

Available online at: www.basra-science-journal.org

ISSN -1817 -2695

The Brauer trees of the symmetric group modulo p = 11

Saeed Abdul - AmeerTaban and Nizar Mohammed Yacoob

Math. / college of science
Math. / college of Education / Basrah Uni.
Received 5-5-2013, Accepted 3-11-2013

Abstract:

In this paper we find the Brauer trees of the group \bar{S}_n modulo p=11 which can give the irreducible modular spin characters of S_{21} modulo p=11, also we give the 11-decompostion matrix of spin characters of S_{21} .

Key Words: 2000; 20C20; 20C25; 20C30; 20C40.

1. Introduction:

One of the oldest example of permutation representation is furnished by Cayley'stheorem [8]. A group representation of finite group G over a filed K is a group homomorphism $T:G \to GL(n,K)$ [2]. Schur showed that the symmetric group S_n has a representation group \bar{S}_n which is of order 2(n!), and it has a central subgroup $Z=\{1,-1\}$ such that $\bar{S}_n/Z\cong S_n$ [12]. The representations of \bar{S}_n fall into two classes [9], [12]:

1) Those which have Z in their kernel; these are called the ordinary representation of S_n , the irreducible representations and characters of S_n are indexed by the partitions of n.

2. Preliminaries:

Let p be prime and G be a group of order p^a . m where (p, m) = 1

2) The representations which do not have Z in their kernel; these representations are called spin(projective) representations of S_n the irreducible spin representations are indexed by the partitions of n with distinct parts which are called bar partitions of n [10].

For p=11 Yaseen [13] was found the modular irreducible spin character of S_n for $11 \le n \le 14$ and for n=15,16 was found by Yaseen[14] and for n=17,18 was found by Jassim[5] and for n=19 by Jassim and Taban[7] and for n=20 by Jassim[6].

In this paper we found the Brauer trees for the spin characters for S_{21}

1. Any spin character of S_n can be written as a linear combination, with

non-negative integer coefficients, of the irreducible spin characters [2].

- 2. Let *H* b a subgroup of *G*then [4].
 - a) If ψ is principal character of H, then $\psi \uparrow G$ is principal character of G.
 - b) If ψ is principal character of G, then $\psi \downarrow H$ is principal character of H.
 - c) If ϕ is a modular character of H, then $\phi \uparrow G$ is a modular character of G.
 - d) If ϕ is a modular character of G, then $\phi \downarrow H$ is a modular character of H.
- 3. Let α, β be bar partitions of n which are not p-bar cores. Then $\langle \alpha \rangle \langle and \langle \alpha \rangle'$ if α is odd) and β (and β' if β is odd) are in the same p-block if an only if $\langle \alpha \rangle = \langle \beta \rangle$. if α be a bar partition of α and $\alpha \rangle = \langle \alpha \rangle$, then $\langle \alpha \rangle \langle \alpha \rangle \langle \alpha \rangle'$ if α is odd forms a p-block of defect 0[13].
- 4. Let $\alpha = (\alpha_1, ..., \alpha_m)$ be a bar partition of n. The values of characters $\langle \alpha \rangle$ and $\langle \alpha \rangle'$ differ only on the class corresponding to α on which they have values $\pm i \frac{n-m+1}{2} \sqrt{(\alpha_1 ... \alpha_m)/2}$; $i = \sqrt{-1}[9]$.
- 5. The degree of the spin characters $\langle \alpha \rangle = \langle \alpha_1, ..., \alpha_m \rangle$ is: $\deg \langle \alpha \rangle = 2^{\left[\frac{n-m}{2}\right]} \frac{n!}{\prod_{i=1}^{m} (\alpha_i!)} \prod_{1 \le i \le j \le m} (\alpha_i \alpha_i)/(\alpha_i + \alpha_i)$ [9],[10].
- 6. Let B be the block of defect one and let b be the number of p-conjugate characters to the irreducible character χ of G then [11].
- a) There exists a positive integer number *N* such that the irreducible ordinary characters of *G* are lying in the block B divided into two disjoint classes:

$$\begin{array}{ll} B_1 = \{ \ \chi \in B | b \ deg \ \chi \ \equiv \\ N \ mod \ p^a \}, & B_2 = \{ \chi \in \\ B | b \ deg \ \chi \equiv -N \ mod \ p^a \} \end{array}$$

- b) Each coefficient of the decomposition matrix of *B* is one or zero.
- c) If α_1 and α_2 are not *p*-conjugate characters and belong to the same classes above, then they have no irreducible modular spin character in common.
- d) For every irreducible ordinary character χ in B_1 , there exists irreducible ordinary character φ in B_2 such that they have one irreducible modular character in common with one multiplicity.
- 7. If C is principle character of G for an odd prime p and all the entries in C are divisible by a non-negative integer q, then $(1 \setminus q)C$ is a principal character of G [4].
- 8. Let $\alpha = (\alpha_1, ..., \alpha_m)$ be a bar partition of n not a p bar core, let B be the block containing $\langle \alpha \rangle$ then:
- a) If $n m m_0$ is even , then all irreducible modular spin characters in B are double.
- b) If $n m m_0$ is odd, then all irreducible modular spin characters in *B* are associate.

(Here m_0 the number of parts of α divisible by p)[4]

- 9. If C is principal character of G for a prime pthen: $deg C \equiv 0 \mod p^a$, [3].
- 10. Let β_1^* , β_2 , β_2' , β_3 , β_3' be modular spin characters where β_1^* is a double character , $\beta_2 \neq \beta_2'$ are associate modular spin characters (real), and $\beta_3 \neq \beta_3'$ are associate modular spin characters (complex) . Let φ_1^* , φ_2 , φ_2' , φ_3 , φ_3' be irreducible modular spin character , where φ_1^* is a double character , $\varphi_2 \neq$

 φ_2' and $\varphi_3 \neq \varphi_3'$ are associate irreducible modular spin characters (real),(complex) respectively then[13]:

- a) $\beta_{1}^*, \beta_{2}, \beta_{2}'$ contains φ_{3} and φ_{3}' with the same multiplicity, β_{1}^* which
- contains φ_2 and φ_2' with the same multiplicity.
- b) β_3 and β_3' contains $\varphi_1^*, \varphi_2, \varphi_2'$ with the same multiplicity.
- c) φ_3 is constituent of β_3 with the same multiplicity as that of φ'_3 in β'_3 .

3. Notation:

p.s. principle spin character.

p.i.s. Principle indecomposable spin character.

m.s. Modular spin character.

i.m.s. Irreducible modular spin character.

4. The Brauer trees of the symmetric group \overline{S}_n , p=11:

The group S_{21} has 114 of irreducible spin characters and \bar{S}_{21} has 99 of (11, α)-regular classes , then the decomposition matrix of the spin characters of S_{21} , p=11 has 114 rows and 99 columns[13].

