2) [Preliminaries 10],s0 we get the
Brauer tree for the block B, and the
decomposition matrix for this block in
Table (3).

(18,3)_(14,7) (10,7,3,1)_(9,7,3,2)_(7,6,5,3)
\(11,7,3)*/

18,3y (14,7)
Proof:

\10.7.3.1) (9.7.3.2) (7.6.5.3)

deg{(18,3),(18,3)",(11,8,2)%,(9,7,3,2),(9,7,3,2)'} =9
deg{(14,7),(14,7)',(10,7,3,1),(10,7,3,1)',{7,6,5,3),(7,6,5,3)'} =-9

By using (r, 7)-inducing of p.i.s. of S,,t0 S,; we have:
Di6 169 S21 = k1,Dy17 169 S21 = k3,D73 Ten S21 = ds,D7y4 T Sy1 =

de,Dyg 169 S21 = k3 ,Dyg 169 So1=ky .

We have the approximation matrix (Table (4i))

Table (4i))
Yy Y, Ps Pe P3 Pa P1 P2
(18,3) 1 a
(18,3) 1 a
(14,7) 1 1 b
(14,7)’ 1 1 b
(11,7,3)* 2 1 1 c c
(10,7,3,1) 1 1 d
(10,7,3,1)' 1 1 d
(9,7,3,2) 1 1 f
(9,7,3,2)' 1 1 f
(7,6,5,3) 1 h
(7,6,5,3)’ 1 h
ks k, ds dg ks ks X Y
Since (18,3) #(18,3)' on (11,a)- there are other two columns, suppose there

regular classes then either k; is split or

are two columns suchas X and Y
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To describe columns X and Y must split to

(18,3) | S,0= ({18,2)) + ((17,3)*)*has 2 give(18,3) + (14,7) and (18,3)" + (14,7)".
of i.m.s. and from (Table (4i)) we have a = Either k, split or there are other column X
0, otherwise we have contradiction so k; and Y (as above with a=0)

1) Since (14,7) 1 S5o = ((14,6)*)? + ((13,7)*)? has 4 of i.m.s,we have b € {0,1}.
2) Since (11,7,3)* L S,0 = (10,7,3)* + ({10,7,3))* + (11,6,3) + ((11,6,3)")% +
((11,7,2)? + ((11,7,2)")? has 10 of i.m.s. we have ¢ € {0,1,2,3}.
3) Since (10,7,3,1) L S,0 = (9,7,3,1)) + ({10,6,3,1)*) + ((10,7,2,1))! +
((10,7,3))*has 5 of i.m.s, we have d € {0,1,2}.
4) (9,7,3,2) | 5,0=(¢8,7,3,2))% + ({8,6,3,2)*)% + ({9,7,3,1)*) has 5 of i.m.s. we have
f €{0,1,2}.
5) (7,6,5,3) ! S,0= ({7,6,4,3))! + ({7,6,5,2)*)*has 3 of i.m.s. we have h € {0,1}.
Now if b = 1:
1) Thereisnoi.m.s.in(14,7) { S,, N (10,7,3,1) | S, ,50d=0;
2) Thereisnoi.m.s.in{14,7) 1 S5, N (9,7,3,2) | S5, ,50f=0;
3) Thereisnoi.m.s.in(13,8) ! S,, N(7,6,53) ! S,,,s0h=0.
We, get the possible columns :
X =(14,7) + ¢(11,7,3)" , Y =(14,7) + ¢(11,7,2)* , b = 1,c € {0,1,2,3,4,5,6}
degX = 0anddegY = 0 only whenb =c = 1.
So k, splits to give (14,7) + (11,7,3)* and (14,7)" + (11,7,2)* which is the same when b=0 .
Since (7,6,5,3) # (7,6,5,3,)' on (11, @)-regular classes then either k,is split or there are other
two columns. If we Suppose there are two columns such as X and Y (as in Table (4i)) with
a=b=0 . To describe X and Y :
Now if h=1
1) Thereisnoi.m.s.in(7,6,53) ! S,, N (11,7,2)* | Sy, 50 C =0;
2) Thereisnoim.s.in(7,6,53) INn(10,7,3,1) { S, ,s0d=0.
We, get the possible columns
X =1(9,73.2)+(7,653),Y = f(9,7,3,2) +(7,6,53), f € {0,1,2}
degX = 0anddegY = 0 only when f = 1.So0 k, splits to
(9,7,3,2) + (7,6,5,3) and (9,7,3,2)" + (7,6,5,3)’, which is the same when b=0 .
Since (10,7,3,1) # (10,7,3,1)' on (11, a)-regular classes then the last columns k3 must split
to (10,7,3,1) + (9,7,3,2) and (10,7,3,1)" + (9,7,3,2)".So we get the Brauer tree for the block
B,, and the decomposition matrix for this block in Table (4).

