التعميم الالى للبيانات الخلوية في المرئيات الفضائية في تظم المعلومات الجغرافية لمدينة كركوك

م.د. زیاد محمد حمید

جامعة كركوك/ كلية الآداب قسم: الجغرافية التطبيقية

المستخلص

تعد دراسة الية اشتقاق الخرائط الرقمية من المرئيات الفضائية من الطرق الحديثة المهمة في بناء وتصميم الخرائط الرقمية التي تكون هادفه في دراسة اشتقاق الخريطة الرقمية المختزلة من المرئيات الفضائية من الطرق الحديثة في التقنيات الجغرافية والافادة منها في التخطيط الجغرافي الذي يعمل بدوره على اتخاذ القرار وذلك من خلال بناء قاعدة بيانات جغرافية واستخراج المعلومات من المرئيات الفضائية، حيث تم استخدام العديد من الطرق في عملية التعميم والاختزال الخرائطي منها (Majority Filter- boundary clean-Aggregate)، وكذلك استخدام طرق الاختبار الاحصائي وهي (طريقة جبر الخرائط(Map Algebra) وطريقة التحليل المكاني مورانس Local Morans) في اختبار دقة التعميم الخرائطي وفق مقاييس مختلفة للخرائط المنتجة، وهي تمت عملية التعميم الالي بالاعتماد على مقاييس مختلفة في عملية التعميم وهي 1/50000 ومقياس ملائمة لاجراء ومقياس المنتقة من المرئيات الفضائية.

الكلمات المفتاحية (التعميم Generalization- الاختزال الخرائطي pixel Thinning- طريقة جبر الخرائط (boundary clean)- تتعيم الحدود (Map Algebra)

المقدمة

ان الية اشتقاق الخرائط الرقمية من المرئيات الفضائية من الطرق الحديثة المهمة في بناء وتصميم الخرائط الرقمية التي تكون هادفه والافادة منها في التخطيط الجغرافي الذي يعمل بدوره على اتخاذ القرار وذلك من خلال بناء قاعدة بيانات جغرافية واستخراج المعلومات من المرئيات الفضائية .

يعد التعميم الخرائطي من اهم المجالات التطبيقية للخرائط الرقمية والذي تعتمد على التكامل بين نظم المعلومات الجغرافية وعلم الخرائط في استخلاص المادة الجغرافية التي تسهم في تفسير وتحليل مظاهر سطح الأرض الطبيعية والبشرية، ان عملية التعميم Generalization هي عملية تبسيط حالة التعقيد في الخريطة وتصغير حجمها على نحو منظم، وإزالة او تقليل لبعض التفاصيل غير المرغوب فيها والتركيز على بعض التفاصيل التي تشكل موضوع الخريطة حيث تقوم بعملية الانتقاء بصيغة رقمية لتلك الصفات والانتقال الى الخطوة التالية (1)،وقد واكب التطور في الخرائط الآلية ونظم المعلومات الجغرافية الى اختزال بعض الخلايا في المرئيات الفضائية، ،والذي يعتمد على التكامل بين نظم المعلومات الجغرافية (GIS) وعلم الخرائط في استخلاص المادة الجغرافية التي تسهم في تقسير وتحليل وتعليل مظاهر سطح الأرض الطبيعية والبشرية، وبما ان الظواهر المجغرافية تحمل عند تمثيلها على الخرائط خاصية الارتباط المكاني مع الظواهر الأخرى المشتركة معها في

المكان فان وضوح تمثيل مكوناتها يعد ضرورة جغرافية بعد ان يتم اختيار الأسلوب الأمثل لتمثيل هذه الظواهر على الخريطة، حيث لا يمكننا تمثيل العالم الجغرافي بالغ التعقيد وبكل تفاصيله، ولذلك ابتكر الانسان عدة وسائل لتبسيط نظرتنا للواقع الجغرافي، فمثلا بدلا من وصف كل نقطة فمن الممكن ان نكتفي بوصف منطقة والعناصر الجغرافية الرئيسية الموجودة بها، ومن ثم فان تقنيات معالجة الخرائط التقليدية قد استبدلت بتقنيات معالجة رقمية ،وان التحول الآلي لعمليات الاشتقاق والتعميم الخرائطي عد تحدياً تقنياً بالغ الأهمية، لكونه يعمل على الاستثمار الامثل لقواعد البيانات الجغرافية فضلاً عن سرعة تدفق الانتاج الخرائطي وتقييم النتائج للخرائط المختلفة المقاييس والاهداف، كذلك استخدام اسلوب تقني يعتمد على توفير معلومات على مستوى وحدة الخلية المستخرجة من المرئية الفضائية في استخلاص الظواهر و المعلومات الجغرافية منها (2).

ان برمجيات نظم المعلومات الجغرافية توفر امكانية عالية وقنية عالية الدقة في انتاج الخرائط الرقمية من المرئيات الفضائية للظواهر الجغرافية،(3) كذلك يظهر دور الاستشعار عن بعد ذات أهمية خاصة في الدراسات واستنتاج المعلومات من المرئيات الفضائية الرادارية، ألنها تمثل سجال للخصائص المجالية للمنطقة التي تغطيها الصورة خلال الفترة الزمنية التي التقطت فيها وهذه الخاصية جعلت استخدام صور الاستشعار عن بعد واسعة الانتشار في استنتاج واستخلاص المعلومات الجغرافية، يعتبر برنامج Erdas وبرنامج ArcGIS من أشهر البرامج المستخدمة في معالجة المرئيات .

اولاً: مشكلة الدراسة

ان عملية اشتقاق الخريطة الشبكة من البيانات الفضائية تعد من الدراسات المهمة في اشتقاق الخرائط وتعميمها لذلك فان عملية بناء قاعدة البيانات الجغرافية وخاصة عند التعامل مع الخلايا الشبكية في المرئيات الفضائية، تحتاج الى تقنيات جغرافية، ومن خلال هذه المشكلة يمكن طرح بعض التساؤلات الاتية:

1-هل يمكن استخدام تقنيات(GIS) و (RS) في اشتقاق واختزال الخرائط الشبكية الرقمية عالية الدقة من المرئية الفضائية؟

2-هل هناك طرق في برنامج GIS يتم من خلالها استخدام طرق التعميم الخرائطي الالي وكيف تتم عملية التعميم على وفق التعامل مع الخلايا الشبكية؟ وما هي العمليات الاحصائية المستخدمة في التعميم؟

ثانياً:فرضية الدراسة :-

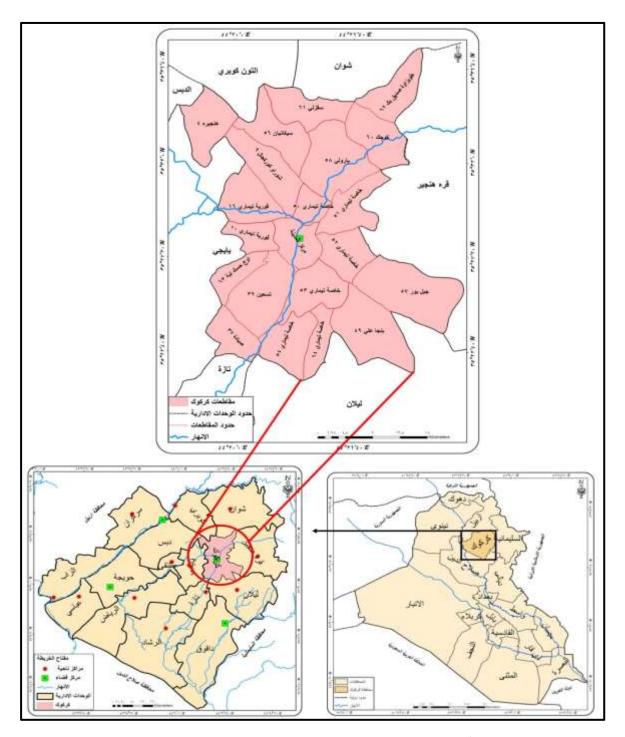
يمكن تحديد فرضيات الدراسة بالنقاط التالية.

