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Abstract

Let 4 be the set of solutions of a max — min

product fuzzy relation equation on finite spaces. In

this paper we use some algorithms to solve max —

min product relation equation.
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Introduction

The concept of fuzzy relation equations introduced by Sanchez [5],
is a generalization of well known Boolean equations.
Let A and B be two fuzzy sets of two finite spaces X, Y,

respectively and R a fuzzy relation of the set XxY. Considered the

following fuzzy relation equation:

Where “0” is the max —min product composition. Speaking with
terminology of systems theory, A and B represent a class of fuzzy inputs
and a class of fuzzy equation (1).

In this paper, we illustrate other algorithms, to solve equation (1).

Preliminaries

Let | = [0, 1] be the real unite interval and we set for every
a,bel,a=1-a, anb=min{a,b}, avb=max{a,b}, [1], of course we have:

avb=anab,arb=avb (DeMorgan’s Laws).

(avb)ac=(anc)v(bac) , (@arb)vc=(avb)a(bvc) [distributtivi
ty laws].

Let X={X;, Xz,..., Xn}, Y={y1, VY2, ....ym) be finite sets,
F(OX)= {A: u, : X - 1} the set of all fuzzy sets of X and 1,={1,2,...,r} the
set of the first r natural numbers.

Following Zedeh’s [1, 2], we remember that F(x) is a complete
distributive lattice with the pointwise operations defined for every
as:

X, eX,iel

n

A(X;) =1-A(X) .
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(AAB)(X) = A(x)AB(X), (AvB)(x;)=A(X) Vv B(X).
(Ao B)(X;) = A(X;)°B(X;).

and the natural ordering

A<B If A(x,)<B(x,) where AB € F(X)

Let x, e X, y;eY, iel, jeJ,  werecall the following definitions:-

n?

Definition 1 [1]

Afuzzy relation R between two finite sets X and Y is an element of
F(XxY).

Definition 2 [1]

Let A denote the set of all possible vectors A=[a, /i <1,] such that,
a, €[0,] forall i <1, and let the partial ordering 4 be defined as follows:

For any pair *A, AecA, 'A< *A andonly if *a,<*a,forall iel,.

Definition 3 [3,4]

An element A of S(R,B) is called a maximal solution of Eq.(1), if
forall Ac S(R,B), A=A implies A=A.
Is it well established that whenever the solution set S(R,B) =¢ , it is

always contains a unique maximal solution, A.

Definition 4 [4,5]

An element A of S(R,B) is called minimal solution of Eq.(1) if, for

all AeS(R,B), A<A impliess A=A and when S(R,B) =#¢ it may

contain several minimal solution.




A General Solutions to Fuzzy Relation Equation
Let ReF(X xY)and AeF(X) we define AcR=B (1), BeF(Y),

the max-min product composition of R and A as:

B(Y,) = (Ae RI(Y,) = v, ATAGX,, R(X,, Y]

Let the membership matrices of A,R and B be denoted by A[a;] ,
R=[ri;], B=[b;], respectively, where
& = pa(X), Ny = s (X, y;)0; =g (y;) foralliel and jeJ, .

This mean that all the entries in this matrices AR and B are real
numbers in unit interval 1=[0,1].

When matrices A and B are given and Matrix B is to be determined
from Eq.(1) the problem is trivial. It is solved simply by performing the
max-min multiplication — like operation on A and R as defined by Eqg.(20.
Clearly the solution in this case exists and is unique. The problem
becomes far from trivial when one of the two matrices on the left —hand
side of Eq.(1) is unknown. In this case, the solution is neither guaranteed
to exit nor to be unique.

Since B in Eq.(1) is obtained by composing A and R, it is
suggestive to view the problem of determining A from B and R as a
decomposition of B with respect to R. Let us assume that a pair of
specific matrices B and R from Eq.(1) is given and that we wish to

determine the set of all particular matrices of the from A that satisfy
Eq.(1).




Let each particular matrix A that satisfies Eqg.(1) be called its
solution and let S(R,B)={ A/A -R=B} denote the set of all solutions,
(the solution set). It follows immediately from Eq.(2) that if

max r;; <b;

icl,
then no value a, €[01] exist that satisfy Eq.(1)and , no matrix A exists
that satisfies the matrix equation thus S(R,B)=4¢.

This proposition allows us, in certain cases to determine quickly
that Eqg.(1) has no solution. However it is only a necessary and not a
sufficient conditions for the existence of a solution of Eq.(1),that is
S(R,B)=¢.

When ¢ , the maximum solution A = (&, i<l ) of Eq.(1) is
determined.
By: &=min o (rij, b))

ifr, b,

b,
Where o (rij , bj)= {1‘

otherwise

When A determined in this way does not satisfy Eq.(1), then

S(R,B)= ¢, that is the existence of the maximal solution A as determined
by Eq.(3) , is a necessary and sufficient conditions for S(R,B)= ¢.
So Ais the maximum solution of the equation and we next

determined the set S(R,B) of the minimal solutions.