Lemma (4.5):
The Brauer tree for the block B is:
(18,2,1)* (13,7,1)* (12,7,2)* (11,7,2,1) = (11,7,2,1) _(8,7,3,2,1)* (7,6,5,2,1)"
Proof:
deg(13,7,1)" = deg({11,7,2,1) + (11,7,2,1)") = deg(7,6,5,2,1)* = 8deg(18,2,1)*
= deg(12,7,2)" = deg(8,7,3,2,1) = -8
By inducing D;¢ TV S, = dy,Dyg 17 S,0 = dy, Dig 1O S,0 = 2d3,D19 TOV S, =
dy,Dyo 1OV S0 = d:.
Using [Preliminaries 7] we get d5 is p.c. .So, we get the Brauer tree for the block Bs, and the
decomposition matrix for this block in (Table (5)).
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Lemma (4.6):
The Brauer tree for the block By is:
(17,4)_(15,6) \ / (10,6,4,1)_(9,6,4,2)_(8,6,4,3)
(11,6,4)"

(17,4)’_(15,6)’/ \(10,6,4,1)*_(9,6,4,2)*_(8,6,4,3)*
Proof:
deg{(17,4),(17,4)',(11,6,4)",(9,6,4,2),(9,6,4,2)'} = 10
deg{(15,6),(15,6)’,(10,6,4,1),(10,6,4,1)’,(8,6,4,3),(8,6,4,3)'} = —10
By inducingD,; T™*® S,; = k;,Dyp T4 S, = ky,Dy5 1OV S, = dg, Dy 1OV S, =
de,D24 T(48) Sz1 = k3,D35 T(48) S21 = Ky
Thus, we have the approximation matrix Table (6i )

Table (6i)