By using (preliminaries 3), there are 34 11-blocks of S_{21} , these block are B_1, B_2, B_3, \ldots , B_{34} , 24 of them of defectzero which are B_{11}, B_{12} , ..., B_{34} and the others of defect one.

Lemma (4.1):

The Brauer tree for this block B_1 is:

$$\langle 21 \rangle^* _{11,10} = \langle 11,10 \rangle' _{10,9,2} ^* \langle 10,8,3 \rangle _{10,7,4} ^* \langle 10,6,5 \rangle^*$$

Proof:

 $deg\langle 21\rangle^* \equiv deg\langle 10,9,2\rangle^* \equiv deg\langle 10,6,5\rangle^* \equiv 1 \bmod 11$

 $(deg((11,10) + (11,10))') \equiv deg((10,8,3))^* \equiv deg((10,6,5))^* \equiv -1.$

By using (r, \bar{r}) -inducing of p.i.s. of S_{20} [see appendix I] to S_{21} we have :

$$D_1 \uparrow^{(2,10)} S_{21} = d_1, D_3 \uparrow^{(2,10)} S_{21} = d_2, D_7 \uparrow^{(2,10)} S_{21} = d_3$$
 , $D_9 \uparrow^{(2,10)} S_{21} = d_4$
 $D_{69} \uparrow^{(3,9)} S_{21} = d_5$; (no sub sum of these p.c.=0)

So we have the Brauer tree for the block B_1 , and the decomposition matrix for this block in Table (1).

Lemma (4.2):

The Brauer tree for this block B_2 is:

$$\langle 20,1\rangle_{-}\langle 12,9\rangle_{-}\langle 11,9,1\rangle^{*}/\langle 9,8,3,1\rangle_{-}\langle 9,7,4,1\rangle_{-}\langle 9,6,5,1\rangle_{-}\langle 20,1\rangle'_{-}\langle 12,9\rangle_{-}\langle 9,8,3,1\rangle'_{-}\langle 9,7,4,1\rangle'_{-}\langle 9,6,5,1\rangle_{-}\langle 9,8,3,1\rangle_{-}\langle 9,7,4,1\rangle'_{-}\langle 9,6,5,1\rangle_{-}\langle 9,8,3,1\rangle_{-}\langle 9,7,4,1\rangle_{-}\langle 9,6,5,1\rangle_{-}\langle 9,8,3,1\rangle_{-}\langle 9,7,4,1\rangle_{-}\langle 9,6,5,1\rangle_{-}\langle 9,8,3,1\rangle_{-}\langle 9,7,4,1\rangle_{-}\langle 9,6,5,1\rangle_{-}\langle 9,8,3,1\rangle_{-}\langle 9,7,4,1\rangle_{-}\langle 9,6,5,1\rangle_{-}\langle 9,8,3,1\rangle_{-}\langle 9,8,3\rangle_{-}\langle 9,8\rangle_{-}\langle 9,8\rangle_{-}$$

Proof:

$$\begin{split} deg\{\langle 12,9\rangle,\langle 12,9\rangle',\langle 9,8,3,1\rangle,\langle 9,8,3,1\rangle',\langle 9,6,5,1\rangle,\langle 9,6,5,1\rangle'\} \equiv & 7; \\ deg\{\langle 20,1\rangle,\langle 20,1\rangle',\langle 11,9,1\rangle^*,\langle 9,7,4,1\rangle,\langle 9,7,4,1\rangle'\} \equiv & -7; \end{split}$$

By using (0,1)-inducing of p.i.s. for S_{20} to S_{21} we have: $D_1 \uparrow^{(0,1)} S_{21} = k_1, D_2 \uparrow^{(0,1)} S_{21} = k_2, D_5 \uparrow^{(0,1)} S_{21} = d_5, D_6 \uparrow^{(0,1)} S_{21} = d_6, D_7 \uparrow^{(0,1)} S_{21} = d_7, D_8 \uparrow^{(0,1)} S_{21} = d_8, D_9 \uparrow^{(0,1)} S_{21} = d_9, D_7 \uparrow^{(0,1)} S_{21} = d_{10}$. Since $\langle 12,9,1 \rangle$, $\langle 12,9,1 \rangle'$ are p.i.s. of S_{22} (of defect zero in S_{22} , p=11), and $\langle 12,9,1 \rangle \downarrow_{(0,1)} S_{21} = \langle 12,9 \rangle + \langle 11,6,1 \rangle^* = d_3$ are p.s. (Preliminaries 2) $\langle 12,9,1 \rangle' \downarrow_{(0,1)} S_{21} = \langle 12,9 \rangle' + \langle 11,6,1 \rangle^* = d_4$ are p.s. .Either d_4 is subtracted from k_1 or not

Suppose d_4 is not subtracted from k_1 , in this case we have $\langle 12,9\rangle' - \langle 20,1\rangle - \langle 20,1\rangle'$ is m.s. for S_{21} , but $(\langle 12,9\rangle' - \langle 20,1\rangle - \langle 20,1\rangle') \downarrow_{(0,1)} S_{20} = \langle 11,9\rangle^* - \langle 20\rangle - \langle 20\rangle'$ is not m.s. for S_{20} , then d_4 is subtracted from k_1 and d_3 subtracted from k_2 (d_3 , d_4 and k_1 , k_2 are conjugate). And the decomposition matrix for the block B_2 is given in Table (2).

Lemma (4.3):

The Brauer tree for this block B_3 is:

Proof:

$$deg\{\langle 19,2\rangle, \langle 19,2\rangle', \langle 11,8,2\rangle^*, \langle 8,7,4,2\rangle, \langle 8,7,4,2\rangle'\} \equiv 8$$

 $deg\{\langle 13,8\rangle, \langle 13,8\rangle', \langle 10,8,2,1\rangle, \langle 10,8,2,1\rangle', \langle 8,6,5,2\rangle, \langle 8,6,5,2\rangle'\} \equiv -8$

By inducing

$$\begin{array}{l} D_{16} \uparrow^{(4,8)} S_{21} = k_1 , D_{12} \uparrow^{(2,10)} S_{21} = k_2 , D_{71} \uparrow^{(0,1)} S_{21} = d_5 , D_{72} \uparrow^{(0,1)} S_{21} = d_6 , D_{14} \uparrow^{(2,10)} S_{21} = k_3 , D_{15} \uparrow^{(2,10)} S_{21} = k_4 . \end{array}$$

Thus, we have the approximation matrix in Table (3i)

Table (3i)

