
 1

Use the Multiplicative Cyclic Group to Generate

Pseudo Random Digital Sequences
Faez Hassan Ali

Al-Rafidain University College

Baghdad-Iraq

E.Mail:faez64h@yahoo.com

Abstract:

The Multiplicative Cyclic Group [3] is one of the algebraic systems
which can be used to generate a various long period digital sequences
with elements ranged 0..m-1, where mZ

+
, m  2 that’s done by using

one (or more than one) primitive element(s) of the group. The generated
sequences can be used in Stream Cipher Systems. In this paper, we
introduce the mathematical process to generate a sequence from one
generator of The Multiplicative Cyclic Group (MCG). The generated
sequence may have no good statistical properties, so we suggest a two
generators sequence. The two generators with some initial variables
(keys) make a unit called MCG unit. A number of MCG units are
combined with each other by a combining logical function to get MCG
system. This paper includes some algorithms to describe the mentioned
process and some tables describe the tests results of the generated
sequences.

1 Introduction

Let qZ
+
, G be a set s.t. G={1,2,…,q-1}. Let * be a

multiplication operation defined as follows:
c=a*b=a.b (mod q) s.t. a,b,cG, and a

n
=a*a*…*a (mod q) =b s.t. a,bG.
 n-times

Let G,* be a mathematical system, G has order q-1, G,* is a
Multiplicative Cyclic Group (MCG) iff q is a prime number.

The element G called a primitive (generator) element iff 
i
=,

s.t. 1iq-1,G. Notice that the generating process depend on ,i and
q, so we can defined a function f represents the generating process s.t.
=f(,i,q), f:GG, its clear that f is 1-1 and onto function.

 If  a generator element of G then =
i
, s.t. gcd(i,q-1)=1,  is

another generator of G. Therefore, there are (q-1) generator elements of
G [1,3].

Now we can introduce FIND-GEN Algorithm ("GEN" means
Generator) to find all other generators of G for prime number q from one
generator.

 2

FIND-GEN Algorithm
INPUT : q , ;
PROCESS : i := 2 ;
 Repeat
 i := i +1 ;

 := f ( , i , q) ;
 if gcd(i,q-1) = 1 then  is another generator ;
 Until i = q-2 ;

OUTPUT : another primitive element  ;
END.

2 One Generator's Sequence

Let mZ
+

s.t. 2mq-1 (prefer m(q-1)/2), the set G partitioned
into m subsets name Ni, 0im-1which is consists of some ordered
elements jG, 1jq-1. The subsets

q}
m

1)(i
βq

m

i
:{βN jji 


 are disjoint s.t. GNandφN

1m

0i

1m

0i

ii 








  [5].

Its clear that Rq
m

1)(i
q,

m

i



 .

From definition of Ni we have 1iβ
q

m
i j  , then isji+1 s.t.

sj=(m.j) div q, j=1,…,q-1.

sj is the element j of the sequence S. s.t.   1q

1jjsS



 , 0sjm-1.

The term “div” gives the integer part of (m.j)/q. Its clear that the
period P(S)=q-1.

For example, let q=13, m=3, then N0={1,2,3,4}, N1={5,6,7,8} and
N2={9,10,11,12}, then S={0,0,0,0,1,1,1,1,2,2,2,2}.

This sequence generated without using primitive element, since
j=1,2,…,12. But, if j=f(,j,q) then the sequence will generated
randomly.

The ONE-GEN Algorithm below is designed to generate S
randomly by one generator.

ONE-GEN Algorithm
INPUT : q ,  ,m ;
PROCESS : j := 0 ;
 Repeat
 j := j +1 ;

 := f ( , j , q) ;
 sj := (m.) div q ;
 Until j = q-1 ;

OUTPUT : the sequence S ;
END.

 3

Table(1) shows the sequence S generated from q=13 and =2 for
m=2,…,6.

Table(1) MCG sequences with m=2,…,6.

J 

m1=2

S1

m2=3

S2

m3=4

S3

m4=5

S4

m5=6

S5

1 2 0 0 0 0 0

2 4 0 0 1 1 1

3 8 1 1 2 3 3

4 3 0 0 0 1 1

5 6 0 1 1 2 2

6 12 1 2 3 4 5

7 11 1 2 3 4 5

8 9 1 2 2 3 4

9 5 0 1 1 1 2

10 10 1 2 3 3 4

11 7 1 1 2 2 3

12 1 0 0 0 0 0

Till now we get sequence with balance frequencies but have low

complexity. We can notice that the period of S, theoretically, is q-1, but

analytically, its (q-1)/2, since when i+j=q, i=1,…,(q-1)/2, j=i+(q-1)/2

that implies si+sj=m-1. For example, when i=1 and j=7, so 1=2 and

7=11, for m=4, then s1=0 and s7=3.

