

Available online at: <u>www.basra-science-journal.org</u>

ISSN -1817 -2695

A Correlation Analysis Study of Substituent Effects by ¹³C Nuclear Magnetic Resonance Spectrometry: Effect of Solvent on The Chemical Shift of C_{α} and C_{β} of Methyl Substituted Cinnamate.

Sabih Abdul-wadood Othman Al-Shawi

Department of Chemistry, College of Science, University of Basrah, Basrah, Iraq.

E-mail address: sabihdr@yahoo.com

Received 4-12-2013, Accepted 1-10-2013

Abstract

The ¹³C Substituent Chemical Shifts (SCS) for C_{α} and C_{β} atoms for the meta-X, meta-CH₂X and para-CH₂X substituted **methylcinnamate**(X= H, Me, OMe, OPh, NMe₂, F, Cl, Br, I, CF₃, CN, NO₂) in six different solvents (EtOH, Me₂SO, Me₂CO, CDCl₃, CCl₄ and C₆H₆), were modelled by two different types of substituent parameter: namely mono substituent parameter (MSP)(Hammett's model), and dual substituent parameter DSP(modified Swain-Lupton model). For both C_β and C_α in meta-X series and the para-CH₂X series, the quality of Hammett's model and the modified Swain-Lupton model were found to be similar, while for C_β and C_α in the meta-CH₂X series the modified Swain-Lupton model is the best one. There is no significant difference between the reaction constants values in the same model, of the same atom of the same series in different solvents. The final conclusion, is that no solvent effect on CH₂X groups when studied by ¹³C NMR spectrometry on using Hammett's and modified Swain-Lupton models.

1. Introduction

The chemical shifts in ¹³C NMR spectra are very convenient to study the transmission of electronic effects of substituents in organic molecules, being exceptionally sensitive to the distribution of electronic density at particular carbon atoms. The most frequently used analysis of ¹³C substituent chemical shifts (SCS) is based on the principles of linear free energy relationships (LFER) comprising the MSP (mono substituent parameter)(equation 1) or

DSP (dual substituent parameter)(equation 2) in the forms:

$$SCS = \rho\sigma \tag{1}$$

$$SCS = \rho I \sigma I + \rho R \sigma R \qquad (2)$$

where SCS are the substituent chemical shifts, ρ is the proportionality constant reflecting the sensitivity of the ¹³C NMR chemical shifts to substituent effects, σ is the corresponding substituent constant. ρ_I and ρ_R are weighing factors for the

field/inductive and resonance effect respectively.

The dependence of the Hammett reaction constant ρ on the solvent is often very marked and has been discussed since the earliest days of linear free energy relationship **LFER**. Indeed Hammett[1] predicted a linear relationship to the reciprocal of the dielectric constant. One of the most remarkable features of the Hammett equation is, in fact, its apparent wide applicability irrespective of choice of solvent.Thus σ values. based on the ionization of benzoic acids in water at 25 °C. have been used in the correlation analysis of the reactions carried out in a wide range of aqueous organic mixtures and also individual organic solvents, even as non-polar as dioxane or toluene^[2] or gas-phase. In such correlations one or two of the chosen substituents may give deviate points and such observations are sometimes attributed to specific variations of sigma values with solvent.

Recently, Ludwig et al.[3] have measured dissociation constants of 38 mono substituted benzoic acids in water and in six organic solvents by potentiometric titration. The sets of pK values were correlated with ordinary Hammett σ values derived from Exner's critical compilations[4]. As might be expected, potentially hydrogen-bonding substituents are especially prone to show deviations. Ptela et al.[5] submit the results of the above study principal components analysis and factor analysis produce sets new Hammett substituent constants, for the set of the six organic solvents.

A very large study of a rather different kind has been carried out by Hoefnagel and Wepster[6] on the dissociation constants of benzoic acids in water-organic solvent mixtures.

Somewhat related studies have been pursued by Fan and colleagues under the title of "The Effect of Hydrophobic-Lipophilic Interactions on Chemical Reactivity"[**7-9**].

meta R = X or CH_2X para $R = CH_2X$

X = H, Me, OMe, OPh, NMe₂, F, Cl, Br, I, CF₃, CN, NO₂

Scheme 1.

