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Abstract: 

The Multiplicative Cyclic Group [3] is one of the algebraic systems 
which can be used to generate a various long period digital sequences 
with elements ranged 0..m-1, where mZ

+
, m  2  that’s done by using 

one (or more than one) primitive element(s) of the group. The generated 
sequences can be used in Stream Cipher Systems. In this paper, we 
introduce the mathematical process to generate a sequence from one 
generator of The Multiplicative Cyclic Group (MCG). The generated 
sequence may have no good statistical properties, so we suggest a two 
generators sequence. The two generators with some initial variables 
(keys) make a unit called MCG unit. A number of MCG units are 
combined with each other by a combining logical function to get MCG 
system. This paper includes some algorithms to describe the mentioned 
process and some tables describe the tests results of the generated 
sequences. 
 
1 Introduction 

Let qZ
+
, G be a set s.t. G={1,2,…,q-1}. Let * be a 

multiplication operation defined as follows: 
c=a*b=a.b (mod q) s.t. a,b,cG, and a

n
=a*a*…*a  (mod q) =b s.t. a,bG. 
       n-times 

Let G,* be a mathematical system, G has order q-1, G,*  is a 
Multiplicative Cyclic Group (MCG) iff q is a prime number.  

The element G called a primitive (generator) element iff 
i
=, 

s.t. 1iq-1,G. Notice that the generating process depend on ,i and 
q, so we can defined a function f represents the generating process s.t. 
=f(,i,q),  f:GG, its clear that f is 1-1 and onto function. 

 If  a generator element of G then =
i
, s.t. gcd(i,q-1)=1,  is 

another generator of G. Therefore, there are (q-1) generator elements of 
G [1,3]. 

Now we can introduce FIND-GEN Algorithm ("GEN" means 
Generator) to find all other generators of G for prime number q from one 
generator. 
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FIND-GEN Algorithm 
INPUT  : q , ; 
PROCESS  :  i := 2 ; 
     Repeat 
   i := i +1 ; 

 := f (  , i , q ) ; 
         if  gcd(i,q-1) = 1 then   is another generator ; 
  Until  i = q-2 ; 

OUTPUT : another primitive element  ; 
END. 
 

2 One Generator's Sequence 

Let mZ
+ 

s.t. 2mq-1 (prefer m(q-1)/2), the set G partitioned 
into m subsets name Ni, 0im-1which is consists of some ordered 
elements jG, 1jq-1. The subsets 

q}
m
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q,

m

i



 . 

From definition of Ni we have 1iβ
q

m
i j  , then isji+1 s.t. 

sj=(m.j) div q, j=1,…,q-1.  

sj is the element j of the sequence S. s.t.   1q

1jjsS



 , 0sjm-1. 

The term “div” gives the integer part of (m.j)/q. Its clear that the 
period P(S)=q-1. 

For example, let q=13, m=3, then N0={1,2,3,4}, N1={5,6,7,8} and 
N2={9,10,11,12}, then S={0,0,0,0,1,1,1,1,2,2,2,2}. 

This sequence generated without using primitive element, since 
j=1,2,…,12. But, if j=f(,j,q) then the sequence will generated 
randomly.  

The ONE-GEN Algorithm below is designed to generate S 
randomly by one generator. 
 

ONE-GEN Algorithm 
INPUT  : q ,  ,m ; 
PROCESS  :  j := 0 ; 
     Repeat 
   j := j +1 ; 

 := f (  , j , q ) ; 
         sj := (m.) div q ; 
  Until  j = q-1 ; 

OUTPUT : the sequence S ; 
END. 
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Table(1) shows the sequence S generated from q=13 and  =2 for 
m=2,…,6. 

Table(1) MCG sequences with m=2,…,6. 

J  

m1=2 

S1 

 

m2=3 

S2 

 

m3=4 

S3 

 

m4=5 

S4 

 

m5=6 

S5 

1 2 0 0 0 0 0 

2 4 0 0 1 1 1 

3 8 1 1 2 3 3 

4 3 0 0 0 1 1 

5 6 0 1 1 2 2 

6 12 1 2 3 4 5 

7 11 1 2 3 4 5 

8 9 1 2 2 3 4 

9 5 0 1 1 1 2 

10 10 1 2 3 3 4 

11 7 1 1 2 2 3 

12 1 0 0 0 0 0 

 

Till now we get sequence with balance frequencies but have low 

complexity. We can notice that the period of S, theoretically, is q-1, but 

analytically, its (q-1)/2, since when i+j=q, i=1,…,(q-1)/2, j=i+(q-1)/2 

that implies si+sj=m-1. For example, when i=1 and j=7, so 1=2 and 

7=11, for m=4, then s1=0 and s7=3. 