Yy Y, Ps Pe Y3 Yy P1 P2

(17,4) 1 a
(17,4) 1 a

(15,6) 1 1 b
(15,6) 1 1 b
(11,6,4)* 2 1 1 c c

(10,6,4,1) 1 1 d
(10,6,4,1)’ 1 1 d

(9,6,4,2) 1 1 f
(9,6,4,2)' 1 1 f

(8,6,4,3) 1 h
(8,6,4,3)' 1 h
ki k, ds dg ks ky X Y

Since (17,4) # (17,4)' on (11, a)-regular classes then either k; is split or there are other two
columns, suppose there are two columns such as X an Y .To describe columns X and Y :
1) Since (17,4) 1 S,0= ({(17,3))! + ((16,4)*)*has 2 of i.m.s. and from Table (6i)) we have
a=0, so k; must split to give (17,4) + (15,6) and (17,4)" + (15,6)".
Either k, split or there are another column X and Y (as above with a =0)
1) Since (15,6) I S5o = ((15,5)*)? + ((14,6)*)? has 4 of i.m.s.we have b € {0,1}.
2) Since (11,6,4)* | S,0 = ((11,6,3))% + ((11,6,3)")? + (11,5,4)% + ((11,5,4)")% +
((10,6,4)! + ((10,6,4)")* has 10 of i.m.s. we have c € {0,1,2,3}.
3) Since(10,6,4,1) | $,0,=({10,6,4)* + ({10,6,3,1)")% + ({10,5,4,1)*)? + ((9,6,4,1)*)*
has 6 of i.m.s. we have d € {0,1,2,3}.
4) (9,6,4,2) | S,0=({9,6,4,1))' + ({9,6,3,2)")% + ({9,5,4,2)")% + ({8,6,4,2)")" has 6 of
i.m.s. we have f € {0,1,2}.
5) (8,6,4,3) | S,0=(({8,6,4,2))! + ({8,5,4,3))! + ({7,6,4,3)*)* has 3 of i.m.s. we have
h € {0,1}.
Now if b = 1:
1) Thereisnoi.m.s.in(15,6) ! S,,Nn(10,6,4,1) 1 S,,,s0d=0;
2) Thereisnoi.m.s.in{15,6) 1 S,, N (9,6,4,2) | S,,,s0f=0;
3) Thereisnoi.m.s.in(15,6) ! S,, N (8,6,4,3) | S, ,s0h=0.
We, get the possible columns :
X =(15,6) + ¢(11,6,4)" , Y = (15,5)' + ¢(11,6,4)" , b =1,c € {0,1,2,3}
degX = 0 and degY = 0 only when b = c.
So k, splits to give (15,6) + (11,6,4)* and (15,6)" + (11,6,4)* which is the same when b=0 .
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Since (8,6,4,3) # (8,6,5,3,)' on (11, a)-regular classes then either k, is split or there are
other two columns. If we Suppose there are two columns such as X an Y (as in Table (6i))
with a=b=0 . To describe X an Y :
Ifh=1
1) Thereisnoi.m.s.in (8,6,4,3) I S,, N (11,6,4)* | S,,,s0C=0;
2) Thereisnoi.m.s.in(8,6,4,3) | S,, N (10,6,41) | S,5,50d=0.
We, get the possible columns
X =1f(964,2)+(8,643),Y =f(9,642) +(8,643),f €{012},h=1
degX = 0anddegY =0onlywhenf =h.
So k, splits to (9,6,4,2) + (8,6,4,3) and (9,6,4,2)" + (8,6,4,3)" which is the same when
h=0.
Since (10,6,4,1) # (10,6,4,1)' on (11, @)-regular classes then the last columns k5 must split
to (10,6,4,1) + (9,6,4,2) and (10,6,4,1)" + (9,6,4,2)" [Preliminaries 10].
So we get the Brauer tree for the block B, and the decomposition matrix for this block in
Table (6).
Lemma (4.7):
The Brauer tree for this block Byis:
(17,3,1)* (14,6,1) (12,6,3)* (11,6,3,1) = (11,6,3,1)'_(9,6,3,2,1)* (7,6,4,3,1)*
Proof:
deg(14,6,1)* = deg({11,6,3,1) + (11,6,3,1)') = deg(7,6,4,3,1)* = 6
deg(17,3,1)" = deg(12,6,3)" = deg(9,6,3,2,1)" = —
By inducingD,; TV S, = d;,D,g 1O S,0 = d,,D30 T3 S, = d3,Dy, TOV S, =
d4.D3s oD S20 = ds.
So, we get the Brauer tree for the block B, and the decomposition matrix for this block in
(Table (7)).

Lemma (4.8):
The Brauer tree for this blockBgis:

(16,4,1)* (15,5,1)* (12,5,4)r (11,5,4,1) = (11,5,4,1)'_(9,5,4,2,1)* (8,5,4,3,1)"
Proof:
deg(15,5,1)* = deg({11,5,4,1) + (11,5,4,1)') = deg(8,5,4,3,1)" = 6
deg(16,4,1)" = deg(12,5,4)" = deg(9,5,4,2,1)" = —
By inducing:Ds¢ 1O S0 = d;,Dy43 TOV S, = dy,D39 TG S, = d3,D39 TOD S, =
d4,Dyo TOV S, =ds .
So, we get the Brauer tree for the block Bg, and the decomposition matrix for this block in
(Table (8)).

Lemma (4.9):
The Brauer tree for this block Byis:
(16,3,2)* (14,5,2)* (13,5,2)* (11,5,3,2) =(11,5,3,2)' (10,5,3,2,1)* (7,5,4,3,2)"
Proof :
deg(14,5,2)* = deg((11,5,3,2) + (11,5,3,2)") = deg(7,5,4,3,2) = 6
deg(16,3,2)" = deg(13,5,2)" = deg(10,5,3,2,1)" = —
By using (2,10)-inducing we get :
Dyq 1(210) S20 = d1,D43 1210 S20 = d3,Dys 1210 Sz0 = d3,D47 1210 S20 =
dy,Dye 1G9 S0 = ds.
So, we get the Brauer tree for the block By, and the decomposition matrix for this block in
(Table (9)).
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Lemma (4.10):
The Brauer tree for the block By is:
(15,3,2,1)_(14,4,2,1)_(13,4,3,1)_(12,4,3,2) \ / (6,5,4,3,2,1)
(11,4,3,2,1)"
(15,3,2,1)._(14,4,2,1)' _(13,4,3,1)_(12,4,3,2) / \ (6,5,4,3,2,1)

Proof:

deg{(14,4,2,1),(12,4,3,2),(6,5,4,3,2,1)} = 8deg{(15,3,2,1),(13,4,3,1),(11,4,3,2,1)*}