1-يمكن اعداد الخرائط الشبكية الرقمية عالية الدقة من المرئية الفضائية باستخدام تقنيات(GIS) و (RS).

2-يمكن استخدام ادوات تعود الى وظائف مختلفة في برمجيات نظم المعلومات الجغرافية لإنجاز عمليات التعميم الخرائطي الآلي على وفق التعامل مع الخلايا الشبكية لمقاييس متعددة يمكن تحقيقه من خلال الطرائق الاحصائية والرياضية.

ثالثاً: هدف الدراسة :-

تهدف الدراسة الى اعداد الخرائط الرقمية من المرئيات الفضائية و تطبيق طرق التعميم الخرائطي الآلي على بيانات فضائية لتعميمها إلى مستويات مختلفة لتجنب عشوائيتها لا سيما عند بناء النماذج الشبكية ، وتوظيف تقنية (GIS) من خلال برنامج (GIS 10.8) الذي يستخدم في التعميم الخرائطي الآلي للبينات الجغرافية الفضائية، من خلال عرض أدوات وطرائق التعميم ومعالجة بياناتها لمقاييس متعددة، وصولا إلى خرائط جديدة معممة وفقاً لمقاييس مختلفة في الخرائط.


رابعاً: منهجية الدراسة:

اعتمدت الدراسة على منهج التحليل التقني في تعامله مع البيانات الجغرافية وفق منهج التحليل الخلوي أو الشبكي (Raster) وبدقة (Raster) ويستند على المرئيات الفضائية الـ(Raster) وبدقة 30 في الشبكي المتاق الخرائط واجراء عملية التعميم الخرائطي لها بالاعتماد على عدة مقاييس واختزال البكسلات للظواهر الجغرافية المنفصلة والمتصلة.

خامساً:موقع منطقة الدراسة.

تمتد منطقة الدراسة البالغة مساحتها (\$4.21كم2) ، بين خطي طول(47 ، 25 ، 44 - 32 ، 16 ، 44) شرقاً، ودائرتي عرض (16 ، 30 ، 30 ° - 6 ، 21 ، 35 °) شمالا. تقع مدينة كركوك إداريا ضمن محافظة التأميم (سابقا)كركوك حاليا ، ويحدها من الشمال ناحيتي (شوان و التون كوبري)، و من الجنوب ناحيتي (ليلان وتازة خورماتو)، ومن الشرق ناحية (قرة هنجير) الربيع سابقا ومن الغرب ناحية (يايجي) ، وأن هذه المساحة موزعة على (49) حياً . لأحظ الخريطة (1) ، وتم اعداد هذه الخريطة بناءً على الواقع الحالي للمدينة ، معتمداً على المرئية الفضائية Land sat8 بدقة تمييزية (60سم) وخارطة التصميم الأساسي للمدينة.

خريطة (1) موقع منطقة الدراسة

المصدر: الباحث، اعتماداً على خارطة العراق الادارية 50000/1، وبرنامج (Arc Gis 10.6)

سادساً: التعميم الخرائطي:

يعرف التعميم الخرائطي بأنه مجموعة من العمليات التي يتم بها تحويل البيانات الجغرافية الى صورة خرائطية وفقاً لمقاييس الرسم المحدد في ضوء الهدف من انشاء الخريطة مع الحفاظ على دقتها وسرعة اداراكها، هما (4):

1-الاختزال الخرائطي pixel Thinning: وهي عملية تقوم على الاساس تحديد الخلايا معينة من الخلايا الموجودة في الخريطة الشبكية وهي طريقة يتم من خلالها تقليص عدد الخلايا التي يحددها البرنامج بحسب الية اختزاله لهذه الخلايا وتقليصها التي تقوم على مبدأ اختيار بعض الخلايا وحذف خلايا اخرى(5).

2- البيانات الخلوية raster data: هي نوع من أنواع البيانات المكانية التي تُعرض وتُخزن على شكل خلايا أو شبكات. هذا النوع من البيانات يتمثل في تقسيم مساحة جغرافية إلى شبكة من الخلايا المتساوية في الحجم، والتي يمكن أن تكون مربعة، مستطيلة، أو حتى سداسية. كل خلية في هذه الشبكة تحتوي على قيمة تمثل المعلومات المكانية للمنطقة التي تغطيها هذه الخلية التي تقع في نطاق وحدود كل بكسل.

3- التعميم Generalization : وهو فن التمييز في منطقة ما بين عناصر أساسية وعناصر غير أساسية للخريطة بتمثيل ما هو أساس وإهمال ما هو غير أساس عند إنشاء الخارطة المعممة،

ولابد من أن تتضمن عملية التعميم عددا من النقاط وأهمها:

ولابد من استكمال تعريفي لعملية التعميم الخرائطي بإيجاز مفاهيمها العامة أو قد يطلق عليها طرائق أو عناصر أو قوانين للتعميم وهي على وجه الخصوص كما في الشكل التالي(1).

شكل(1) عناصر التعميم الخرائطي

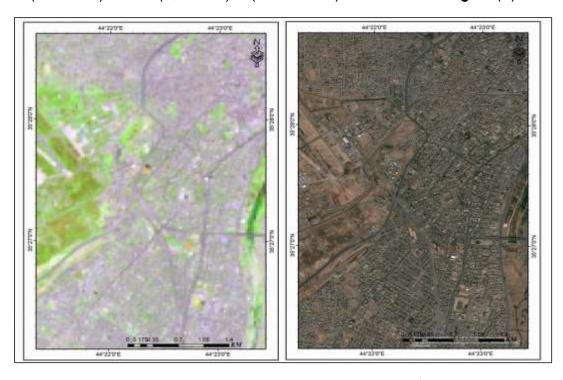
المصدر، من عمل الباحث.

1-التقنيات المستخدمة في التعميم والاختزال الخرائطي من المرئيات الفضائية في برنامج(GIS V 10.8):

اعتمدت الدراسة على برنامج (GIS V 10.8) الذي من خلاله يتم رسم الخرائط وإدخال البيانات ومعالجتها واخراجها، فضلا عن استخدام التعميم الخرائطي الآلي (Generalization) ضمن حزمة البرنامج (Toolbox) ومن ثم آداه التعميم المستخدمة (Generalization) في مشروع الدراسة لتصميم خرائط آلية ومعممة وفقاً لمقاييس مختلفة، ويتضح من الشكل الآلي طرق التعميم الخرائطي.

1- أداة التعميم Aggregate ومن ثم Input raster ندخل المرئية الفضائية Output raster نختار مكان لحفظ العمل الجديد ثم Cell factor وهي عدد الخلايا ونضع فيها على سبيل المثال 100.

2- أما الأداة الثانية في التعميم فهي Boundary Clean ومن خلالها يتم ادخال الطبقة المخرجة من الاداة الاولى وندخلها في Input raster ومن ثم Output raster نختار مكان لحفظ العمل الجديد.


3- أما الأداة الثالثة المستخدمة في البحث فهي Majority Filter حيث يتم أدخال الطبقة المخرجة من الطريقة الثانية وندخلها في Input raster ومن ثم Output raster نختار مكان لحفظ العمل الجديد.