The majority of styrene derivatives has only a limited solubility in aqueous or aqueous organic solvents, and there is no guarantee that inductive effects are solvent independent. Indeed, a solvent dependence study on the styrenes has shown that they are not. [10] As a possible alternative approach Happer et al.[11] decide to look at the effect of meta- and para-XCH₂-substituents on the ¹³C NMR chemical shifts of styrene derivative. In such systems, the resonance effects present, were and C-H hyperconjugations between the -CH₂- group

and the aromatic nucleus being possible, but hoped that the effect of this on the overall chemical shifts might either be constant or proves proportional to the inductive effects of the substituents involved.

The system chosen for investigation was the m-X, m-XCH₂ and p-XCH₂-substituted methylcinnamate (Scheme 1). The success or failure of the approach should be independent of the nature of any substituent(s) on the β -carbon, and the choice of a single methoxy carbonyl group was based on convenience.[11]

In the course of obtaining the data for the C_{β} shifts, those for the α -carbons also become available. Brownlee and his coworkers[12] have reported that ¹³C NMR chemical shifts for carbons of these types are also influenced by the electronic effect of substituents. The analysis of their C_{α} data using the **DSP** equation of Ehrenson et al.[13] led to negative values of ρ_{I} and ρ_{R} and these were interpreted in terms of a localized polarization of the side-chain arising from the direct field effect of the substituents. The explanation is not entirely satisfactory it adequately accounts for the negative values obtained for ρ_{I} . It does not

2. Procedure

The ¹³C NMR chemical shifts of the α and β side-chain carbons of **meta-X**, **meta-CH₂X** and **para-CH₂X** substituted methylcinnamate [14] in six different solvents with "**basis set**" were modeledby different types of substituent parameter, **DSP** and **SSP** models. The single and multiple regressions were performed on **Pentium** (**IV**) **PC** with statistical program by using stepwise regression procedure by computer program, called **Minitab version**

3. Results and Discussion

The chemical shift data for C_{α} and C_{β} for the **XCH₂-substituted** methylcinnamate are listed in Tables 1 and 2 in the form of SCS, which represents the difference in chemical shift between the substituted and unsubstituted derivatives. They are also included for the purposes of comparison are for the corresponding meta-Xdata substituted derivatives. The efficiency with which the electronic effect of \mathbf{X} is relayed to C_{α} or C_{β} will depend on the mechanism by which it is relayed. In case of a direct field effect, the distance between X and the carbon under consideration should be

explain why $\rho_{\mathbf{R}}$ value should also be negative. The explanation advanced by Brownlee to account for negative values for $\rho_{\mathbf{R}}$ in side-chain containing a carbonyl group not valid for ethenyl side-chains. is However, ρ_R value is usually much lower in magnitude than ρ_{I} . For most substituents, the resonance contribution to the overall shifts is much less than the inductive one. The interposition of a -CH2-group between the substituent and the π -system should eliminate any possibility of direct resonance interaction between the side-chain and X. It would be therefore expected to find that the ${}^{13}C$ NMR chemical shift for C_{α} like C_{β} should be proportional to the inductive effects of the substituents.

11.11(MTB). The statistical parameter f-Taft (SD/RMS) was used to judge the quality for these models, (where SD is standard deviation of estimation, and RMS isroot mean squares of the analyzed data). The smaller the f value the better the fit. With values of 0.0-0.1 representing excellent correlations, while f values of 0.1-0.3 moderately good ones, and f values greater than 0.3 representing only crude trends [13].

the most important factor although the orientation of the C-X bond can play a significant part. On the other hand, if the effect involves the distortion of the σ - or π -electron system, (the distance is still important), the effectiveness of transmission should depend to the some extent on whether the XCH₂ group is meta or para to the side-chain.

If we examine the data on this basis, we can see that the effect of substituent on the chemical shifts for C_{α} of the meta- and para-**XCH**₂-substituted derivatives are

relatively independent of whether the \mathbf{XCH}_2 is meta or para to the side-chain. This supports Brownlee's contention[12] that is the field effect which responsible for reverse substituent chemical shifts [i.e. The reverse nature of the effect arises because electron donating substituents set up a dipole that polarizes electron density a way from \mathbf{C}_{α} (toward \mathbf{C}_{β}), and electron releasing substituents set up a dipole that polarizes the electron density toward \mathbf{C}_{α}][15]. It also suggested that any effect arising from differing orientations of the **C-X** bond is only minor one.

