

THE USE OF ELECTRIC TRANSFER 448 kHz THERAPY IN SPORT AND IMPACT OF HUMAN MESENCHYMAL STEM CELLS

Beata Mazurek ¹ Qusay Mohammed Ali ² Nahida Hamed Mashkoor ² ₀ University of Physical Education in Kraków (Poland)¹ University of Basra / College of Education and Sports Sciences^{2,3}

Article information

Article history: Received 13/5/2019 Accepted 17/6/2024 Available online 15, Nov,2024

Keywords:

mesenchymal stem cells – MSC, Capacitive-Resistive Electric Transfer, cells therapy.

Abstract

Mesenchymal stem cells (MSCs) can differentiate into more than one type of specialist cells in our body. They are a potential source of progenitor cells for osteoblasts, chondroblasts, adipocytes, skeletal muscles, and cardiomyocytes. They may also differentiate into ecto- and endodermal cell lines, e.g., neural cells, glial cells, hepatocytes and karetinocytes. Mesenchymal cells represent only 0.001-0.01% of all bone marrow cells, are a crucial population of cells participating in the proliferative phase of damage regeneration, and they are present in nearly all body tissues, the largest number of them is in adipose tissue and blood. Properties of MSCs have formed foundations for a new interdisciplinary field, tissue engineering. Its extensive applications include aesthetic medicine, dermatology, orthopaedics, plastic surgery, physioaesthetics, and sports medicine. The aim of this study is to present selected properties of the mesenchymal stem cells exposed to an electric stimulus of frequency of 448 kHz using Capacitive-Resistive Electric Transfer (CRET) technology.

DOI: <u>https://doi.org/10.55998/jsrse.v34i4.589</u>©Authors, 2024. College of Physical Education and sport sciences, University of Basrah. This is an open-access article under the CC By 4.0 license (creative commons licenses by 4.0)

1. Research Definition

1. Introduction and Importance of Research

Our subject of interests will be mesenchymal stem cells, being poorly differentiated and having an ability for self-renewal and proliferation into one or more types of specialised cells concerning observation of changes in their properties and proliferation following exposure to radio-frequency current. Sources for effectively obtaining MSC cells include bone marrow, adipose tissue, umbilical blood, placenta, dental pulp, skeletal muscles and menstrual blood. The research conducted at the scientific and research centre in Spain showed that it is possible to stimulate proliferation of mesenchymal cells using radio-frequency current in a capacitive-resistive electric transfer (CRET) mode. The electrical stimulation gave very satisfactory results in a process of restoring damaged tissues. The best outcome was obtained using the electric current of radio frequency of 448 kHz, and this frequency was patented by the research and scientific centre in Barcelona. The developed cell therapy method is called Indiba Activ.

RADIO-FREQUENCY CURRENT OF 448 KHZ FREQUENCY IN CRET MODE

This technology is based on the current flow through one of two electrodes with an electrical impulse stimulating tissues. The electrode working in the capacitive mode – Capasitive – is coated with an insulation layer acting as a dielectric in a capacitor. The metal part of the active electrode is charged positively, while the external layer is made of special plastic material and has a negative charge. **Dielectric particles** placed in a capacitor **electric field** become partly or wholly organised (**polarisation**), and this way an additional **electric field**, opposite in direction, appears inside of the capacitor. (Abdel & Ali, 2014) A speed of polarisation changes depends on the wave or the signal frequency. The current reaches patient tissues as a flow of charged ions and particles which collide with immobile particles of the tissue and cause a thermal effect and, what is most important, restore an electrical potential in the cell external environment. The capacitor mode results in a surface effect, improving tissue vascularisation and their anatomic properties. As for a resistive electrode, without an insulating layer, that is, without the capacitor dielectric, the electric current is delivered with an ion flow resulting in an increase in the temperature in tissues according to the Joule's law.