			I dibite (·-)				
	ψ_1	ψ_2	φ_5	φ_6	ψ_3	ψ_4	φ_1	φ_2
⟨19,2⟩	1						a	
⟨19,2⟩′	1							a
(13,8)	1	1					b	
⟨13,8⟩′	1	1						b
(11,8,2)*		2	1	1			С	С
(10,8,2,1)			1		1		d	
(10,8,2,1)'				1	1			d
(8,7,4,2)					1	1	f	
(8,7,4,2)'					1	1		f
(8,6,5,2)						1	h	
(8,6,5,2)'						1		h
	k_1	k_2	d_5	d_6	k_3	k_4	X	Y

Since $\langle 19,2 \rangle \neq \langle 19,2 \rangle'$ on $(11,\alpha)$ regular classes then either k_1 is split or
there are other two columns. Suppose there
are two columns such as X and Y to describe
columns X and Y:

(19,2) ↓ $S_{20} = ((18,2)^*)^1 + ((19,1)^*)^1$ has 2 of i.m.s. in S_{20} (see appendix I) and from Table (3i) we have $a \in \{0,1\}$.

If a=1, k_1 must have a conjugate p.c. so $\langle 19,2 \rangle$ has 3 m.c. contradiction since $\langle 19,2 \rangle$ have at most two m.c. so a=0 and k_1 split to give $\langle 19,2 \rangle + \langle 18,3 \rangle$ and $\langle 19,2 \rangle' + \langle 18,3 \rangle'$.

Either k_2 split or there are other columns X and Y (as above with a=0)

1) Since $\langle 13.8 \rangle \downarrow S_{20} = (\langle 12.8 \rangle^*)^2 + (\langle 13.7 \rangle^*)^2$ has 4 of i.m.s. we have

 $b \in \{0,1\}$, otherwise we have contradiction.

- 2) Since $\langle 11,8,2 \rangle^* \downarrow S_{20} =$ $(\langle 10,8,2 \rangle)^1 + (\langle 10,8,2 \rangle')^1 +$ $\langle 11,7,2 \rangle^2 + (\langle 11,7,2 \rangle')^2 +$ $(\langle 11,8,1 \rangle)^2 + (\langle 11,8,1 \rangle')^2$ has 10 of i.m.s. we have $c \in \{0,1,2,3\}$.
- 3) $\langle 10,8,2,1 \rangle \downarrow S_{20} = (\langle 9,8,2,1 \rangle^*)^2 + (\langle 10,7,2,1 \rangle^*)^2 + (\langle 10,8,2 \rangle)^1$ has 5 of i.m.s. we have $d \in \{0,1,2\}$.
- 4) $\langle 8,7,4,2 \rangle \downarrow S_{20} = (\langle 8,6,4,2 \rangle^*)^1 + (\langle 8,7,3,2 \rangle^*)^2 + (\langle 10,8,2 \rangle^*)^2 \text{ has 5}$ of i.m.s. we have $f \in \{0,1,2\}$.
- 5) $\langle 8,6,5,2 \rangle \downarrow S_{20} = (\langle 7,6,5,2 \rangle^*)^1 + (\langle 8,6,4,2 \rangle^*)^1 + (\langle 8,6,5,1 \rangle^*)^1 \text{ has 3}$ of i.m.s. we have $h \in \{0,1\}$.

Now if b = 1

1.

split to

Table (3).

So k_4 splits to

1) There is no i.m.s. in $(8,6,5,2) \downarrow$

2) There is no i.m.s. in $(8,6,5,2) \downarrow$

 $Y = f(8,7,4,2)' + (8,6,5,2)', f \in \{0,1,2,3\}.$

, $\deg X \equiv 0$ and $\deg Y \equiv 0$ only when f =

(8,7,4,2) + (8,6,5,2) and (8,7,4,2)' +

(8,6,5,2)' which is the same when h=0.

Since $(10,8,2,1) \neq (10,8,2,1)'$ on $(11,\alpha)$ -

(10,8,2,1) + (8,7,4,2) and (10,8,2,1)' +

(8,7,4,2)'[Preliminaries 10], so we get the

Brauer tree for the block B_3 , and the

decomposition matrix for this block in

regular classes then the last column k_3 must

We, get the possible columns:

X = f(8,7,4,2) + (8,6,5,2)

 $S_{20} \cap \langle 11{,}8{,}2\rangle^* \downarrow S_{20}$, so c = 0;

 $S_{20} \cap \langle 10, 8, 2, 1 \rangle \downarrow S_{20}$, so d = 0 .

- 1) There is no i.m.s. in $\langle 13,8 \rangle \downarrow S_{20} \cap \langle 10,8,2,1 \rangle \downarrow S_{20}$, so d = 0;
- 2) There is no i.m.s. in $\langle 13,8 \rangle \downarrow S_{20} \cap \langle 8,7,4,2 \rangle \downarrow S_{20}$, so f = 0;
- 3) There is no i.m.s. in $\langle 13,8 \rangle \downarrow S_{20} \cap \langle 8,6,5,2 \rangle \downarrow S_{20}$, so h = 0.

We,get the possible columns:

 $X = \langle 13,8 \rangle + c \langle 11,8,2 \rangle^*$

 $Y = \langle 13,8 \rangle' + c \langle 11,8,2 \rangle^*, c \in \{0,1,2,3\}$ $deg X \equiv 0 \text{ and } deg Y \equiv 0 \text{ only when } b = c = 1.$

So k_2 splits to give $\langle 13,8 \rangle + \langle 11,8,2 \rangle^*$ and $\langle 13,8 \rangle' + \langle 11,8,2 \rangle^*$ which is the same when b=0.

Since $\langle 8,6,5,2 \rangle \neq \langle 8,6,5,2, \rangle'$ on $(11,\alpha)$ regular classes then either k_4 is split or
there are other two columns. If we Suppose
there are two columns such as X an Y as in
Table (3i) with a=b=0. To
describe X an Y:

If h = 1:

Lemma (4.4):

The Brauer tree for this block B_4 is:

Proof:

$$\begin{split} deg\{\langle 18,3\rangle,\langle 18,3\rangle',\langle 11,8,2\rangle^*,\langle 9,7,3,2\rangle,\langle 9,7,3,2\rangle'\} \equiv & 9 \\ deg\{\langle 14,7\rangle,\langle 14,7\rangle',\langle 10,7,3,1\rangle,\langle 10,7,3,1\rangle',\langle 7,6,5,3\rangle,\langle 7,6,5,3\rangle'\} \equiv & -9 \\ \end{pmatrix}$$