The method we described for determining all minimal solution of
Eq.(1) is based on the assumption that the component of the vector B in
Eq.(1) are ordered such that b;>b,> >by, if the component are not
initially ordered in this way we permute them appropriately and perform
the same permutation on the columns of the matrix R. This procedure

clearly yields an equivalent matrix equation which has exactly the same




A

set of solutions as the original equation. When 4,

=0 for same cwe may
eliminate this component from A as well as the ith row from matrix R,
since clearly &, =0 implies a;=0 implies a;=0 for each A< S(R,B). Further
more when b;=0 for some jeJ, we may eliminate this component from

B and the ith column from matrix R. This reduction is not necessary, the
reduced equation is easier to deal with. When we obtain solutions of the

reduced equation, we simply extend them by inserting zeros at the
locations that were eliminated in the reduction step. The set S(R,B) of all
minimal solutions of Eq.(1) can be determined by the following
procedure :-

Determine the sets J; (A)={iel,/min(,r,)=b, } for all

j e J_ and then construct their cartesian product J( A= HJ,.(A) denote

jedn
elements of J,(A) by g=(8,/i<J,)-
For each geJ(A) and each i e I, determine the set
K(Bi)=1i€d, /B =i
For each pe<J(A) generate the n-tuple g(B)=g.(8)/iel,) by
taking

max b, if K(B,i)#¢

0 otherwise

From all the n-tuple g(p) generated in step (3) select all the
minimal ones by pairwise comparison. The resulting set of n-tuple is

the set S(R,B) of the minimal solution of Eq.(1).

Finally the solution set S(R,B) is fully characterized by the maximum

and minimal solutions in the following sense:




It consist exactly of the maximum solution A, all the minimal

solutions and all elements of A that are between A and each of the
minimal solution.

Formally S(R,B) =U<A, A>

A

Where the union is taken for all A< S(R,B)

Example : Given
1 4 5

R , B=[.8, .7, .5, 0]

1
|97 20
|81 20

1.3 0

Determine all solutions of AcR=B

Sol. First we determine whether S(R,B)=¢ or not, by:

Max(.1, .9, .8,.1)=9>.8=b;

Max(.4, .7, .1, .3)=.1>.7=Dh,

Max(.5, .2, .5, 0)=.5 = .5 =b;

Max(.1,0,0,0)=.1>0=b,

Thus S(R,B)=4¢

Now, since S(R,B)=¢, we determine the maximum solution A by
a,=min(1,1,1,0)=0

a,=min(.8,1,1,1)=.8

a,=min(1,.7,1,1)=.7

a,=min(1,1,.5,1)=.5

A= (0, .8, .7, .5). we can easily check that Ae S(R,B)

Since 4,= 0 we may reduce the matrix equation by excluding a; and the

first row of the matrix R, since b, = 0 we may make a further reduction by




excluding b, and the fourth column of R, the reduced equation has the
form

Where a;, a, and as in this reduced equation represent a,, a; and a, of the
original equation, respectively.
Next we apply the four steps of the procedure for determining the set
S(R, B) of the minimal solution of this reduced matrix equation:-

1-  Employing the maximum solution A =(.8, .7, .5) of the reduced

equation, we obtain J,(A) = {},J,(A) = {1,2}, J,(A) = {2,3}

Hence J(A) =] ]J,(A)= {L}x {L2}x {2,3}

2-  The sets K(g,i) that we must determine for all ie 1, are listed in

the following table:

K(B.1)

2 3

{1, 2} {3} ¢

{12}y ¢ {3}

{1y {23 ¢

{1} 2y {3}

3-  foreach g<J(A), we generate the triples g(g)which are also listed
in the table above.

4-  Two of the triples g(p) in the table above are minimal: (.8, .5, 0)
and (.8, 0, .5).




Therefore comprise all the minimal solutions of the reduced matrix
equation. By adding 0 as the first component to each of these triples, we
obtain the minimal solution of the original matrix equation. Hence,

S(R,B) {*A=(0,.8,.5,0), *A=(0,.8,0,.5)}

The set S(R,B) of all solutions of the given matrix equation is now fully

captured by the maximum solution A=(0, .8, .7, .5) and the two minimal

solutions *A=(0,.8,.5,0)and A =(0,.8, 0, .5) SO we have :

S(R,B) ={AcA/ ‘A< A<A}U{AcAl’A<A<A}.




Basic Procedure to determine all solutions of the

equation A o R=B

1-  If max r,; <b; then the equation has no solution S(R,B) =¢ and the

e,
procedure terminates, otherwise proceed to step 2.

2-  Determine A by procedure 1.

3- If A is not a solution of Eq.(1) , then the equation has no solution ,
S(R,B) =¢ and the procedure terminates, otherwise proceed to step 4.

4-  Foreach 4 = 0and b; = 0, exclude these component as well as the
corresponding rows i and the columns j for the matrix R in Eq.(1): this
results in the reduced equation A'cR'=B'.....(2)

5-  Determine all minimal solutions of the reduced equation (2) by

procedure 2: this result in é(R’, B')

6-  Determine the solution set of the reduced -equation(2)

S(R,B)=[J<A, A’ > where the union is taken over all A’ e é(R’, B).
Ar

7- Extend all solutions in  S(R’,B’) by the zeros that were excluded in

step 4: this result in the solutions set S(R,B) of equation(1).

Procedure (1)




1-

2-

3-

4-

5-

From the vector A=(4,,i<1,) in which & =min o(r, ,, b;)

b. ifr.. >b.
Where o(r,;,b)=4 ' """
’ 1 otherwise

Procedure (2)

Permute elements of p’and the corresponding columns of R’
appropriately to arrange them in decreasing order.
Determine the sets J;(A)={iel,/min(a’,r’)=b}} forall jeJ, and

then constructed their cartesian product J(A") = []J,(A).

jedn
For each geJ(A) and each i el , determined the set,
KB ={ied, /B =i
For each g eJ(A) generated the n-tuple g(8) = (gi(B)/iel,) by
taking

9:(5) ={J‘€K<ﬂ“ ‘

0 otherwise

max b, if K(ﬂ,i)¢¢}

From all the n-tuple g(8) generated in step (4) selected only the

minimal ones this result in é(R’, B').
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