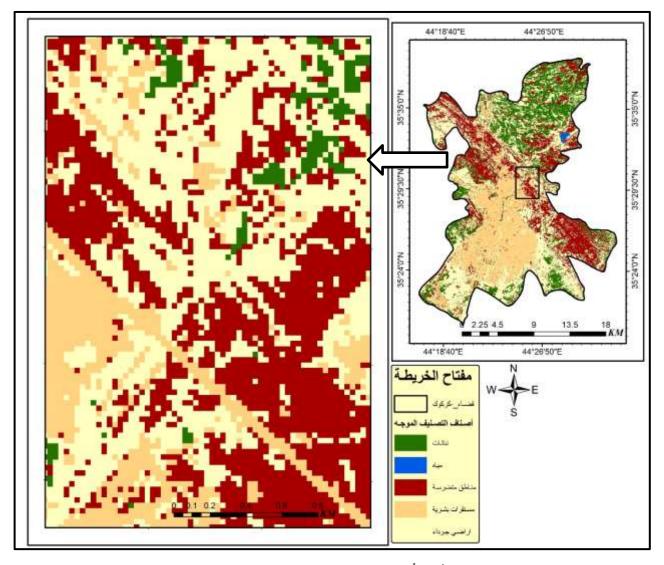
4- الطرق الإحصائية المستخدمة في اثبات صحة الخريطة المعممة الياً

1- طريقة جبر الخرائط(Map Algebra)

- طريقة التحليل المكاني مورانس Local Morans

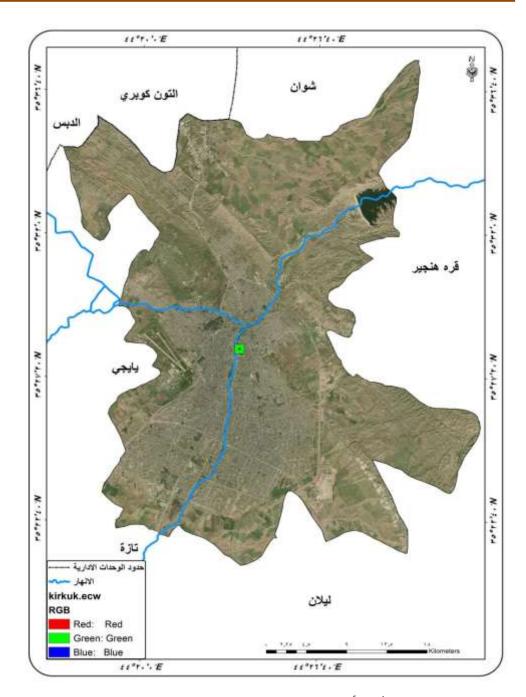
صورة (1) مقطع لمرئية قضاء كركوك (Land sat-8) و (Quikbird) بمقياس (1:10000)

المصدر: الباحث ، أعتماداً على المرئية (Land sat-8) و Quik Bird وبرنامج (ARC GIS 10.3)

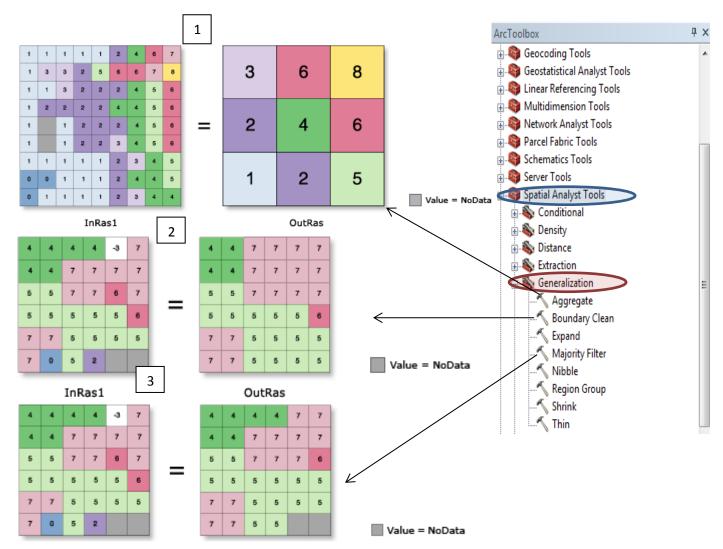

سابعاً: اشتقاق الخريطة من المرئية الفضائية:

تعد مرئيات الاستشعار عن بعد ذات أهمية خاصة في الدراسات واستنتاج المعلومات من المرئيات الفضائية، ألنها تمثل سجال للخصائص المجالية للمنطقة التي تغطيها الصورة خلال الفترة الزمنية التي التقطت فيها وهذه الخاصية جعلت استخدام صور الاستشعار عن بعد واسع الانتشار في استنتاج المعلومات، لآنها تمكن من دراسة الظواهر الجغرافية من حيث مراقبتها وتتبع تطورها والتغيرات التي تطرأ عليها عداد خرائط دقيقة تبين

توزيعها والعلاقات المكانية بينها حتى في المناطق النائية، و التي يصعب الوصول اليها ومن خلال المرئيات الفضائية يمكن ان نقوم بالمهام التالية أهمية المرئيات الفضائية – تحليل المرئيات الفضائية واستنتاج المعلومات منها ومراقبة التوزيع المكاني ودراسة الظاهرات المتغيرة مثل الفيضائات وحركة المرور وهذه الظواهر يصعب مراقبتها مباشرة بالعين البشرية نظرا لتغيرها السريع وتسجيلها في مرئيات فضائية تساعد على دراستها والتسجيل الدائم للظاهرات بحيث يمكن دراستها في أي وقت وهذا يسمح بإجراء المقارنات الزمنية عن طريق التغير دراسة مجموعه مرئيات اخذت في اوقات مختلفة لنفس المكان كما يسمح بملاحظة طبيعية الذي طرا على مكان ما وتسجيل بيانات ال تستطيع العين المجردة ان تراها مثل الاشعة دون الحمراء، يعتبر برنامج Erdas وبرنامج ArcGIS وبرنامج المستخدمة في معالجة المرئيات الفضائية و لكن برنامج Erdas يتمتع بقدرة عالية في معالجة البيانات من نوع PRaster يتمتع بقدرة عالية برنامج Raster الذي يتمتع بقدرة عالية على معالجة البيانات من نوع Prodes الذي يتمتع بقدرة عالية الموثيات الفضائية المطلوبة ومعالجتها كما في الخريطة (2) التي تبين الية اشتقاق الخريطة الموثية من المرئيات الفضائية بصيغة نوع Raster التي يتم من خلالها اختزال واستنتاج البكسلات للظواهر الجغرافية الطبيعية والبشرية و في الخريطة (3) الذي تبين مرئية المغضائية المائية المطوبة ومعالجتها كما في الخريطة (2) التي تبين الية اشتقاق الخريطة الجغرافي المكانية المنفصلة والمرتبطة للظواهر الجغرافية الطبيعية والبشرية و في الخريطة (3) الذي تبين مرئية منطقة الدراسة واستخراج البيانات الخلوية منها التي تجري عليها طرق التعميم الالي.


خريطة (2) نموذج لمقطع مرئية فضائية

شكل(2) البيانات الشبكة للنموذج المختار



المصدر: الباحث ، أعتماداً على المرئية (Land sat-8) وبرنامج (ARC GIS 10.3).

خريطة (3) نموذج لمقطع مرئية فضائية Land sat المنطقة الدراسة

المصدر: الباحث ، أعتماداً على المرئية (Land sat-8) وبرنامج (ARC GIS 10.3).