 In this manner we want to construct a method to maximize the 

complexity and the P(S) to be q-1. This Maximization must not effect the 

good randomness of S. 

 

3 Two Generators' Sequence 

Let us choose two generators 1,2 of G, let x=f(1,j,q) and 

y=f(2,x,q) s.t. 1x,jq-1 so y=f(2,x,q)= f(2, f(1,j,q),q)=g(1,2,j,q) 

s.t. g:GG. 

To guarantee that all of the elements of G are generated, we have to 

prove that g is a 1-1 function. Since f is 1-1 function, xG, and 1,2 are 

generators then yG too, so we have to prove that if yy   jj  . 

Let jj   xx   since f is 1-1 function implies yy  . 

Let yy   xx   since f is 1-1 function, which implies jj  . 

Now the TWO-GEN Algorithm can be introduced to generate a 

new sequence generated from two generators with new properties. 
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 TWO-GEN Algorithm: 

INPUT  : q , 1 , 2 ,m ; 

PROCESS  :  j := 0 ; 

     Repeat 

   j := j +1 ; 

y := g (1 ,2 , j , q ) ; 

         sj := (m.y) div q ; 

  Until  j = q-1 ; 

OUTPUT : the sequence S ; 

END. 

 

Table(2) shows the new sequence generated from q=13, 1 =2 and 2=6 

for m=2,…,6. 

Table(2) MCG sequences with m=2,…,6. 

j y 

m1=2 

S1 

 

m2=3 

S2 

 

m3=4 

S3 

 

m4=5 

S4 

 

m5=6 

S5 

1 10 1 2 3 3 4 

2 9 1 2 2 3 4 

3 3 0 0 0 1 1 

4 8 1 2 3 4 5 

5 12 1 1 2 3 4 

6 1 0 0 0 0 0 

7 11 1 2 3 4 5 

8 5 0 1 1 1 2 

9 2 0 0 0 0 0 

10 4 0 0 1 1 1 

11 7 1 1 2 2 3 

12 6 0 1 1 2 2 

Frequency 0 6 4 3 2 2 

 1 6 4 3 3 2 

 2 -- 4 3 2 2 

 3 -- -- 3 3 2 

 4 -- -- -- 2 2 

 5 -- -- -- -- 2 

 

We noticed that the generated sequences have balance frequencies for 

different digits, this happened since G divided into m subsets Ni with 

approximate equal orders.  



 5 

4 MCG Unit 
Now we want to introduce the following variables, which are, being 

useful in our work: 

1. Choose q prime number. 

2. Choose 1 as a generator of G. 

3. Choose 2 another generator different from 1. 

4. Choose the initial value k, s.t. 1kq-1. 

Take the cyclic value i = k,…,q-1,1,2,…,k-1 ; j=1,…,q-1. 

Calculate y = g( 1 ,2 , i , q ). 

Calculate sj = ( m.y ) div q. 

We want to formulate these choices in a new algorithm to 

introduce a new unit in order to generate sequence of period q-1, which 

we called it, a MCG Unit (MCGU). 

MCGU is a function of five variables s.t. S = MCGU (q,1,2,k,m), 

which is useful in MCGU Algorithm to generate S with length L≤q-1, 

these variables ca be considered as variable keys. 

MCGU Algorithm 

INPUT  : q , 1 , 2 , k , m , L ; 

PROCESS  :  i := k-1 ; j := 0 ; 

     Repeat 

   i := i (mod(q-1))+1 ; j := j +1 ; 

y := g (1 ,2 , i , q ) ; 

         sj := (m.y) div q ; 

  Until  j = L ; 

OUTPUT : the sequence S ; 

END. 

Table(3) shows The efficiency criterion, these criterion are: 

Periodicity, Linear Complicity [8] and Randomness (Frequency, Run and 

Auto Correlation with 10 shifts) tests [2] for  some binary sequences 

(m=2)  which are generate from MCGU with different primes. 