 In this manner we want to construct a method to maximize the

complexity and the P(S) to be q-1. This Maximization must not effect the

good randomness of S.

3 Two Generators' Sequence

Let us choose two generators 1,2 of G, let x=f(1,j,q) and

y=f(2,x,q) s.t. 1x,jq-1 so y=f(2,x,q)= f(2, f(1,j,q),q)=g(1,2,j,q)

s.t. g:GG.

To guarantee that all of the elements of G are generated, we have to

prove that g is a 1-1 function. Since f is 1-1 function, xG, and 1,2 are

generators then yG too, so we have to prove that if yy   jj  .

Let jj   xx  since f is 1-1 function implies yy  .

Let yy   xx  since f is 1-1 function, which implies jj  .

Now the TWO-GEN Algorithm can be introduced to generate a

new sequence generated from two generators with new properties.

 4

 TWO-GEN Algorithm:

INPUT : q , 1 , 2 ,m ;

PROCESS : j := 0 ;

 Repeat

 j := j +1 ;

y := g (1 ,2 , j , q) ;

 sj := (m.y) div q ;

 Until j = q-1 ;

OUTPUT : the sequence S ;

END.

Table(2) shows the new sequence generated from q=13, 1 =2 and 2=6

for m=2,…,6.

Table(2) MCG sequences with m=2,…,6.

j y

m1=2

S1

m2=3

S2

m3=4

S3

m4=5

S4

m5=6

S5

1 10 1 2 3 3 4

2 9 1 2 2 3 4

3 3 0 0 0 1 1

4 8 1 2 3 4 5

5 12 1 1 2 3 4

6 1 0 0 0 0 0

7 11 1 2 3 4 5

8 5 0 1 1 1 2

9 2 0 0 0 0 0

10 4 0 0 1 1 1

11 7 1 1 2 2 3

12 6 0 1 1 2 2

Frequency 0 6 4 3 2 2

 1 6 4 3 3 2

 2 -- 4 3 2 2

 3 -- -- 3 3 2

 4 -- -- -- 2 2

 5 -- -- -- -- 2

We noticed that the generated sequences have balance frequencies for

different digits, this happened since G divided into m subsets Ni with

approximate equal orders.

 5

4 MCG Unit
Now we want to introduce the following variables, which are, being

useful in our work:

1. Choose q prime number.

2. Choose 1 as a generator of G.

3. Choose 2 another generator different from 1.

4. Choose the initial value k, s.t. 1kq-1.

Take the cyclic value i = k,…,q-1,1,2,…,k-1 ; j=1,…,q-1.

Calculate y = g(1 ,2 , i , q).

Calculate sj = (m.y) div q.

We want to formulate these choices in a new algorithm to

introduce a new unit in order to generate sequence of period q-1, which

we called it, a MCG Unit (MCGU).

MCGU is a function of five variables s.t. S = MCGU (q,1,2,k,m),

which is useful in MCGU Algorithm to generate S with length L≤q-1,

these variables ca be considered as variable keys.

MCGU Algorithm

INPUT : q , 1 , 2 , k , m , L ;

PROCESS : i := k-1 ; j := 0 ;

 Repeat

 i := i (mod(q-1))+1 ; j := j +1 ;

y := g (1 ,2 , i , q) ;

 sj := (m.y) div q ;

 Until j = L ;

OUTPUT : the sequence S ;

END.

Table(3) shows The efficiency criterion, these criterion are:

Periodicity, Linear Complicity [8] and Randomness (Frequency, Run and

Auto Correlation with 10 shifts) tests [2] for some binary sequences

(m=2) which are generate from MCGU with different primes.

Table(3) efficiency criterions for MCG unit output results.

q 1 2 P(S) LC
Randomness (P=Pass,F=Fail)

Frq Run AC

1009
11

601

102

51

1008

1008

506

503

P P P F P P P P P P P P F

P P P P P P P P P P P P P

4111
60

507

2055

4060

4110

4110

2055

2054

P P P P P P P F F P P P F

P P P P P P P P P P P P P

10771 179 1133 10770 5385 P P P P P P P F P F P P P

20707 83 690 20706 10354 P P P P P P P P P P P P P

 6

5 MCG System:

A MCG unit can be used as a basic construction unit in MCG

System (MCGS) with Combining Function (CF), which is a boolean

function [9]. If S is the sequence that is generates from MCG system, the

system has a Fn as a combining function with n_MCG units, then,

S=Fn(S1,S2,…,Sn) s.t. Si=MCGUi(qi,1i ,2i,ki,m), where 1in.

Si represents the sequence i generate from the MCG unit i.