يتضح من الشكل أعلاه الخطوات المستخدمة في عملية التعميم الخرائطي الالي، حيث تتمثل بعدة طرق منها:

اولاً: دمج الخلايا (Aggregate)

مصطلح "Aggregate" إلى عملية جمع ودمج البيانات الجغرافية من عدة مصادر أو مستويات مختلفة وتجميعها معًا في مستويات أعلى أو وحدات أكبر. على سبيل المثال، يمكن أن يكون هذا تجميع بيانات السكان من النقاط الفردية إلى مناطق إدارية أكبر مثل الأحياء أو الولايات، أو تجميع البيانات المناخية من محطات الرصد الفردية إلى خلايا شبكية أو مناطق جغرافية أكبر. تُستخدم عمليات الجمع والتجميع لإنشاء مستويات مختلفة من التفاصيل لتحليل البيانات وفهم الظواهر الجغرافية على مستويات مختلفة. التي يتم من خلالها عملية دمج الخلايا المختزلة القريبة من بعضها الآخر لتكوين خلايا جديدة ضمن كل بكسل جديد مختزل وكما في الشكل (3)

فمن خلال تحليل الخريطة (4) المعممة وفقاً للأداة (Aggregate) وتجميع البكسلات (Pixel aggregation) نجد ان كل بكسل له لون خاص به يمثل ظاهرة او متغير مكاني على سطح الارض وفقا للانعكاسية المكانية الطيفية للظاهرة الجغرافية وللطول الموجي الطيفي المنعكس من الهدف المراد دراسته للظاهرة ولكل بكسل قيمة رقمية مطلقة، ويتضح من الجدول (1) الذي يبين نتائج الية التعميم الخرائطي لقيم البكسلات من المرئية الفضائية باستخدام الاداة (Aggregate)الخلايا المختزلة وكمايلي باستخدام القيم المطلقة لكل بكسل:-

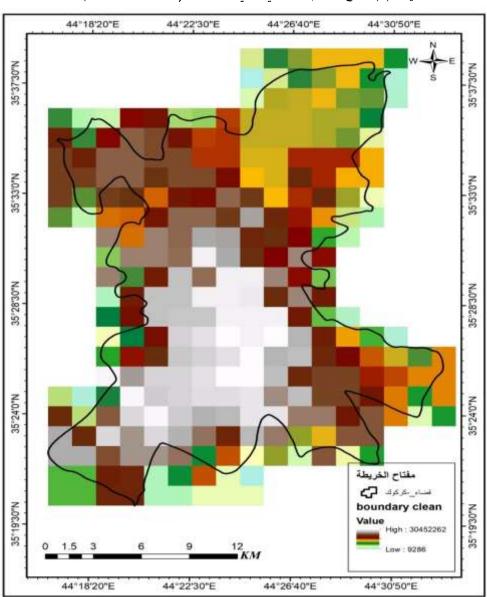
44°18'20"E 44°22'30"E 44°26'40"E 44°30'50"E 35°37"30"N 35°33'0"N 35°33'0"N 35°28'30"N 35°28'30"N 35°24'0"N مفتاح الخريطة فنسام کرکارگ 🔽 Aggregate 35°19'30"N High: 30452262 Low: 9286 44°26'40"E 44°18'20"E 44°22'30"E 44°30'50"E

والخريطة (4) تبين التعميم الخرائطي الآلي وفقاً للأداة (Aggregate)

المصدر: الباحث، اعتماداً على خريطة (3) و مخرجات برنامج ARC GIS 10.3.

Count Value ב Count Value ב Count Value

القيمة	القيمة		القيمة	القيمة		القيمة	القيمة المطلقة	
الاحصائية	المطلقة		الاحصائية	المطلقة		الاحصائية		
1	21506641	85	1	6543927	43	1	9286	1
1	21555310	86	1	6689448	44	1	10021	2
1	21555705	87	1	6972690	45	1	43054	3
1	22065166	88	1	7247161	46	1	51154	4
1	22239297	89	1	7277207	47	1	537538	5
1	22260002	90	1	7377921	48	1	593697	6
1	22322615	91	1	7564805	49	1	714982	7
1	22483074	92	1	8115253	50	1	766347	8
1	22629927	93	1	8727555	51	1	960345	9
1	22789416	94	1	9396521	52	1	1017128	10
1	22859704	95	1	9768366	53	1	1106907	11
1	23084125	96	1	10272811	54	1	1108097	12
1	23181696	97	1	10563956	55	1	1285058	13
1	23201812	98	1	10822763	56	1	1710240	14
1	23312821	99	1	10970829	57	1	1718425	15
1	23475051	100	1	11024011	58	1	1798820	16
1	23544605	101	1	11359246	59	1	1838724	17
1	23553850	102	1	11845076	60	1	2067451	18
1	23683057	103	1	12441230	61	1	2237509	19
1	23700696	104	1	13044205	62	1	2367326	20
1	23790499	105	1	13117505	63	1	2503128	21
1	23822771	106	1	13137254	64	1	2508862	22
1	23925998	107	1	14541136	65	1	2545590	23
1	23990279	108	1	14618924	66	1	2748429	24
1	23996122	109	1	14770073	67	1	3218911	25
1	24019314	110	1	14977521	68	1	3847504	26
1	24023647	111	1	15386476	69	1	3851618	27
1	24070167	112	1	16338348	70	1	3949879	28
1	24078921	113	1	17064555	71	1	4010655	29
1	24221283	114	1	18039249	72	1	4098922	30
1	24233343	115	1	18044001	73	1	4167990	31
1	24264617	116	1	18049091	74	1	4448826	32
1	24306189	117	1	18334397	75	1	4628103	33
1	24312240	118	1	18418941	76	1	4631592	34
1	24331346	119	1	18465161	77	1	4634724	35
1	24351067	120	1	18482811	78	1	5046252	36
1	24353253	121	1	18507414	79	1	5152123	37
1	24370388	122	1	18584306	80	1	5266552	38
1	24385038	123	1	18894519	81	1	5311937	39
1	24434307	124	1	19682993	82	1	5377433	40
1	24491405	125	1	20547071	83	1	5739945	41
1	24514680	126	1	20682400	84	1	6275756	42
1	28556992	217	1	26724519	171	1	24539770	127
1	28601008	218	1	26753112	172	1	24602387	128
1	28660950	219	1	26928537	175	1	24603545	129


مجلة جامعة كركوك/ للدراسات الإنسانية المجلد: 19 العدد: 1 لسنة 2024

1	28670011	220	1	26973937	176	1	24740652	130
1	28717580	221	1	27016007	177	1	24745136	131
1	28737444	222	1	27098080	178	1	24755583	132
1	28794480	223	1	27099016	179	1	24806555	133
1	28821748	224	1	27212324	180	1	24809933	134
1	28857821	225	1	27391936	181	1	24906392	135
1	28947340	226	1	27417213	182	1	24948317	136
1	28979396	227	1	27440908	183	1	25000990	137
1	29062007	228	1	27440960	184	1	25119215	138
1	29112074	229	1	27469381	185	1	25317174	139
1	29161075	230	1	27487892	186	1	25365921	140
1	29167424	231	1	27501901	187	1	25415119	141
1	29168076	232	1	27534973	188	1	25569645	142
1	29188082	233	1	27573033	189	1	25572888	143
1	29315744	234	1	27577457	190	1	25696236	144
1	29354667	235	1	27640894	191	1	25699046	145
1	29367226	236	1	27657435	192	1	25702219	146
1	29383946	237	1	27659127	193	1	25746973	147
1	29432385	238	1	27688769	194	1	25750728	148
1	29536088	239	1	27727970	195	1	25812721	149
1	29538937	240	1	27738320	196	1	25826973	150
1	29554568	241	1	27804262	197	1	25866057	151
1	29645233	242	1	27854591	198	1	25902029	152
1	29683719	243	1	27862594	199	1	25938750	153
1	29695864	244	1	27872635	200	1	25965038	154
1	29751588	245	1	27939554	201	1	25979672	155
1	29761443	246	1	28004571	202	1	26054589	156
1	29932944	247	1	28058902	203	1	26077009	157
1	30025707	248	1	28071474	204	1	26203825	158
1	30107270	249	1	28094931	205	1	26205220	159
1	30129789	250	1	28150815	206	1	26291202	160
1	30133046	251	1	28248002	207	1	26321912	161
1	30152508	252	1	28265269	208	1	26322769	162
1	30175336	253	1	28316978	209	1	26324371	163
1	30178229	254	1	28339791	210	1	26361377	164
1	30255612	255	1	28386504	211	1	26386043	165
1	30331131	256	1	28407478	212	1	26497975	166
1	30452262	257	1	28519797	213	1	26547334	167
			1	28534370	214	1	26593977	168
			1	28542480	215	1	26621551	169
			1	28548040	216	1	26724267	170

المصدر : الباحث ، اعتمادا على جدول و مخرجات برنامج (ARC GIS 10.8) من (Open Attribute Tabe).