= -8

By using (r, r)-inducing we get:
Ds, T S20 = dy,Ds; T S20 = d2,Ds53 T Sz0 = d3,Ds4 T S0 =dy
Dy 1(210) S0 =ky Dss T Sz20 = k3 , Dsg T S20 = k3 ., Ds7 T S20 =
ki Dsg 1OV S0 = dg,Dgg 1OV S5 = dy,.
Now on (11, @) regular classes we have k, + k3 — k, = k;
Since (12,4,3,2,1),(12,4,3,2,1)" are p.i.s. of S,, of defect zero in S,,
(12,4,3,2,1) | (1,0) =(12,4,3,2) +(11,4,3,2,1)" are p.i.s ;
(12,4,3,2,1)' | (1,0) =(12,4,3,2)" +(11,4,3,2,1)" are p.i.s. .S0(12,4,3,2) + (12,4,3,2)' +
(11,4,3,2,1)" must be split to give (12,4,3,2) + (11,4,3,2,1)* = d, and (12,4,3,2)" +
(11,4,3,2,1)" = dg .
ki =ky,+k; —d; —ds.
The only possibility is k, — dg , k3 — d, ( otherwise negative entries ) so k; split to give
k, —dg=dsand k; — d,=d, .
So, we get the Brauer tree for the block B, and the decomposition matrix for this block in
(Table (10)).

Appendix |
(The decomposition matrix for the spin characters of S,, , p=11) [A.H.Jassim]

The spin characters The decomposition matrix for the block B;

(20) 1

(20)' 1

(11,9)" 1 1 1 1

(10,9,1) 1 1

(10,91)’ 1 1

{9,8,3) 1 1

(9.8,3)’ 1 1

(9,7,4) 1 1

(9,7.,4) 1 1

{9,6,5) 1

(9,6,5)’ 1

Dy D, D Dy Ds D D7 Dg Dy Dig

The spin characters The decomposition matrix for the block B,

(19,1)° 1

(12,8) 1 1

(11,8,1) 1 1

(11,8,1)' 1 1

(9,8,2,1) 1 1

(8,7,4,1) 1 1

(8,6,5,1) 1
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The spin characters

The decomposition matrix for the block B

(18,2)"

(13,7)"

(11,7,2)

[uny

(11,7,2)'

(10,7,2,1)"

(8,7,3,2)

(7,6,5,2)"

Dy

D18

Do

The spin characters

The decomp

osition matrix for

the block B,

(17,3)"

(14,6)"

1

(11,6,3)

1

(11,6,3)'

1

(10,6,3,1)"

(9,6,3,2)

(7,6,4,3)

DZZ

D23

D24-

The spin characters

The decomposition matrix for the block Bg

(17,2,1)

(17,2,1)'

(13,6,1)

(13,6,1)’

(12,6,2)

(12,6,2)’

(11,6,2,1)"

(8,6,3,2,1)

(8,6,3,2,1)

(7,64,2,1)

(7,6/4,2,1)

D28 D29

D30

D31

D32

D33

The spin characters

The decomposition matrix for the block B,

(16,4)"

(15,5)"

1

(11,54)

1

(11,54)'

1

(10,54,1)"

(9,5,4,2)

(8,5,4,3)

D3y

D38

D39

The spin characters

The decomposition matrix for the block B,

(16,3,1)

(16,3,1)'

(14,5,1)

(14,5,1)’

(12,5,3)

(12,5,3)

(11,5,3,1)"

(9,5.3,2,1)

(9,5,3,2,1)

(7,5431)

(7,54,3,1)