By using (r, \bar{r}) -inducing of p.i.s. of S_{20} to S_{21} we have: $D_{16} \uparrow^{(3,9)} S_{21} = k_1, D_{17} \uparrow^{(3,9)} S_{21} = k_2, D_{73} \uparrow^{(0,1)} S_{21} = d_5, D_{74} \uparrow^{(0,1)} S_{21} = d_6, D_{19} \uparrow^{(3,9)} S_{21} = k_3, D_{20} \uparrow^{(3,9)} S_{21} = k_4$. We have the approximation matrix (Table (4i))

Table (4i))

	ψ_1	ψ_2	$arphi_5$	$arphi_6$	$arphi_3$	$arphi_4$	$arphi_1$	$arphi_2$
(18,3)	1						a	
⟨18,3⟩′	1							a
(14,7)	1	1					b	
⟨14,7⟩′	1	1						b
⟨11,7,3⟩*		2	1	1			С	С
(10,7,3,1)			1		1		d	
(10,7,3,1)′				1	1			d
(9,7,3,2)					1	1	f	
(9,7,3,2)'					1	1		f
(7,6,5,3)						1	h	
(7,6,5,3)'						1		h
	k_1	k_2	d_5	d_6	k_3	k_4	X	Y

Since $\langle 18,3 \rangle \neq \langle 18,3 \rangle'$ on $(11,\alpha)$ regular classes then either k_1 is split or

there are other two columns, suppose there are two columns such as *X* and *Y*

To describe columns X and Y must split to $\langle 18,3 \rangle \downarrow S_{20} = (\langle 18,2 \rangle^*)^1 + (\langle 17,3 \rangle^*)^1$ has 2 give $\langle 18,3 \rangle + \langle 14,7 \rangle$ and $\langle 18,3 \rangle' + \langle 14,7 \rangle'$. Either k_2 split or there are other column X of i.m.s. and from (Table (4i)) we have a = 0 and Y (as above with a = 0)

- 1) Since $\langle 14,7 \rangle \downarrow S_{20} = (\langle 14,6 \rangle^*)^2 + (\langle 13,7 \rangle^*)^2$ has 4 of i.m.s,we have $b \in \{0,1\}$.
- 2) Since $\langle 11,7,3 \rangle^* \downarrow S_{20} = (\langle 10,7,3 \rangle)^1 + (\langle 10,7,3 \rangle')^1 + \langle 11,6,3 \rangle^2 + (\langle 11,6,3 \rangle')^2 + (\langle 11,7,2 \rangle)^2 + (\langle 11,7,2 \rangle')^2$ has 10 of i.m.s. we have $c \in \{0,1,2,3\}$.
- 3) Since $\langle 10,7,3,1 \rangle \downarrow S_{20} = (\langle 9,7,3,1 \rangle^*)^1 + (\langle 10,6,3,1 \rangle^*)^2 + (\langle 10,7,2,1 \rangle^*)^1 + (\langle 10,7,3 \rangle)^1$ has 5 of i.m.s, we have $d \in \{0,1,2\}$.
- 4) $\langle 9,7,3,2 \rangle \downarrow S_{20} = (\langle 8,7,3,2 \rangle^*)^2 + (\langle 8,6,3,2 \rangle^*)^2 + (\langle 9,7,3,1 \rangle^*)^1$ has 5 of i.m.s. we have $f \in \{0,1,2\}$.
- 5) $\langle 7,6,5,3 \rangle \downarrow S_{20} = (\langle 7,6,4,3 \rangle^*)^1 + (\langle 7,6,5,2 \rangle^*)^1$ has 3 of i.m.s. we have $h \in \{0,1\}$. Now if b = 1:
 - 1) There is no i.m.s. in $(14,7) \downarrow S_{20} \cap (10,7,3,1) \downarrow S_{20}$, so d = 0;
 - 2) There is no i.m.s. in $\langle 14,7 \rangle \downarrow S_{20} \cap \langle 9,7,3,2 \rangle \downarrow S_{20}$, so f = 0;
 - 3) There is no i.m.s. in $\langle 13,8 \rangle \downarrow S_{20} \cap \langle 7,6,5,3 \rangle \downarrow S_{20}$, so h = 0.

We, get the possible columns:

$$X = \langle 14,7 \rangle + c \langle 11,7,3 \rangle^*$$
, $Y = \langle 14,7 \rangle' + c \langle 11,7,2 \rangle^*$, $b = 1, c \in \{0,1,2,3,4,5,6\}$ deg $X \equiv 0$ and deg $Y \equiv 0$ only when $b = c = 1$.

So k_2 splits to give $\langle 14,7 \rangle + \langle 11,7,3 \rangle^*$ and $\langle 14,7 \rangle' + \langle 11,7,2 \rangle^*$ which is the same when b=0. Since $\langle 7,6,5,3 \rangle \neq \langle 7,6,5,3,\rangle'$ on $(11,\alpha)$ -regular classes then either k_4 is split or there are other two columns. If we Suppose there are two columns such as X and Y (as in Table (4i)) with a=b=0. To describe X and Y:

Now if h=1

- 1) There is no i.m.s. in $(7,6,5,3) \downarrow S_{20} \cap (11,7,2)^* \downarrow S_{20}$, so c = 0;
- 2) There is no i.m.s. in $(7,6,5,3) \downarrow \cap (10,7,3,1) \downarrow S_{20}$, so d = 0.

We, get the possible columns

$$X = f\langle 9,7,3,2 \rangle + \langle 7,6,5,3 \rangle$$
, $Y = f\langle 9,7,3,2 \rangle' + \langle 7,6,5,3 \rangle'$, $f \in \{0,1,2\}$ deg $X \equiv 0$ and deg $Y \equiv 0$ only when $f = 1$. So k_4 splits to

(9,7,3,2) + (7,6,5,3) and (9,7,3,2)' + (7,6,5,3)', which is the same when b=0.

Since $\langle 10,7,3,1 \rangle \neq \langle 10,7,3,1 \rangle'$ on $(11,\alpha)$ -regular classes then the last columns k_3 must split to $\langle 10,7,3,1 \rangle + \langle 9,7,3,2 \rangle$ and $\langle 10,7,3,1 \rangle' + \langle 9,7,3,2 \rangle'$. So we get the Brauer tree for the block B_4 , and the decomposition matrix for this block in Table (4).