ثانيا :تنظيف الحدود(boundary clean):

أداة "Boundary Clean" في نظم المعلومات الجغرافية (GIS) تستخدم عادة لتنظيف وتصحيح الحدود الجغرافية. عندما يتم تحديد حدود جغرافية، قد تحدث بعض الانحرافات أو التداخلات بين الحدود المختلفة، مما قد يؤدي إلى تشوه أو عدم دقة في البيانات الجغرافية. تُستخدم أداة Boundary Clean لإصلاح هذه الانحرافات وتعيين الحدود بشكل صحيح، عملية التنظيف تتضمن إزالة الاختراقات والتداخلات بين الحدود، وتصحيح الأشكال غير المغلقة أو المكسورة، وضمان تمثيل دقيق للمناطق المختلفة. بشكل عام، تهدف عملية تنظيف الحدود إلى تحسين دقة البيانات الجغرافية وتوحيد التمثيل الجغرافي للمناطق والحدود. حيث يتم من خلالها عملية تتعيم الحدود ذات الحواف الحادة بأخرى منعمة، ا والتخلص من الحواف الحاده

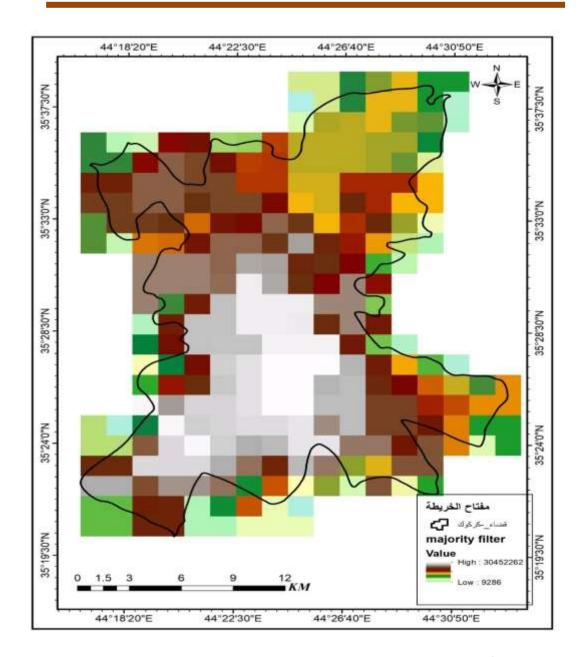
والخريطة (5) توضح التعميم الخرائطي الآلي وفقاً للأداة (Boundary Clean)

المصدر: الباحث، اعتماداً على خريطة (3) و مخرجات برنامج ARC GIS 10.3. البكسلات المختزلة مقارنة والتخلص من الحواف الحادة المرئية (5)، ويتضح ذلك من الجدول (2) وكما يلى:-

الجدول (2) قيم التعميم الآلي من المرئية الفضائية بعد إستخدام اداة التعميم الآلي (Boundary Clean)

Count	Value		Count	Value		Count		
القيمة	القيمة		القيمة	القيمة		القيمة	Value	
الاحصائية	المطلقة	ت	الاحصائية	المطلقة	ت	الاحصائية	القيمة المطلقة	ت
2	27016007	85	2	22239297	43	1	9286	1
2	27098080	86	2	22260002	44	1	10021	2
2	27212324	87	1	22483074	45	1	43054	3
2	27391936	88	1	22859704	46	1	1106907	4
2	27417213	89	2	23181696	47	1	1285058	5
1	27440908	90	1	23996122	48	1	1718425	6
1	27440960	91	1	24023647	49	1	1798820	7
2	27487892	92	1	24070167	50	1	2067451	8
1	27534973	93	2	24264617	51	3	2503128	9
3	27573033	94	2	24306189	52	1	2545590	10
2	27577457	95	1	24312240	53	1	3218911	11
2	27640894	96	3	24351067	54	1	3847504	12
2	27657435	97	1	24353253	55	1	4098922	13
2	27659127	98	7	24514680	56	1	5311937	14
1	27727970	99	1	24539770	57	1	6543927	15
1	27738320	100	3	24740652	58	1	6689448	16
2	27804262	101	1	24755583	59	1	6972690	17
2	27862594	102	5	24806555	60	4	7247161	18
2	28004571	103	2	24906392	61	1	7277207	19
5	28058902	104	3	25119215	62	1	8115253	20
4	28071474	105	1	25317174	63	1	9396521	21
5	28094931	106	1	25365921	64	1	9768366	22
1	28248002	107	4	25415119	65	1	10563956	23
4	28316978	108	2	25572888	66	2	10822763	24
1	28339791	109	2	25696236	67	1	11359246	25
5	28386504	110	2	25699046	68	2	11845076	26
4	28407478	111	1	25812721	69	1	13044205	27
2	28519797	112	2	25902029	70	1	13117505	28
2	28534370	113	1	25938750	71	1	13137254	29
3	28548040	114	2	25965038	72	1	14770073	30
5	28556992	115	3	26054589	73	1	14977521	31
3	28660950	116	1	26077009	74	4	15386476	32
1	28794480	117	4	26203825	75	1	18039249	33
3	28947340	118	1	26205220	76	1	18044001	34
1	28979396	119	1	26291202	77	1	18049091	35
2	29062007	120	1	26324371	78	1	18334397	36
2	29161075	121	2	26361377	79	2	18482811	37
3	29167424	122	2	26497975	80	2	19682993	38
2	29168076	123	2	26724519	81	2	20682400	39
2	29315744	124	1	26753112	82	1	21506641	40
2	29354667	125	2	26813815	83	2	21555310	41
3	29367226	126	2	26928537	84	1	21555705	42

مجلة جامعة كركوك/ للدراسات الإنسانية المجلد: 19 العد: 1 لسنة 2024


1	30175336	137	3	29761443	132	4	29383946	127
5	30178229	138	3	30107270	133	2	29554568	128
4	30255612	139	2	30129789	134	1	29645233	129
3	30331131	140	3	30133046	135	2	29683719	130
5	30452262	141	3	30152508	136	2	29751588	131

المصدر: الباحث ، اعتمادا على جدول وقيمة مخرجات برنامج (ARC GIS 10.0) من (Open Attribute Tabe).

ثالثاً –اخترال الخلايا Majority Filter

تستخدم هذه الاداة في نظم المعلومات الجغرافية (GIS) هي عبارة عن تقنية لتنقية البيانات الجغرافية، تعتمد على مبدأ أن القيمة الصحيحة لنقطة ما في البيانات وهي القيمة التي تظهر بشكل أكثر تكراراً في محيط هذه النقطة. تُستخدم هذه العملية عادة للتخلص من القيم الطفيفة أو القيم المعترضة التي قد تكون ناتجة عن الضوضاء أو الأخطاء في البيانات، لنفترض مثالاً بسيطًا: لديك خريطة جغرافية مكونة من قيم تمثل الألوان (على سبيل المثال، الأحمر والأخضر والأزرق). إذا كان هناك بكسل وسطي يمثل لونًا غير محتمل (مثل لون وسطي بين الأحمر والأخضر)، يمكن لأداة Majority Filter تغيير هذا البكسل ليكون لونًا يتوافق مع الألوان المحيطة به، بناءً على القيم الأكثر شيوعًا في المنطقة المحيطة بهذا البكسل، تستخدم أداة Majority Filter للمساعدة في تنقية البيانات الجغرافية من القيم الصغيرة أو البيانات الفاسدة أو غير المنطقية التي يمكن أن تؤثر على دقة التحليلات والعمليات الأخرى التي تعتمد على هذه البيانات.