Table(3) efficiency criterions for MCG unit output results. 

q 1 2 P(S) LC 
Randomness (P=Pass,F=Fail) 

Frq   Run                    AC 

1009 
11 

601 

102 

51 

1008 

1008 

506 

503 

P      P  P    F P P P P P P P P F 

P      P  P    P P P P P P P P P P 

4111 
60 

507 

2055 

4060 

4110 

4110 

2055 

2054 

P     P  P     P P P P F F P P P F 

P     P  P     P P P P P P P P P P 

10771 179 1133 10770 5385 P     P  P     P P P P F P F P P P 

20707 83 690 20706 10354 P     P  P     P P P P P P P P P P 
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5 MCG System:  

A MCG unit can be used as a basic construction unit in MCG 

System (MCGS) with Combining Function (CF), which is a boolean 

function [9]. If S is the sequence that is generates from MCG system, the 

system has a Fn as a combining function with n_MCG units, then, 

S=Fn(S1,S2,…,Sn) s.t. Si=MCGUi(qi,1i ,2i,ki,m), where 1in. 

Si represents the sequence i generate from the MCG unit i.  

We defined the addition (+) and the multiplication (*) operations of 

the system, as follows: 

sj = sij + skj (mod m)   sjS, j=1,2,… 

sj = sij * skj (mod m)   sijSi and skjSk, 1i,kn. 

 

Before introducing the MCGS Algorithm to generate S with length 

L, we should represents the MCGU number i as MCGU(i). 

 

MCGS Algorithm 

INPUT  : Read n , m , L 

  For i := 1 to n    

Read qi , 1i , 2i , ki  

    Endfor {i}; 

PROCESS  :  j := 0 ; sj := 0; 

     Repeat 

   j := j + 1 ; 

   For i := 1 to n  CALL MCGU(i) ; 

   sj := Fn(s1j,s2j,…,snj) ; 

    Until j = L ; 

OUTPUT : the sequence S ; 

END. 

 

We expect the MCGS has high complexity because of the high 

non-linearity of the function g. The periodicity of the MCGS can be 

calculated depending on the l.c.m. of the period of every MCGU 

combined in MCGU s.t. P(S)=l.c.m.(q1-1,q2-1,…,qn-1). 

Table(4) shows the output results of various MCG systems 

applying Periodicity, Linear Complicity, Frequency, Binary Derivative, 

Change point, Subblock, Run and Sequence Complicity tests for some 

binary sequences (m=2) using CRYPT -X'98 package [4]. 
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Table(4) tests results of MCG systems for n=2,3 and 5 using XOR-CF. 

N Primes P(S) LC FT BDT CPT SBT RT SCT 

2 
101 

997 
24900 1091 P P P P P P 

3 

 

199 

1103 

3607 

65567878 4898 P P P P P P 

5 

149 

509 

1051 

1301 

2003 

2565654000 4899 P P P P P P 

 

The RNG system found by Mitchell [7], is a digital generator 

(m=10) with good random sequence, but it’s has low complexity, with 

period less or equal q-1 for some primes, so we expect that the choices of 

the primes will drop to 35% in order to gain period equal q-1. While the 

choices of MCGS still open to all primes. Table (5) shows the period of 

some primes for RNG system with frequencies of the digits. 

Table (5) shows the periods of RNG primes and frequencies of sequence 

digits. 

Table (5) Period’s of RNG primes and frequencies of sequence digits. 

Primes Period 
Frequency 

0 1 2 3 4 5 6 7 8 9 

991 495 56 55 60 46 46 53 53 40 47 49 

997 166 30 15 19 16 12 12 15 19 14 24 

1003 464 54 38 54 62 38 54 33 40 56 50 

1013 253 27 29 29 22 20 27 30 27 26 31 

1019 1018 104 103 103 103 103 103 102 102 103 102 

 

6 Conclusions & Recommendations 

1. If we compare the MCGU and LFSR, we get the following 

differences: 

i. For unknown algorithm, the LFSR variables are the length, tap and 

initial values are unknown, but MCGU variables are 1,2,q,k and 

m are all unknowns. 

ii. For known algorithm, the initial value (basic key) is unknown 

only, but in MCGU, 1, 2, q, k are unknown which are can be 

considered as initial values. 
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iii. The periodicity of the sequence generated from LFSR with length r 

is 2
r
-1, but the period of the sequence generated from MCG is q-1 

for each choice of two generators, there are (q-1)*((q-1)-1) 

different choices. 

iv. The common generated sequence from LFSR is binary, but in 

MCGU, the sequence is digital (1<mq-1). 

v. The length, tap and initial values of LFSR can be found from some 

available length of the generated sequence by using Massey 

algorithm [6], but its not easy to find the initial value of the MCGU 

in spite the availability of the generated sequence because of the 

high non-linearity of the function g. 

2. The MCGU can be developed to increase its periodicity, complexity 

and randomness by using other non-used generators of G. 

3. We have to suggest digital randomness tests in order to test the 

randomness of the generated digital sequences (m>2) from MCGU. 
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