Lemma (4.5):

The Brauer tree for the block B_5 is:

$$\langle 18,2,1\rangle_{-}^{*}\langle 13,7,1\rangle_{-}^{*}\langle 12,7,2\rangle_{-}^{*}\langle 11,7,2,1\rangle = \langle 11,7,2,1\rangle_{-}^{'}\langle 8,7,3,2,1\rangle_{-}^{*}\langle 7,6,5,2,1\rangle_{-}^{*}$$

Proof:

$$deg(13,7,1)^* \equiv deg((11,7,2,1) + (11,7,2,1)') \equiv deg(7,6,5,2,1)^* \equiv 8deg(18,2,1)^*$$

$$\equiv deg(12,7,2)^* \equiv deg(8,7,3,2,1)^* \equiv -8$$

By inducing $D_{16} \uparrow^{(0,1)} S_{20} = d_1, D_{28} \uparrow^{(7,5)} S_{20} = d_2, D_{18} \uparrow^{(0,1)} S_{20} = 2d_3, D_{19} \uparrow^{(0,1)} S_{20} = d_4, D_{20} \uparrow^{(0,1)} S_{20} = d_5.$

Using [Preliminaries 7] we get d_3 is p.c. .So, we get the Brauer tree for the block B_5 , and the decomposition matrix for this block in (Table (5)).

Lemma (4.6):

The Brauer tree for the block B_6 is:

Proof:

$$\begin{split} \deg\{\langle 17,4\rangle,\langle 17,4\rangle',\langle 11,6,4\rangle^*,\langle 9,6,4,2\rangle,\langle 9,6,4,2\rangle'\} &\equiv 10\\ \deg\{\langle 15,6\rangle,\langle 15,6\rangle',\langle 10,6,4,1\rangle,\langle 10,6,4,1\rangle',\langle 8,6,4,3\rangle,\langle 8,6,4,3\rangle'\} &\equiv -10\\ \text{By inducing} D_{21} \uparrow^{(4,8)} S_{21} &= k_1, D_{22} \uparrow^{(4,8)} S_{21} &= k_2, D_{75} \uparrow^{(0,1)} S_{21} &= d_5, D_{76} \uparrow^{(0,1)} S_{21} &= d_6, D_{24} \uparrow^{(4,8)} S_{21} &= k_3, D_{25} \uparrow^{(4,8)} S_{21} &= k_4. \end{split}$$

Thus, we have the approximation matrix Table (6i)

Table	(6i)
Lunic	(Ut	•

	ψ_1	ψ_2	φ_5	φ_6	ψ_3	ψ_4	$arphi_1$	φ_2
(17,4)	1						a	
(17,4)′	1							a
(15,6)	1	1					b	
(15,6)'	1	1						b
(11,6,4)*		2	1	1			С	c
(10,6,4,1)			1		1		d	
(10,6,4,1)'				1	1			d
(9,6,4,2)					1	1	f	
(9,6,4,2)'					1	1		f
(8,6,4,3)						1	h	
(8,6,4,3)'						1		h
	k_1	k_2	d_5	d_6	k_3	k_4	X	Y

Since $\langle 17,4 \rangle \neq \langle 17,4 \rangle'$ on $(11,\alpha)$ -regular classes then either k_1 is split or there are other two columns, suppose there are two columns such as X an Y. To describe columns X and Y:

1) Since $\langle 17,4 \rangle \downarrow S_{20} = (\langle 17,3 \rangle^*)^1 + (\langle 16,4 \rangle^*)^1$ has 2 of i.m.s. and from Table (6i)) we have a = 0, so k_1 must split to give $\langle 17,4 \rangle + \langle 15,6 \rangle$ and $\langle 17,4 \rangle' + \langle 15,6 \rangle'$.

Either k_2 split or there are another column X and Y (as above with a =0)

- 1) Since $\langle 15,6 \rangle \downarrow S_{20} = (\langle 15,5 \rangle^*)^2 + (\langle 14,6 \rangle^*)^2$ has 4 of i.m.s.we have $b \in \{0,1\}$.
- 2) Since $\langle 11,6,4\rangle^* \downarrow S_{20} = (\langle 11,6,3\rangle)^2 + (\langle 11,6,3\rangle')^2 + \langle 11,5,4\rangle^2 + (\langle 11,5,4\rangle')^2 + (\langle 10,6,4\rangle)^1 + (\langle 10,6,4\rangle')^1$ has 10 of i.m.s. we have $c \in \{0,1,2,3\}$.
- 3) Since $\langle 10,6,4,1 \rangle \downarrow S_{20} = (\langle 10,6,4 \rangle)^1 + (\langle 10,6,3,1 \rangle^*)^2 + (\langle 10,5,4,1 \rangle^*)^2 + (\langle 9,6,4,1 \rangle^*)^1$ has 6 of i.m.s. we have $d \in \{0,1,2,3\}$.
- 4) $\langle 9,6,4,2 \rangle \downarrow S_{20} = (\langle 9,6,4,1 \rangle^*)^1 + (\langle 9,6,3,2 \rangle^*)^2 + (\langle 9,5,4,2 \rangle^*)^2 + (\langle 8,6,4,2 \rangle^*)^1$ has 6 of i.m.s. we have $f \in \{0,1,2\}$.
- 5) $(8,6,4,3) \downarrow S_{20} = ((8,6,4,2)^*)^1 + ((8,5,4,3)^*)^1 + ((7,6,4,3)^*)^1$ has 3 of i.m.s. we have $h \in \{0,1\}$.

Now if b = 1:

- 1) There is no i.m.s. in $\langle 15,6 \rangle \downarrow S_{20} \cap \langle 10,6,4,1 \rangle \downarrow S_{20}$, so d=0;
- 2) There is no i.m.s. in $\langle 15,6 \rangle \downarrow S_{20} \cap \langle 9,6,4,2 \rangle \downarrow S_{20}$, so f = 0;
- 3) There is no i.m.s. in $\langle 15,6 \rangle \downarrow S_{20} \cap \langle 8,6,4,3 \rangle \downarrow S_{20}$, so h = 0.

We, get the possible columns:

$$X = \langle 15,6 \rangle + c \langle 11,6,4 \rangle^*, Y = \langle 15,5 \rangle' + c \langle 11,6,4 \rangle^*, b = 1, c \in \{0,1,2,3\}$$

 $\deg X \equiv 0$ and $\deg Y \equiv 0$ only when b = c.

So k_2 splits to give $\langle 15,6 \rangle + \langle 11,6,4 \rangle^*$ and $\langle 15,6 \rangle' + \langle 11,6,4 \rangle^*$ which is the same when b=0.

Since $(8,6,4,3) \neq (8,6,5,3,)'$ on $(11,\alpha)$ -regular classes then either k_4 is split or there are other two columns. If we Suppose there are two columns such as X an Y (as in Table (6i)) with a=b=0. To describe X an Y:

If h = 1

- 1) There is no i.m.s. in $(8,6,4,3) \downarrow S_{20} \cap (11,6,4)^* \downarrow S_{20}$, so c = 0;
- 2) There is no i.m.s. in $(8,6,4,3) \downarrow S_{20} \cap (10,6,41) \downarrow S_{20}$, so d = 0.