ومن خلال تحليل الخريطة (6) المعممة وفقاً لاداة (Majority Filter) نجد ان الوان البكسلات المختزلة قد تغيرت وفقاً للانعكاسية المكانية والطول الموجي للظاهرة المكانية على سطح الارض في الخلايا الشبكية المختزلة من المرئية الفضائية وتقليل عدد البكسلات وفقاً لعلية التعميم الخرائطي.

المصدر: الباحث، اعتماداً على خريطة (3) و مخرجات برنامج ARC GIS 10.3.

الطرق الإحصائية المستخدمة في إثبات صحة الخرائط المعممة آلياً:-

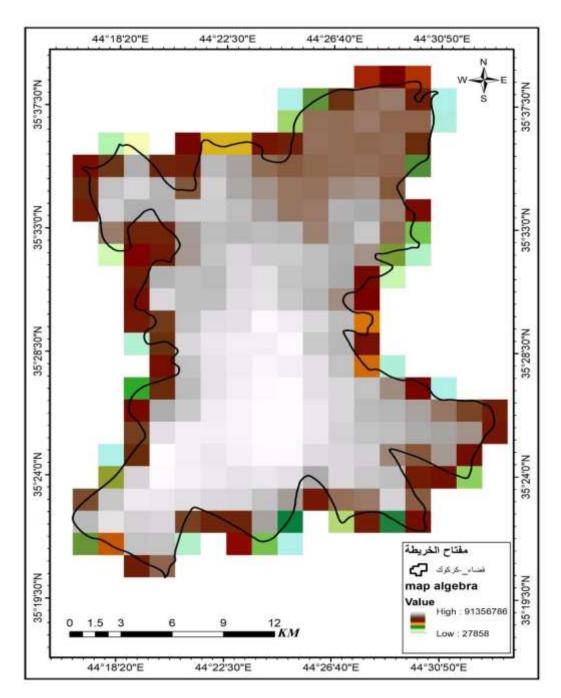
تُعد طرق الاختبار الاحصائي من الطرق المهمة في اختبار الخرائط المعممة والخلايا المختزلة ومدى صحة اثبات دقتها في برنامج Arcgis، حيث تم اختبارها باستخدام طريقتي الاختبار الاحصائي وهي:

1- الطريقة الأولى: طريقة جبر الخرائط (Map Algebra):-

الجبر الخرائطي في نظم المعلومات الجغرافية هو أسلوب يستخدم في تحليل البيانات المكانية باستخدام العمليات الجبرية. وتتضمن هذه العمليات العديد من العمليات الرياضية التي تُجرى على الكائنات المكانية مثل النقاط والمناطق، مما يسمح بتحليل وتحويل البيانات الجغرافية والتأكد من صحة التعميم الخرائط.

حيث تمت الطريقة في برنامج (ARC GIS10.3) من Arc Tool Box ثم (ARC GIS10.3) حيث تمت الطريقة في برنامج (Baster calculator) من Raster calculator وثم Map Algebra ومن ثم فتح

الشكل (6) طريقة جبر الخرائط الاحصائية وفقاً لبيانات الخلايا الشبكية في التعميم الآلي


المصدر: من عمل الباحث ، اعتماداً على مخرجات برنامج (ARC GIS 10.3)

من اهم هذه الطرق الاحصائية الخاصة بالتعميم الالي، ضمن شريط الادوات الاساسي لنافذة البرنامج الرئيسة، التي تحتوي على نوعين من طرق الحساب وهي:

1-الطريقة الاولى: الطريقة الجبرية الرياضية باستخدام الاداة (Transform) التحويلية في برنامج Arcgis.

-الطريقة الجبرية الاحصائية والتي تشمل على نوعين من الاساليب الاحصائية التي تستخدم في عمليات التعميم الالي ضمن نافذة البرنامج الرئيسة أيضا التي تعمل على اختبار الاحصائي للتعميم الخرائطي للبكسلات المختزلة.

الخريطة (7) التعميم الآلي وفقاً لطريقة جبر الخرائط (Map Algebra)

المصدر : الباحث، اعتماداً على خريطة (3) و مخرجات برنامج ARC GIS 10.3 .

ويتضح من الخريطة (7) لطريقة جبر الخرائط الاحصائية ان عدد البكسلات قد ازدادت والتي تم جمعها وايضاً تم إثبات صحة الخريطة من الناحية العلمية حيث تمت عملية التعميم الخرائطي وفقاً لعملية الجبر الخرائطي الاحصائي، وكما يتضح من الجدول (3).

الجدول (3)قيم طريقة جبر الخرائط الاحصائية

Count	Value		Count	Value		Count		
القيمة	القيمة		القيمة	القيمة		القيمة	Value	
الاحصائية	المطلقة	ت	الاحصائية	المطلقة	ت	الاحصائية	القيمة المطلقة	ت
1	25365921	63	1	18039249	32	1	9286	1
3	25415119	64	1	18044001	33	1	10021	2
2	25572888	65	1	18049091	34	1	43054	3
1	25696236	66	1	18334397	35	1	1106907	4
2	25699046	67	3	18482811	36	1	1285058	5
1	25812721	68	3	19682993	37	1	1718425	6
2	25902029	69	2	20682400	38	1	1798820	7
1	25938750	70	1	21506641	39	1	2067451	8
2	25965038	71	2	21555310	40	3	2503128	9
3	26054589	72	1	21555705	41	1	2545590	10
1	26077009	73	2	22239297	42	1	3218911	11
4	26203825	74	3	22260002	43	1	3847504	12
1	26205220	75	1	22483074	44	1	4098922	13
1	26291202	76	1	22859704	45	1	5311937	14
1	26324371	77	2	23181696	46	1	6543927	15
1	26361377	78	1	23996122	47	1	6689448	16
2	26497975	79	1	24023647	48	1	6972690	17
2	26724519	80	1	24070167	49	4	7247161	18
1	26753112	81	1	24264617	50	1	7277207	19
2	26813815	82	2	24306189	51	1	8115253	20
2	26928537	83	1	24312240	52	1	9396521	21
2	27016007	84	3	24351067	53	1	9768366	22
2	27098080	85	1	24353253	54	1	10563956	23
2	27212324	86	7	24514680	55	3	10822763	24
2	27391936	87	1	24539770	56	1	11359246	25
2	27417213	88	3	24740652	57	3	11845076	26
1	27440908	89	1	24755583	58	1	13044205	27
1	27440960	90	4	24806555	59	1	13117505	28
2	27487892	91	2	24906392	60	1	14770073	29
1	27534973	92	3	25119215	61	1	14977521	30
3	27573033	93	1	25317174	62	4	15386476	31
4	29383946	126	4	28407478	110	2	27577457	94
2	29554568	127	1	28519797	111	1	27640894	95
1	29645233	128	2	28534370	112	2	27657435	96
2	29683719	129	3	28548040	113	2	27659127	97
1	29751588	130	7	28556992	114	1	27727970	98
3	29761443	131	4	28660950	115	1	27738320	99
4	30107270	132	1	28794480	116	2	27804262	100
2	30129789	133	2	28947340	117	2	27862594	101
3	30133046	134	1	28979396	118	2	28004571	102
3	30152508	135	2	29062007	119	4	28058902	103
1	30175336	136	2	29161075	120	4	28071474	104
6	30178229	137	2	29167424	121	5	28094931	105
3	30255612	138	2	29168076	122	1	28248002	106