We defined the addition (+) and the multiplication (*) operations of

the system, as follows:

sj = sij + skj (mod m) sjS, j=1,2,…

sj = sij * skj (mod m) sijSi and skjSk, 1i,kn.

Before introducing the MCGS Algorithm to generate S with length

L, we should represents the MCGU number i as MCGU(i).

MCGS Algorithm

INPUT : Read n , m , L

 For i := 1 to n

Read qi , 1i , 2i , ki

 Endfor {i};

PROCESS : j := 0 ; sj := 0;

 Repeat

 j := j + 1 ;

 For i := 1 to n CALL MCGU(i) ;

 sj := Fn(s1j,s2j,…,snj) ;

 Until j = L ;

OUTPUT : the sequence S ;

END.

We expect the MCGS has high complexity because of the high

non-linearity of the function g. The periodicity of the MCGS can be

calculated depending on the l.c.m. of the period of every MCGU

combined in MCGU s.t. P(S)=l.c.m.(q1-1,q2-1,…,qn-1).

Table(4) shows the output results of various MCG systems

applying Periodicity, Linear Complicity, Frequency, Binary Derivative,

Change point, Subblock, Run and Sequence Complicity tests for some

binary sequences (m=2) using CRYPT -X'98 package [4].

 7

Table(4) tests results of MCG systems for n=2,3 and 5 using XOR-CF.

N Primes P(S) LC FT BDT CPT SBT RT SCT

2
101

997
24900 1091 P P P P P P

3

199

1103

3607

65567878 4898 P P P P P P

5

149

509

1051

1301

2003

2565654000 4899 P P P P P P

The RNG system found by Mitchell [7], is a digital generator

(m=10) with good random sequence, but it’s has low complexity, with

period less or equal q-1 for some primes, so we expect that the choices of

the primes will drop to 35% in order to gain period equal q-1. While the

choices of MCGS still open to all primes. Table (5) shows the period of

some primes for RNG system with frequencies of the digits.

Table (5) shows the periods of RNG primes and frequencies of sequence

digits.

Table (5) Period’s of RNG primes and frequencies of sequence digits.

Primes Period
Frequency

0 1 2 3 4 5 6 7 8 9

991 495 56 55 60 46 46 53 53 40 47 49

997 166 30 15 19 16 12 12 15 19 14 24

1003 464 54 38 54 62 38 54 33 40 56 50

1013 253 27 29 29 22 20 27 30 27 26 31

1019 1018 104 103 103 103 103 103 102 102 103 102

6 Conclusions & Recommendations

1. If we compare the MCGU and LFSR, we get the following

differences:

i. For unknown algorithm, the LFSR variables are the length, tap and

initial values are unknown, but MCGU variables are 1,2,q,k and

m are all unknowns.

ii. For known algorithm, the initial value (basic key) is unknown

only, but in MCGU, 1, 2, q, k are unknown which are can be

considered as initial values.

 8

iii. The periodicity of the sequence generated from LFSR with length r

is 2
r
-1, but the period of the sequence generated from MCG is q-1

for each choice of two generators, there are (q-1)*((q-1)-1)

different choices.

iv. The common generated sequence from LFSR is binary, but in

MCGU, the sequence is digital (1<mq-1).

v. The length, tap and initial values of LFSR can be found from some

available length of the generated sequence by using Massey

algorithm [6], but its not easy to find the initial value of the MCGU

in spite the availability of the generated sequence because of the

high non-linearity of the function g.

2. The MCGU can be developed to increase its periodicity, complexity

and randomness by using other non-used generators of G.

3. We have to suggest digital randomness tests in order to test the

randomness of the generated digital sequences (m>2) from MCGU.

7 References

[1]. Andrews, G. G, “Number Theory”, Dover Publications, October

1994.

[2]. Bennett, D. J. “Randomness”, Harvard University Press, October

1999.

[3]. Gilbert, W. J. “Modern Algebra with Applications”, Wiley-

Interscince, March 2002.

[4]. Gustafson, H., Dawson, E. “A Computer Package for Measuring

the Strength of Encryption Algorithm”, Computer & Security

Vol.13, No.8, 1994.

[5]. Johnson, D. W. and Johnson, F. P., “Joining Together: Group

Theory and Group Skills”, Allyn & Bacon, July 2002.

[6]. Massey, J.L., “Shift Register Synthesis and BCH Decoding”,

IEEE Transaction on Information Theory, Vol. IT-15, No.1, 1969.

[7]. Mitchell, D. W., “A Nonlinear Random Number Generator with

Known, Long Cycle Length”, Dept. of Economics, West Virginia

University, Morgantown WV 26506-602 USA 1993.

[8]. Schneier B., “Applied Cryptography”, John Wiley & Sons, 1995.

[9]. Whitesitt, J. E, “Boolean Algebra and its Application”, Dover

Publications, April 1995.