We, get the possible columns

$$X = f(9,6,4,2) + (8,6,4,3)$$
, $Y = f(9,6,4,2)' + (8,6,4,3)'$, $f \in \{0,1,2\}$, $h = 1 \deg X \equiv 0$ and $\deg Y \equiv 0$ only when $f = h$.

So k_4 splits to (9,6,4,2) + (8,6,4,3) and (9,6,4,2)' + (8,6,4,3)' which is the same when h=0.

Since $\langle 10,6,4,1 \rangle \neq \langle 10,6,4,1 \rangle'$ on $(11,\alpha)$ -regular classes then the last columns k_3 must split to (10,6,4,1) + (9,6,4,2) and (10,6,4,1)' + (9,6,4,2)' [Preliminaries 10].

So we get the Brauer tree for the block B_6 , and the decomposition matrix for this block in Table (6).

Lemma (4.7):

The Brauer tree for this block B_7 is:

$$\langle 17,3,1\rangle_{-}^{*}\langle 14,6,1\rangle_{-}^{*}\langle 12,6,3\rangle_{-}^{*}\langle 11,6,3,1\rangle = \langle 11,6,3,1\rangle_{-}^{\prime}\langle 9,6,3,2,1\rangle_{-}^{*}\langle 7,6,4,3,1\rangle^{*}$$

Proof:

$$deg(14,6,1)^* \equiv deg((11,6,3,1) + (11,6,3,1)') \equiv deg(7,6,4,3,1)^* \equiv 6$$

 $deg(17,3,1)^* \equiv deg(12,6,3)^* \equiv deg(9,6,3,2,1)^* \equiv -6$

By inducing
$$D_{21} \uparrow^{(0,1)} S_{20} = d_1, D_{28} \uparrow^{(0,1)} S_{20} = d_2, D_{30} \uparrow^{(3,9)} S_{20} = d_3, D_{24} \uparrow^{(0,1)} S_{20} = d_4, D_{25} \uparrow^{(0,1)} S_{20} = d_5.$$

So, we get the Brauer tree for the block B_7 , and the decomposition matrix for this block in (Table (7)).

Lemma (4.8):

The Brauer tree for this block B_8 is:

$$\langle 16,4,1\rangle^* - \langle 15,5,1\rangle^* - \langle 12,5,4\rangle^* - \langle 11,5,4,1\rangle = \langle 11,5,4,1\rangle' - \langle 9,5,4,2,1\rangle^* - \langle 8,5,4,3,1\rangle^*$$

Proof:

$$deg(15,5,1)^* \equiv deg((11,5,4,1) + (11,5,4,1)') \equiv deg(8,5,4,3,1)^* \equiv 6$$

 $deg(16,4,1)^* \equiv deg(12,5,4)^* \equiv deg(9,5,4,2,1)^* \equiv -6$

$$deg\langle 16,4,1\rangle^* \equiv deg\langle 12,5,4\rangle^* \equiv deg\langle 9,5,4,2,1\rangle^* \equiv -6$$

By inducing:
$$D_{36} \uparrow^{(0,1)} S_{20} = d_1, D_{43} \uparrow^{(0,1)} S_{20} = d_2, D_{30} \uparrow^{(3,9)} S_{20} = d_3, D_{39} \uparrow^{(0,1)} S_{20} = d_4, D_{40} \uparrow^{(0,1)} S_{20} = d_5$$
.

So, we get the Brauer tree for the block B_8 , and the decomposition matrix for this block in (Table (8)).

Lemma (4.9):

The Brauer tree for this block B_9 is:

$$\langle 16,3,2 \rangle^* \langle 14,5,2 \rangle^* \langle 13,5,2 \rangle^* \langle 11,5,3,2 \rangle = \langle 11,5,3,2 \rangle' \langle 10,5,3,2,1 \rangle^* \langle 7,5,4,3,2 \rangle^*$$

Proof:

$$deg(14,5,2)^* \equiv deg((11,5,3,2) + (11,5,3,2)') \equiv deg(7,5,4,3,2)^* \equiv 6$$

 $deg(16,3,2)^* \equiv deg(13,5,2)^* \equiv deg(10,5,3,2,1)^* \equiv -6$

By using (2,10)-inducing we get:

$$D_{41} \uparrow^{(2,10)} S_{20} = d_1, D_{43} \uparrow^{(2,10)} S_{20} = d_2, D_{45} \uparrow^{(2,10)} S_{20} = d_3, D_{47} \uparrow^{(2,10)} S_{20} = d_4, D_{49} \uparrow^{(3,9)} S_{20} = d_5.$$

So, we get the Brauer tree for the block B_9 , and the decomposition matrix for this block in (Table (9)).

Lemma (4.10):

The Brauer tree for the block B_{10} is:

Proof:

$$deg\{\langle 14,4,2,1\rangle,\langle 12,4,3,2\rangle,\langle 6,5,4,3,2,1\rangle\} \equiv 8 \ deg\{\langle 15,3,2,1\rangle,\langle 13,4,3,1\rangle,\langle 11,4,3,2,1\rangle^*\} \\ \equiv -8$$

By using (r, \bar{r}) -inducing we get:

$$\begin{array}{l} D_{51} \uparrow^{(0,1)} S_{20} = d_1, D_{52} \uparrow^{(0,1)} S_{20} = d_2, D_{53} \uparrow^{(0,1)} S_{20} = d_3, D_{54} \uparrow^{(0,1)} S_{20} = d_4 \\ D_{70} \uparrow^{(2,10)} S_{20} = k_1 \\ D_{70} \uparrow^{(0,1)} S_{20} = k_1 \\ D_{70} \uparrow^{(0,1)} S_{20} = d_9, D_{60} \uparrow^{(0,1)} S_{20} = d_{10}. \end{array}$$

Now on (11, α) regular classes we have $k_2 + k_3 - k_4 = k_1$

Since (12,4,3,2,1), (12,4,3,2,1)' are p.i.s. of S_{22} of defect zero in S_{22}

 $\langle 12,4,3,2,1 \rangle \downarrow (1,0) = \langle 12,4,3,2 \rangle + \langle 11,4,3,2,1 \rangle^*$ are p.i.s;

$$\langle 12,4,3,2,1 \rangle' \downarrow (1,0) = \langle 12,4,3,2 \rangle' + \langle 11,4,3,2,1 \rangle^*$$
 are p.i.s. .So $\langle 12,4,3,2 \rangle + \langle 12,4,3,2 \rangle' + \langle 11,4,3,2,1 \rangle^*$ must be split to give $\langle 12,4,3,2 \rangle + \langle 11,4,3,2,1 \rangle^* = d_7$ and $\langle 12,4,3,2 \rangle' + \langle 11,4,3,2,1 \rangle^*$

 $\langle 11,4,3,2,1 \rangle^* = d_8$. $k_1 = k_2 + k_3 - d_7 - d_8$.