D43 D44
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The spin characters The decomposition matrix for the block Bg
(15,3,2) 1
(15,3,2) 1
(14,4,2) 1 1
(14,4,2) 1 1
(13,4,3) 1 1
(13,4,3) 1 1
(11,4,3,2)" 1 1 1 1
(10,4,3,2,1) 1 1
(10,4,3,2,1) 1 1
(6,5,4,3,2) 1
(6,5,4,2)' 1
Dsi | Dsp | Dsz | Dsy | Dss | Dsg | Dsy | Dsg | Dso Deo
Appendix 11
The decomposition matrix for the spin characters of S,; ,p=11
Table (1)
degree of cha_racters The spin characters The decomposition matrix for the blockB;
module p=11
1 (21)* 1
5 (11,10) 1 1
5 (11,10 1 1
1 (10,9,2)* 1 1
10 (10,8,3)* 1 1
1 (10,7,4)* 1 1
10 (10,6,5)" 1
dq d, ds dy ds
Table (2)
degree of characters The spin characters
module p=11 The decomposition matrix for the blockB,
4 (20,1) 1
4 (20,1) 1
7 (12,9) 1 1
7 (12,9) 1 1
4 (11,9,1)* 1 1 1 1
7 (9,8,3,1) 1 1
7 (9,8,3,1) 1 1
4 (9,7,4,1) 1 1
4 {9,741y 1 1
7 (9,6,5,1) 1
7 (9,6,5,1) 1
de | d7 | dg | do | dyo | dyy | dip | dig | dis | dis
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Table (3)
degree of .
characters module The spin The decomposition matrix for the blockB
p=11 characters 3
8 (19,2) 1
8 (19,2) 1
3 (13,8) 1 1
3 (13,8) 1 1
8 (11,8,2)* 1 1 1 1
3 (10,8,2,1) 1 1
3 (108,2,1)’ 1 1
8 (8,7,4,2) 1 1
8 (8,7,4,2) 1 1
3 (8,6,5,2) 1
3 (8,6,5,2)' 1
d16 d17 d18 d19 d20 d21 d22 d23 d24 d25
Table (4)
rapscrs | TSI I
module p=11 characters The decomposition matrix for the blockB,
2 (18,3) 1
2 (18,3) 1
9 (14,7) 1 1
9 (14,7)' 1 1
2 (11,7,3)* 1 1 1 1
9 (10,7,3,1) 1 1
9 (10,7,3,1)' 1 1
2 (9,7,3,2) 1 1
2 (9,7,3,2) 1 1
9 (7,6,5,3) 1
9 (7,6,5,3) 1
dze dyy dag dyo dso d3; dsp ds3 d3q dss
Table (5)
degree of cha_racters The spin characters The decomposition matrix for the blockBs
module p=11
3 (18,2,1)* 1
8 (13,7,1)* 1 1
3 (12,7,2)* 1 1
8 (11,7,2,1) 1 1
8 (11,7,2,1) 1 1
3 (8,7,3,2,1)* 1 1
8 (7,6,5,2,1)" 1
dse dsy dsg d3o dao
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Table (6)
degree of The spin . .
characte_rs characters The decomposition matrix for the blockBg
module p=11
10 (17,7) 1
10 (17,7)' 1
1 (15,6) 1 1
1 (15,6)' 1 1
10 (11,6,4)* 1 1 1 1
1 (10,6,4,1) 1 1
1 (10,6,4,1)' 1 1
10 (9,6,4,2) 1 1
10 (9,6,4,2) 1 1
1 (8,6,4,3) 1
1 (8,6,4,3) 1
d41 d42 d43 d44 d45 d46 d47 d48 d49 dSO

Table (7)

degree of characters

The spin characters

The decomposition matrix for the blockB,

module p=11
6 (17,3,1)* 1
5 (14,6,1)* 1 1
6 (12,6,3)" 1 1
5 (11,6,3,1) 1 1
5 (11,6,3,1) 1 1
6 1 1
5 1
dsy ds; dss dsq dss
Table (8)
degree of cha_racters The spin characters The decomposition matrix for the block Bg
module p=11
5 (16,4,1)* 1
6 (15,5,1)* 1 1
5 (12,5,4)* 1 1
6 (11,5,4,1) 1 1
6 (11,5,4,1)' 1 1
5 1 1
6 1
d56 d57 d58 d59 d60
Table (9)
degree of cha_racters The spin characters The decomposition matrix for the blockB,
module p=11
5 (16,3,2)" 1
6 (14,5,2)* 1 1
5 (13,5,2)* 1 1
6 (11,5,3,2) 1 1
6 (11,5,3,2) 1 1
5 (10,5,3,2,1)* 1 1
6 (7,54,3,2)" 1
d61 d62 d63 d64- d65
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Table (10)
degree of The spin . .
characte_rs characters The decomposition matrix for the block B,
module p=11
3 (15,3,2,1) 1
3 (15,3,2,1) 1
8 (14,4,2,1) 1 1
8 (14,4,2,1)' 1 1
3 (13,4,3,1) 1 1
3 (13,4,3,1)' 1 1
8 (12,4,3,2) 1 1
8 (12,4,3,2)' 1 1
3 (11,4,3,2,1)* 1 1 1 1
8 (6,5,4,3,2,1) 1
8 (6,5,4,3,2,)' 1
des de7 des deo dzo d7y dzz dz3 LN dss
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