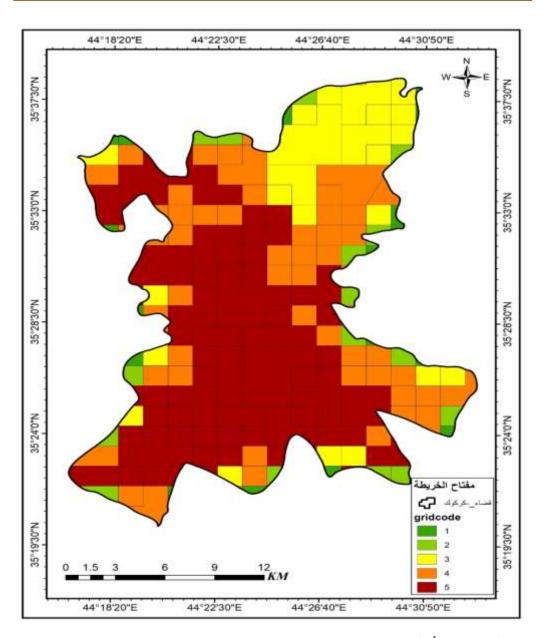
مجلة جامعة كركوك/ للدراسات الإنسانية المجلد: 19 العدد: 1 لسنة 2024

3	3	30331131	139	2	29315744	123	4	28316978	107
-	7	30452262	140	2	29354667	124	1	28339791	108
				4	29367226	125	5	28386504	109

المصدر : الباحث ، اعتمادا على جدول وقيمة مخرجات برنامج (ARC GIS 10.3) من (Open Attribute Tabe).

2- الطريقة الثانية : طريقة معامل الارتباط المكاني الذاتي المكاني (مورانس):

معامل الارتباط المكاني الذاتي لـ مورانس (Moran's I) هو مقياس يستخدم في تحليل توزيع المتغيرات المكانية لتحديد ما إذا كان هناك تكون مكاني (أي نمط مكاني) في البيانات الجغرافية. يستخدم هذا المعامل لقياس درجة الارتباط المكانى بين قيم متغيرات في مواقع مختلفة، واثبات مدى صحة عمليات التعميم الخرائطي.

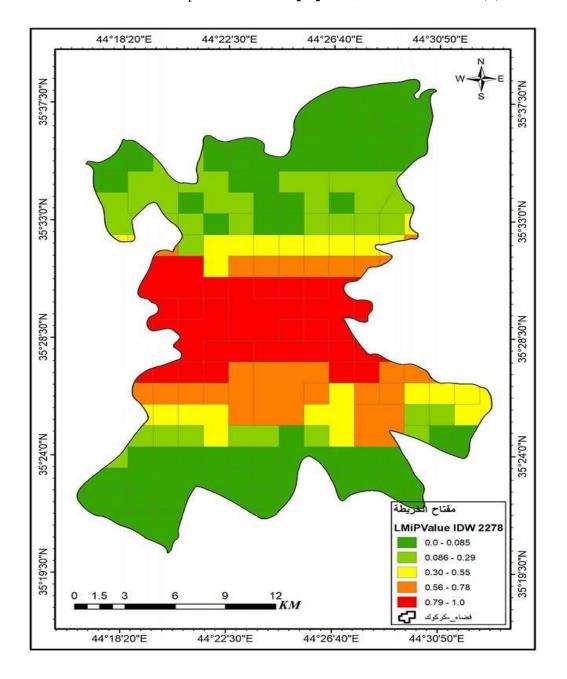

يتم اختبار الخلايا الشبكية المعممة والمختزلة في الخلايا الشبكية في برنامج (ARC GIS10.8) من يتم اختبار الخلايا الشبكية المعممة والمختزلة في Spatial Statistics Tools ومن ثم Tool Box ومن ثم الاداة Spatial Statistics Tools ومن ثم Outlier Analysis (Anselin Local Morans I) ويتضح من الشكل (7) التالي حيث يتم اختبارها وتمثيلها في الخريطة (8):

_ - X Cluster and Outlier Analysis (Anselin Local Morans I) Input Feature Class 6 • Input Field 6 Conceptualization of Spatial Relationships INVERSE DISTANCE Distance Method EUCLIDEAN_DISTANCE Standardization NONE Distance Band or Threshold Distance (optional) Weights Matrix File (optional) Environments... Show Help >>

الشكل (4) طريقة مورانس في إثبات صحة الخريطة المعممة آلياً

لذلك يجب تحويل البكسلات الى بلكونات لكي يتم اجراء عملية مورانس الاحصائية عليها وكما موضح في شكل (8) يوضح نتائج التي تبين نتائج الاختبار الاحصائي لمورانس والية اختزال الخلايا الشبكية في المرئية الفضائية.

الخريطة (8) تحويل منطقة الدراسة من نظام (Raster Pixel) الى (Polygon)


المصدر: الباحث، اعتماداً على حزمة ضمن مخرجات برنامج ARC GIS 10.8.

وعند اثبات صحة الخريطة المعممة بحسب اختبار مورانس الإحصائية والذي يستخدم لقياس الاختلاف في الترتيب المكاني في الخلايا المختزله والمعممة وبحسب التغير (المساحي- الاتجاهي) للخلايا، الأول وإيجاد المؤشر لتغير ثان وثالث ورابع وهكذا لبقية الخلايا المختزلة.

والفكرة الأساسية في عملية الاختزال والتعميم الخرائطي هي ان المناطق المتقاربة متشابهة والقيم المتجاورة متشابهة لتماثل الظروف المحيطة، وعندما تتشابه قيم الظواهر المتجاورة بشكل اكبر في الخلايا من القيم المتباعدة نقول ان هناك ارتباط ذاتي مكاني متبادل موجب وبالعكس سالب في هذه الخلايا التي تم اختزالها ودمجها في البرنامج ، أي عدم وجود ارتباط ذاتي مكاني. كما في الخريطة (9).

وعند اجراء المقارنة الخرائطية وفقاً للمقاييس المختلفة الأربعة للخلايا الشبكية ببعد تطبيق المعادلة الخاصة للتعميم، كما في الخريطة (9).

الخريطة (9) تحليل اختبار مورانس الإحصائي في التحقق من صحة وإثبات الخريطة المعممة آلياً

المصدر: الباحث، اعتماداً على حزمة ARC GIS 10.3 .

التعميم الالى لمقاييس مختلفة للخرائط المعممة:

لقد تمت عملية التعميم الآلي للخرائط المشتقة من المرئيات الفضائية للبكسلات المختزلة بالاعتماد على مقاييس مختلفة في عملية التعميم وهي 1/50000 ومقياس 1/25000 ومقياس مختلفة في عملية التعميم وهي 1/50000 ومقياس 1/25000 ومقياس 1/25000 ومقياس مختلفة في عملية التعميم وهي 1/50000 ومقياس 1/25000 ومقياس مختلفة في عملية التعميم وهي 1/50000 ومقياس المعادلة

الخاصة بعملية التعميم الالي واظهار اكثر المقاييس ملائمة لاجراء عملية التعميم للاخرائط المشنقة من المرئيات الفضائية ومقارنتها مع الخريطة الاساسية1/1000، حيث تبين من خلال تطبيق المعادة والنتائج الخاصة بالجدول(4) ان افضل المقاييس لعملية التعميم هو 1/25000 لكونه افضل في عملية التعميم الخرائطي (7).