The only possibility is k_2-d_8 , k_3-d_7 (otherwise negative entries) so k_1 split to give $k_2-d_8=d_5$ and $k_3-d_7=d_6$.

So, we get the Brauer tree for the block B_{10} , and the decomposition matrix for this block in (Table (10)).

Appendix I (The decomposition matrix for the spin characters of S_{20} , p=11) [A.H.Jassim]

						20	/ L	/ L		3
The spin characters			Th	e decom	position	matrix fo		ck B ₁		
(20)	1									
⟨20⟩′		1								
⟨11,9⟩*	1	1	1	1						
(10,9,1)			1		1					
⟨10,91⟩′				1		1				
(9,8,3)					1		1			
(9,8,3)'						1		1		
(9,7,4)							1		1	
(9,7,4)'								1		1
(9,6,5)									1	
(9,6,5)'										1
	D_1	D_2	D_3	D_4	D_5	D_6	D_7	D_8	D_9	D_{10}

The spin characters		The decomposition matrix for the block B_2										
(19,1)*	1											
⟨12,8⟩ [*]	1	1										
(11,8,1)		1	1									
⟨11,8,1⟩′		1	1									
(9,8,2,1)*			1	1								
(8,7,4,1)*				1	1							
⟨8,6,5,1⟩*					1							
	D ₁₁	D_{12}	D_{13}	D_{14}	D_{15}							

The spin characters			Th	e decom	position 1	natrix fo	r the bloc	k <i>B</i> ₃		
⟨18,2⟩*		1								
⟨13,7⟩*		1		1						
(11,7,2)				1		1				
(11,7,2)'				1		1			+	
(10,7,2,1)*				•		1		1	+	
	_					1		1	+	1
(8,7,3,2)*	_							1		1
⟨7,6,5,2⟩*										1
) ₁₆) ₁₇) ₁₈		D ₁₉		O_{20}
The spin characters			Th	e decom	position 1	matrix fo	r the bloc	k B ₄		
⟨17,3⟩*		1								
⟨14,6⟩*		1		1						
(11,6,3)				1		1				
(11,6,3)'	_			1		1			-	
(10,6,3,1)*				•		1		1	1	
	_					1		1	+	1
(9,6,3,2)*			1		+			1	+	1
(7,6,4,3)*	+		1		1		-		 	1
		O_{21}	L)22		O_{23}		O_{24}) ₂₅
The spin characters			Th	e decom	position 1	natrix fo	r the bloc	k B ₅		
(17,2,1)	1									
(17,2,1)'		1								
(13,6,1)	1		1							
(13,0,17	1		-							
(13,6,1)'		1		1						
(12,6,2)			1		1					
(12,6,2) ′				1		1				
(11,6,2,1)*					1	1	1	1		
(8,6,3,2,1)							1		1	
(8,6,3,2,1)'								1		1
(7,6,4,2,1)	_								1	
(7,6,4,2,1)'									1	1
(7,0,4,2,1)		D	D	D	D	D	D	D	D	1
	D_{26}	D_{27}	D_{28}	D_{29}	D_{30}	D_{31}	D_{32}	D_{33}	D_{34}	D_{35}
The spin characters			Th	e decom	position i	natrix to	r the bloc	k <i>B</i> ₆		
(16,4)*		1								
⟨15,5⟩*		1		1						
(11,5,4)			1	1		1				
(11,5,4)′				1		1				
(10,5,4,1)*	+		1		1	1		1	1	
(9,5,4,2)*								1	+	1
(8,5,4,3)*	_							1	+	1
\0,5,4,5/			7		 		+ ,	<u> </u>	+	
)36	L) ₃₇) ₃₈	I	D ₃₉		040
The spin characters		1	Th	e decom	position 1	natrix fo	r the bloc	k <i>B</i> ₇		
(16,3,1)	1									
(16,3,1)'		1				<u> </u>				<u> </u>
⟨14,5,1⟩	1		1							
(14,5,1)′		1		1						
/12 E 2\	+		1		1	1			+	-
(12,5,3)			1		1				 	
(12,5,3)′				1		1	ļ		 	
(11,5,3,1)*					1	1	1	1	ļ	
(9,5,3,2,1)							1		1	
(9,5,3,2,1)'								1		1
(7,5,4,3,1)	1		İ		1	1			1	1
(7,5,4,3,1)'	+						<u> </u>			1
\',',',',',',','		 	+	 	 	ł	!	 	+	•

 D_{43}

 D_{44}

 D_{45}

 D_{46}

 D_{47}

 D_{50}

The spin characters			The	e decomp	osition r	natrix for	the bloc	k <i>B</i> ₈		
(15,3,2)	1									
(15,3,2)′		1								
(14,4,2)	1		1							
(14,4,2)′		1		1						
(13,4,3)			1		1					
(13,4,3)′				1		1				
⟨11,4,3,2⟩*					1	1	1	1		
(10,4,3,2,1)							1		1	
(10,4,3,2,1)'								1		1
(6,5,4,3,2)									1	
(6,5,4,2)'										1
	D_{51}	D_{52}	D_{53}	D_{54}	D_{55}	D_{56}	D_{57}	D_{58}	D_{59}	D_{60}

Appendix II

The decomposition matrix for the spin characters of S_{21} , p=11Table (1)

degree of characters module p=11	The spin characters	T	kB_1			
1	⟨21⟩*	1				
5	⟨11,10⟩	1	1			
5	⟨11,10⟩′	1	1			
1	(10,9,2)*		1	1		
10	⟨10,8,3⟩*			1	1	
1	(10,7,4)*				1	1
10	(10,6,5)*					1
		d_1	d_2	d_3	d_4	d_5

Table (2)

				DIC (=)							
degree of characters module p=11	The spin characters	The decomposition matrix for the block B_2									
4	(20,1)	1									
4	(20,1)'		1								
7	(12,9)	1		1							
7	(12,9)'		1		1						
4	(11,9,1)*			1	1	1	1				
7	(9,8,3,1)					1		1			
7	(9,8,3,1)'						1		1		
4	(9,7,4,1)							1		1	
4	(9,7,4,1)'								1		1
7	(9,6,5,1)									1	
7	(9,6,5,1)'										1
		d_6	d_7	d_8	d_9	d_{10}	d_{11}	d_{12}	d_{13}	d_{14}	d_{15}

Table (3)