Heat emitted as a result of current flowing through a tissue is directly proportional to tissue resistance encountered by the current. An energy of the electrical current is transformed into the inner energy of the conductor. In the resistive mode, hyperthermia is located deeper than in the capacitor mode. The flow is possible even in the event of high impedance resulting from a poorer

hydration and vascularisation of the tissue. The resistive mode results in restoration of the electric potential inside and outside of the cell following intercellular ion exchange (Schäffler & Büchler, 2007) (Abdul Baqi et al., 2014)

In a therapy based on the capacitive–resistive electric transfer (CRET), intra– and extracellular stimulation occurs caused by activation of the ion pump; in consequence, the physiological electric function of cells and a normal membrane potential are restored. The intracellular ion exchange is possible due to linear ion movement. Long–term studies of an effect of different frequencies on cells showed that the current frequency has a crucial influence on parameters and a direction of the ion flow. At frequencies below 448 kHz, an intracellular effect is not achieved because the membrane behaves as an insulating layer, and only a vibration–like movement of ions is initiated. The 448 kHz frequency initiates a linear ion flow resulting in intercellular exchange and a cascade of biochemical processes in the cell. Higher frequencies, above 448 kHz, cause ions to revolve around their axis resulting in a molecular friction accompanying ion rotation; and this causes only a strong thermal effect without intercellular ion exchange. (HERNÁNDEZ–BULE et al., 2016) (Mustafa et al., 2010) (Jackson et al., 2007)

Depending on a dose of the electrical impulse in the capacitive-resistive electric transfer (CRET), one of the three effects can be achieved on a physiological level, i.e., stimulation, vascularisation or hyperactivation. By selecting appropriate current doses while maintaining the 448 kHz frequency, cell metabolism and tissue oxidation can be improved, and tissue microcirculation can increase. Blood vessels are dilated, and efficiency of venous and lymphatic reabsorption improves. (Mashkour, 2015)

CRET MODE INFLUENCE ON MESENCHYMAL CELLS PROLIFERATION

Previous studies on the radio frequency were conducted mainly by research teams in scientific centres: Ramón y Cajal from Madrid, CIMA and QUIRON from Barcelona, Santa Cruz and Sant Pau from Barcelona, University Clinic from Valencia, as well as in Canada, the U.S., UK and Japan. Furthermore, prestigious Institutes of Medicine, Science and Sports CONI from Rome and Gaetano Pini from Milan were involved in the research.

The research showed that exposure of mesenchymal cells to an electrical impulse of 448 kHz used in the CRET cell therapy results in a positive regulation of ERK 1/2 pathway and promotes proliferation of mesenchymal cells obtained from healthy donors. The results indicate effectiveness of the CRET therapy in repair processes in an injured area by active proliferation

of cells obtained from adipose tissues. The adipose tissue is the best source of stem cells in adult people(HERNÁNDEZ-BULE et al., 2016)

An exposure to pulsed electrical impulse of 448 kHz used in therapies with the capacitiveresistive electric transfer increases a percentage of cells in S, G2 and mitosis phases, as well as causes proliferation of mesenchymal stem cells in humans. The obtained results show that the CRET electrical treatment may stimulate tissue regeneration through activation of proliferation of resting adipose derived stem cells (ADSC) present in the damaged area, without compromising multipotential nature of stem cells in terms of future adipogenic, chondrogenic, or osteogenic differentiation. This data, together with previously published experimental evidence, strongly supports the hypothesis that molecular and cellular mechanisms, other than thermal ones, may be of crucial importance for the therapeutic effectiveness of treatment with the CRET method. Therefore, CRET can be proposed as an effective auxiliary method in regeneration of various

lesions in tissues and vessels(Hernández-Bule et al., 2014)

In vitro differentiation of mesenchymal stem cells in a specific direction requires the use of specific growth factors or chemical compounds having differentiation properties. Selected factors determining MSC differentiation are presented in the table below(Shah & Farrow, 2012)

Biological and chemical differentiating	Differentiation directions
factors	
TGF-β	chondrocytes, smooth myocytes
IGF-1	chondrocytes
bFGF	chondrocytes, osteoblasts, neurons
EGF	chondrocytes
PDGF	chondrocytes, myofibroblasts, smooth
	myocytes
VEGF	endothelial cells
BMP-12	cenocytes
Dexametasone+isobutyImethyIxanthine+indo	adipocites
methacin+insulin	
Ascorbic acid	chondrocytes
β-glycerophosphate	osteoblasts