 $N_t = N_S \sqrt{S_s}$

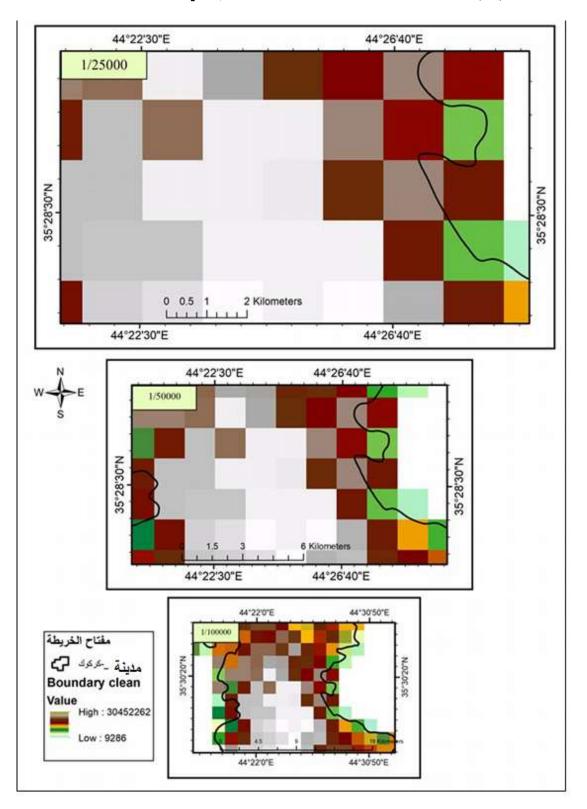
تطبيق معادلة التعميم الآلى وهي كما يلي

عدد الخلايا في الخريطة المعممة N_t

Ns عدد الخلايا في الخريطة المصدرية

S_s مقياس الرسم في الخريطة المصدرية

St=مقياس الرسم الخريطة المعممة


الجدول (4) تطبيق معادلة الجذر التربيعي للتعميم الخرائطي الآلي في البحث

مة	الخريطة المعم	عدد الخلايا في	عدد الخلايا في الخريطة المصدرية	الخريطة	في	مقياس الرسم المصدرية	نوع الدراسة
مقياس 1:100000	مقیاس 1:50000	مقياس 1:25000					
19259701	27237331	38519403	60904524	1:10000			مرئية قضاء كركوك

المصدر: من عمل الباحث بالاعتماد على الطريقة الاحصائية.

وخلاصة ما تقدم يجد البحث أن مسالة التعميم الخرائطي الآلي لمقاييس متعددة بحاجة إلى دراسة معمقة في مجال نظم المعلومات الجغرافية (GIS) لدفع التقنية لافق أوسع من خلال تطوير خوارزميات وبرمجيات جديدة ، ويتوقع أن يزيد استخدام هذه التقنيات كأداة او تخصص للنمذجة الخرائطية بوتيرة اسرع في التطبيقات الخلوية لحل الكثير من المشكلات المرتبطة بالمكان للظواهر الجغرافية المنفصلة والمتصلة.

الخريطة (10) المقارنة الخرائطية وفقاً للمقاييس المختلفة للتعميم الآلي للخلايا الشبكية لمدينة كركوك

المصدر: الباحث، اعتماداً على حزمة مخرجات برنامج ARC GIS 10.8

الاستنتاجات.

1-ان التقنيات الجغرافية الحديثة والبرمجيات الجديدة وفرت امكانية التعامل مع البيانات الجغرافية الشبكية واعداد الخرائط الشبكية بكفاءة عالية، ان عملية التعميم الخرائطي الآلي للخلايا الشبكية لها أدوات خاصة ضمن حزم تلك البرمجيات لاسيما أدوات التحليل الإحصائي والرياضي يمكن الاستعانة بها في تحليل البيانات الفضائية ذات النوعRaster .

2-ان عمليات التعميم الخرائطي الالي بالإمكان تطبيقها على الخرائط الشبكية وبمقاييسها المختلفة وبناء النماذج الجديدة لها.

3-ان عدم الالمام بحيثيات التعميم الآلي سيؤدي الى تعطيل قناة الاتصال الخرائطية، ومن ثم فقدان الهدف الذي اعدت الخريطة من اجلة.

4-الابتعاد عن التعميم الخرائطي في الظواهر الجغرافية المختلفة في نفس المنطقة.

التوصيات:

1-الاعتماد على بيانات الخلايا الشبكية للمرئيات الفضائية في اعداد خرائط وفق طرق ووسائل وأساليب التمثيل المناسبة في نظم المعلومات الجغرافية.

2-التأكيد على دراسة التعميم الخرائطي والامام بتطوير الادوات لخاصة به في بيئة نظم المعلومات الجغرافية (GIS)نتيجة لقلة الدراسات الخاصة بهذا الموضوع في عالمنا العربي عند عداد الخرائط الجغرافية لمختلف لدراسات باعتباره من احد العناصر المهمة والأساسية في علم الخرائط.

المصادر:

1) د. لمياء حسين علي السبعاوي، عمر عبد اهلل القصاب، مشكلات في التعميم الخرائطي الخطي في برامجيات نظم المعلومات الجغرافية، مجلة التربية والعلم ، جامعة الموصل، 2008، 363.

2- صفاء عدنان جاسم الحمداني، التحليل الهيدرولوجي لحوض وادي شيوه سور في منطقة جمجمال شمال شرق العراق باستخدام تقنيات الاستشعار عن بعد ونظم المعلومات الجغرافية GIS، مجلة جامعة كركوك، للدراسات الانسانية المجلد18، ع2 ،2023، ص260.

 3 - على عبد عباس العزاوي، مقارنة تقنيات الاستيفاء المكاني لخرائط مناسيب المياه الجوفية في قضاء تلعفر باستخدام نظم المعلومات الجغرافية GIS، مجلة جامعة كركوك، للدراسات الانسانية المجلد $_{14}$ ، $_{14}$: 2019، محكم.

4- نمير نذير مراد الخياط، حسن سوادي نجيبان الغزي، وسام حمود حاشوش الفتلاوي، اسس تعميم المعالم على الخرائط الطبوغرافية لمحافظة ذي قار، مجلة كلية التربية، جامعة واسط، العدد41، ج2، 2020، 228. (5) على بن معاضة الغامدي، عشوائية طريقة اختزال الخلايا في تعميم الخرائط الشبكية طريقة مقترحة، جامعة الكويت، مجلة العلوم الاجتماعية، مج31، 48، 2003، ص886.

6- عمرو جمال فتحي قروط، معالجة المرئيات الفضائية واستخراج البيانات باستخدام برنامج ArcMap وبرنامجErdas ، الكلية الجامعة للعلوم التطبيقية،2017،ص7.

حبدالرحمن مصطفى دبس، التعميم الخرائطي لشبكة طرق المدينة المنورة على الخريطة 1/500000 ، كلية الاداب والعلوم الانسانية، جامعة طيبة، ص156.

Automated generalization of cellular data in satellite visualizations in geographic information systems for the city of Kirkuk M.D. Ziad Muhammad Hamid

University of Kirkuk/Faculty of Arts, Department: Applied Geography Abstract

Studying the mechanism of deriving digital maps from satellite visuals is one of the important modern methods in building and designing digital maps, which is aimed at studying the derivation of the reduced digital map from satellite visuals from modern methods in geographic techniques and benefiting from them in geographical planning, which in turn works on decision-making through Building a geographical database and extracting information from satellite visuals, where many methods were used in the process of generalization and cartographic reduction, including (Aggregate - clean boundary - Majority Filter), as well as the use of statistical testing methods, which are (Map Algebra method) and Morans spatial analysis method. Local Morans) in testing the accuracy of cartographic generalization according to different scales for the maps produced. The process of automatic generalization was carried out based on different scales in the generalization process, which are 50000/1, scale 25000/1, and scale 100000/1, and applying the equation for the process of automatic generalization and showing the most appropriate scales for conducting Generalization and downsampling process for pixels derived from space visuals.