				Table	(5)						
degree of characters module p=11	The spin characters		The decomposition matrix for the $block B_3$								
8	(19,2)	1									
8	(19,2)'		1								
3	(13,8)	1		1							
3	⟨13,8⟩′		1		1						
8	⟨11,8,2⟩*			1	1	1	1				
3	(10,8,2,1)					1		1			
3	(108,2,1)'						1		1		
8	(8,7,4,2)							1		1	
8	(8,7,4,2)'								1		1
3	(8,6,5,2)									1	
3	(8,6,5,2)'										1
	·	d_{16}	d_{17}	d_{18}	d_{19}	d_{20}	d_{21}	d_{22}	d_{23}	d_{24}	d_{25}

Table (4)

				Labi	C (-)							
degree of characters module p=11	The spin characters		The decomposition matrix for the $block B_4$									
2	(18,3)	1										
2	(18,3)′		1									
9	(14,7)	1		1								
9	(14,7)'		1		1							
2	(11,7,3)*			1	1	1	1					
9	(10,7,3,1)					1		1				
9	(10,7,3,1)'						1		1			
2	(9,7,3,2)							1		1		
2	(9,7,3,2)'								1		1	
9	(7,6,5,3)									1		
9	(7,6,5,3)'										1	
		d_{26}	d_{27}	d_{28}	d_{29}	d_{30}	d_{31}	d_{32}	d_{33}	d_{34}	d_{35}	

Table (5)

degree of characters module p=11	The spin characters	The decomposition matrix for the $block B_5$							
3	⟨18,2,1⟩*	1							
8	(13,7,1)*	1	1						
3	⟨12,7,2⟩*		1	1					
8	(11,7,2,1)			1	1				
8	(11,7,2,1)'			1	1				
3	(8,7,3,2,1)*				1	1			
8	(7,6,5,2,1)*					1			
		d_{36}	d_{37}	d_{38}	d_{39}	d_{40}			

Table (6)

degree of characters module p=11	The spin characters	The decomposition matrix for the $block B_6$									
10	(17,7)	1									
10	(17,7)'		1								
1	(15,6)	1		1							
1	(15,6)'		1		1						
10	(11,6,4)*			1	1	1	1				
1	(10,6,4,1)					1		1			
1	(10,6,4,1)'						1		1		
10	(9,6,4,2)							1		1	
10	(9,6,4,2)'								1		1
1	(8,6,4,3)									1	
1	(8,6,4,3)'										1
		d_{41}	d_{42}	d_{43}	d_{44}	d_{45}	d_{46}	d_{47}	d_{48}	d_{49}	d_{50}

Table (7)

degree of characters module p=11	The spin characters	The decomposition matrix for the $block B_7$							
6	⟨17,3,1⟩*	1							
5	(14,6,1)*	1	1						
6	(12,6,3)*		1	1					
5	(11,6,3,1)			1	1				
5	(11,6,3,1)'			1	1				
6					1	1			
5						1			
		d_{51}	d_{52}	d_{53}	d_{54}	d_{55}			

Table (8)

degree of characters module p=11	The spin characters	The decomposition matrix for the block B_8								
5	(16,4,1)*	1								
6	(15,5,1)*	1	1							
5	(12,5,4)*		1	1						
6	(11,5,4,1)			1	1					
6	(11,5,4,1)′			1	1					
5					1	1				
6						1				
		d_{56}	d_{57}	d_{58}	d_{59}	d_{60}				

Table (9)

degree of characters module p=11	The spin characters	The decomposition matrix for the $block B_9$								
5	⟨16,3,2⟩*	1								
6	(14,5,2)*	1	1							
5	(13,5,2)*		1	1						
6	(11,5,3,2)			1	1					
6	(11,5,3,2)′			1	1					
5	(10,5,3,2,1)*				1	1				
6	(7,5,4,3,2)*					1				
		d_{61}	d_{62}	d_{63}	d_{64}	d_{65}				

Table (10)

degree of characters module p=11	The spin characters		The decomposition matrix for the block B_{10}								
3	(15,3,2,1)	1									
3	(15,3,2,1)'		1								
8	(14,4,2,1)	1		1							
8	(14,4,2,1)'		1		1						
3	(13,4,3,1)			1		1					
3	(13,4,3,1)'				1		1				
8	(12,4,3,2)					1		1			
8	(12,4,3,2)'						1		1		
3	(11,4,3,2,1)*							1	1	1	1
8	(6,5,4,3,2,1)									1	
8	(6,5,4,3,2,)'										1
		d_{66}	d_{67}	d_{68}	d_{69}	d_{70}	d_{71}	d_{72}	d_{73}	d_{74}	d_{75}

References

- [1] C.W.Curtis and I.Reiner: Representation theory of finite group and associative algebras, Sec. printing (1966).
- [2] L.Doronhoff: Group representation theory, part A and B, Marcel Dekker Inc, (1971),(1972).
- [3] J.F.Humphreys: Projective modular representation of finite groups I, J. London math. Society (2), 16(1977)51-66.
- [4] G. James and A. Kerber: The representation theory of the symmetric groups, Reading, Mass, Aaddiso-Wesley, (1981)
- [5] A. H. Jassim: Decomposition matrices of the projective characters for S_{17} , S_{18} and S_{21} , M. Sc. Thesis, Basrah University 2011.
- [6] A. H. Jassim : 11- Brauer trees of \bar{S}_{20} send to Basrah journal researches .
- [7] A. H. Jassim and S.A. Taban: Irreducible modular spin characters of the symmetric group S_{19} modulo p=11 to appear in Basrah Journal of Science.

- [8] W. Ledermann: Introduction to group characters, Camb. Uni. press (1977)
- [9] A.O. Morris: The spin representation of the symmetric group, proc. London Math. Soc. (3) 12 (1962), 55-76.
- [10] A.O. Morris and A.K. Yassen: Decomposition matrices for spin characters of symmetric group, Proc. Of Royal Society of Edinburgh, 108A, (1988), 145 164.
- [11] B.M. Putttaswamaiah and J. D. Dixon: Modular representation of finite groups, Academic press, (1977).
- [12] I. Schur:Uber die Darstellung der symmetric und alternierendengroupedurchgebrochenelinear esubtitutionen ,J. Reineang. Math. 139(1911) 155 250 .
- [13] A. K. Yassen: Modular spin representations of the symmetric groups, Ph. D thesis, Aberywyth, (1987).
- [14] A.K. Yaseen: Modular Spin Characters of symmetric groups S_n , $15 \le n \le 16$ at Characteristic 11, J. Basrah Researches, (1995).

p=11 شجرات براور للزمرة التناظرية مي \overline{S}_{21} عندما

المستخلص

في هذا البحث وجدنا شجرات براور للزمرة \overline{S}_{21} عندما p=11 والتي تمكننا من حساب المشخصات الإسقاطية الإسقاطية المعيارية للزمرة التناظرية S_{21} عندما p=11 ، كذلك حصلنا على مصفوفة التجزئة للمشخصات الإسقاطية للزمرة S_{21} .