5'-azacitidine	cardiomyocytes
Linoleic acid	oligodendrocytes, neurons
DMSO + dexametasone	astrocytes

MSC PROLIFERATION INTO CHONDROCYTES AND OSTEOBLASTS STIMULATED BY AN ELECTRICAL IMPULSE IN CRET MODE

Growth factors modulating differentiation of mesenchymal stem cells include a family of TGFb (TGF-b1, TGF-b2 and TGF-b3) factors, as well as bone morphogenetic proteins (BMPs). In studies on human MSC it was found that TGF-b2 and TGF-b3 are more active than TGF-b1. Following TGF-b2 and TGF-b3 stimulation, the synthesis of proteoglycans and type II collagen increased. Bone morphogenetic proteins (BMPs) (2, 4 and 6) participate in MSC differentiation towards cartilage cells (Burke & Tosh, 2005) Cartilage regeneration is a difficult process due to high resistance, low proliferation index and poor vascularisation of this tissue. Studies on the influence of the electrical impulse in the CRET mode on damaged cartilage showed that the induction effect of stem cell proliferation supports cartilage regeneration by an increase in differentiation of stem cells towards cartilage cells, synthesis of chondrocytes in tissues and of macrocytes C in extracellular matrix of the cartilage. A stimulation in the resistive mode increases proliferation and accelerates mesenchymal cells differentiation into chondrocytes and osteoblasts, thus accelerating the process of healing of injured tendons and cartilages, and shortening the time required for bone union. (McDonough & Watson, 2008) (Bajek et al., 2014)

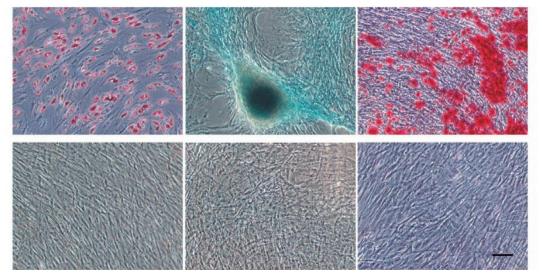

Experimental results provided evidence that stimulation with radio-frequency current in the CRET mode acts at a cellular level. Stem cells exhibit an increased expression and activation of Sox-5, molecules involved in chondrogenesis and formation of cartilage. The studies revealed an accelerated synthesis of the cartilage matrix in a presence of chondroitin sulphate and glycosaminoglycans (KNEBEL). Beneficial therapeutic effects were also demonstrated in patients with damaged bone tissue, and with degenerative lesions undergoing CRET-based treatment. The studies showed that apart from differentiation of stem cells into osteoblasts (bone cells), an activity of alkaline phosphatase also increases, calcium deposits are formed and mineralisation and formation of bone tissue accelerates. (HERNÁNDEZ-BULE et al., 2016)

Figure 1 shows an effect of the electrical impulse in the CRET mode on proliferation of cells isolated from the adipose tissue. The photos show an effect after 14 days of the exposure to the

electrical impulse. Visible differentiation into different types of cells: adipocytes, chondrocytes and osteocytes. (Jackson et al., 2007)

Fig.1

Adipocytes Chondrocytes Osteocytes

CRET THERAPY IN SPORTS

Due to the therapeutic effects at a cellular level described above, electrotherapy in the CRET mode is used in sports orthopaedics and rehabilitation. It is used by over 200 sports federations all over the world. CRET electrotherapy is used, amongst the others, by: FC Barcelona, Espanyol, AC Roma, and Tinkoff SAXO. In Poland, the CRET cell therapy was used by physiotherapists of the National Football team during their preparations to EURO 2016 and supported players of the National Handball Team at the Olympic Games in Rio. At the Olympic Training Centre KOLNA,

the CRET technology based on the 448 kHz frequency is used by Polish Women Basketball Champions from Wisła Can–Pack team and many champions and Olympic athletes from various disciplines, including kayakers, football (Mahmoud et al., 2015)players, race walkers, runners, (Mashkor, 2017) judokas, cyclists, MMA wrestlers, or American football players. The CRET technology is used to treat sports and orthopaedic injuries, as well as for post–exercise regeneration and to prepare muscles for the exercise. Currently, the first in Poland study will be conducted at the University of Physical Education in Krakow, concerning the effect of the electrotherapy in the capacitive–resistive mode at the 448 kHz frequency on rheological,

biochemical, hormonal and enzymatic properties of blood in terms of post-exercise regeneration and prevention of myocardial infarctions and embolism in runners above 40 years of age. The research team will be led by a renowned rheologist, Professor Zbigniew Dąbrowski, PhD

References

- Abdel, N. H. M. D. N., & Ali, Z. B. D. Q. M. (2014). The effect of using different resistors characteristic speed and power some variables Kinmatik and the achievement of the enemy 100 m. *Journal of Studies and Researches of Sport Education*, *41*.
- Abdul Baqi, Y., Mashkoor, N. H., & Ali, Q. M. (2014). The Impact of Training Mtaulp Force on Some Variables Albyumkanikip and Speed to Pass Another Hurdles and completing the 400 meter Hurdles. *Al. Qadisiya Journal for the Sciences of Physical Education*, *14*(1 part (2)). https://www.iasj.net/iasj/article/93561
- Bajek, A., Olkowska, J., Gurtowska, N., Kloskowski, T., Walentowicz–Sadlecka, M., Sadlecki, P., Grabiec, M., & Drewa, T. (2014). Human amniotic–fluid–derived stem cells: a unique source for regenerative medicine. *Expert Opinion on Biological Therapy*, *14*(6), 831–839. https://doi.org/10.1517/14712598.2014.898749
- Burke, Z. D., & Tosh, D. (2005). Therapeutic potential of transdifferentiated cells. *Clinical Science*, *108*(4), 309–321.
- HERNÁNDEZ-BULE, M. L., MARTÍNEZ-BOTAS, J., TRILLO, M. Á., PAÍNO, C. L., & ÚBEDA, A. (2016). Antiadipogenic effects of subthermal electric stimulation at 448 kHz on differentiating human mesenchymal stem cells. *Molecular Medicine Reports*, 13(5), 3895–3903. https://doi.org/10.3892/mmr.2016.5032
- Hernández–Bule, M. L., Paíno, C. L., Trillo, M. Á., & Úbeda, A. (2014). Electric stimulation at 448 kHz promotes proliferation of human mesenchymal stem cells. *Cellular Physiology and Biochemistry*, *34*(5), 1741–1755. http://www.ncbi.nlm.nih.gov/pubmed/25427571
- Jackson, L., Jones, D. R., Scotting, P., & Sottile, V. (2007). Adult mesenchymal stem cells: differentiation potential and therapeutic applications. *Journal of Postgraduate Medicine*, *53*(2), 121–127.
- Mahmoud, M. A., FadousNamrawi, A. O., & al-Dulaimi, S. H. H. (2015). Impact exercises compromise vehicle (physical skill) in different shapes and spaces on some of the physical variables and speed performance skills of football players for applicants. *Sport Culture*, *6*(2).
- Mashkor, N. H. (2017). The stylistic influence of small units (homogeneous and heterogeneous) on some Elkinmetekih variables and the level of technical performance and achievement of the effectiveness of the discus. *Journal of Studies and Researches of Sport Education*, *50*.

Mashkour, N. H. (2015). THE EFFECT OF TRAINING & COMPONENT OF HARMONIC CAPACITY IN SOME PHYSICAL, BIO-KINEMATIC VARIABLES & ACHIEVEMENT OF LONG JUMP.

McDonough, S., & Watson, T. (2008). Electrotherapy: evidence-based practice.

- Mustafa, A. M., Naheda, H. M., & Qusay, M. A. (2010). Reflected the importance of research interest in the field of Alrkdp approximate. *Journal of Studies and Researches of Sport Education*, *28*.
- Schäffler, A., & Büchler, C. (2007). Concise review: adipose tissue-derived stromal cells—basic and clinical implications for novel cell-based therapies. *Stem Cells*, *25*(4), 818–827.
- Shah, S. G. S., & Farrow, A. (2012). Trends in the availability and usage of electrophysical agents in physiotherapy practices from 1990 to 2010: a review. *Physical Therapy Reviews*, 17(4), 207–226. https://doi.org/10.1179/1743288X12Y.0000000007