In the case of the C_{β} shifts, however, there are considerable differences in the efficiencies of transmission from the two positions. This being the case, the enhanced transmission of inductive effects from the para-position to the β -carbon of the sidechain cannot represent a π -inductive effect, which would involve merely the distortion of the π -system of the field effect of the substituent, but rather a resonance effect, involving a substituent-dependent variation in the extent of hyper conjugative interaction between C_{β} and the CH₂group. The ¹³C SCS for C_{α} and C_{β} atoms for the meta-X, meta- CH_2X and para- CH_2X methylcinnamate substituted in six solvents different (EtOH, Me₂SO, Me_2CO , $CDCl_3$, CCl_4 and C_6H_6), were modeled by two different types of substituent parameters namely: mono substituent parameter MSP (Hammett's model)[16], and dual substituent parameter DSP (modified Swain-Lupton model)[7].

The statistical **f-Taft** (**SD/RMS**) was used to judge the quality of correlation, which is more sensitive than linear correlation coefficient (**r**), or multiple regression coefficient (**R**), and **F-Snedecor** in comparisons of narrowly different model.

For the meta-X series, on using Hammett's model, C_{β} gave an excellent correlations in all solvents except in both solvents **CDCl**₃ and **CCl**₄ which gave a moderately good, with normal reaction constants (ρ) in the range (3.69-4.94), (**Table 3**)

	T-OU	M 60	M 60	CDCI	CCI	C II
Substituent	EtOH	Me ₂ SO	Me ₂ CO	CDCI ₃	CCI ₄	C ₆ H ₆
Н	0.00	0.00	0.00	0.00	0.00	0.00
m-Me	-0.27	-0.25	-0.25	-0.28	-0.25	-0.23
m-OMe	0.19	0.33	0.27	0.32	0.14	0.20
m-OPh	0.88	0.92	0.99	0.66	0.69	0.76
m-NMe ₂	-0.83	-0.70	-0.76	-0.60	-0.71	-0.58
m-F	1.65	1.62	1.63	1.39	1.41	1.31
m-Cl	1.76	1.71	1.73	1.47	1.48	1.35
m-Br	1.72	1.68	1.76	1.49	1.49	1.30
m-I	1.52	1.38	1.46	1.29	1.33	1.16
m-CF ₃	2.30	2.20	2.28	2.01	2.01	1.74
m-CN	2.91	2.55	2.60	2.73	2.63	2.12
m-NO ₂	3.36	3.00	3.02	3.20	3.08	2.53
m-Et	-0.30	-0.27	-0.25	-0.31	-0.29	-0.22
m-CH ₂ OMe	0.24	0.17	0.10	0.18	0.07	0.11
m-CH ₂ OPh	0.35	0.42	0.39	0.40	0.35	0.37
m-CH ₂ NMe ₂	0.30	0.23	0.29	0.18	-0.10	0.07
m-CH ₂ F	0.68	0.58	0.57	0.67	0.65	0.54
m-CH ₂ Cl	0.68	0.63	0.68	0.74	0.72	0.59
m-CH ₂ Br	0.69	0.62	0.69	0.79	0.79	0.59
m-CH ₂ I	0.56	0.49	0.63	0.68	0.67	0.52
m-CH ₂ CN	1.00	0.79	0.88	1.22	1.17	0.90
p-Me	-1.13	-1.09	-1.19	-1.10	-1.04	-0.99
p-Et	-1.08	-1.07	-1.17	-1.10	-1.01	-0.95
p-CH ₂ OMe	-0.14	-0.25	-0.26	-0.13	-0.27	-0.24
p-CH ₂ OPh	0.00	0.05	0.04	0.02	-0.01	0.03
p-CH ₂ NMe ₂	-0.08	-0.33	-0.35	-0.37	-0.52	-0.41
p-CH ₂ F	0.54	0.57	0.52	0.56	0.53	0.46
p-CH ₂ Cl	0.55	0.58	0.58	0.65	0.61	0.48
p-CH ₂ Br	0.59	0.54	0.53	0.66	0.64	0.53
p-CH ₂ CN	0.64	0.40	0.52	0.86	0.81	0.58

Table 1. ¹³C SCS of C_{β} for meta- and para-substituted methylcinnamate in different solvents.

In a comparison with meta-CH₂X series, which gave only crude trends with normal reaction constants in the range (3.31-4.66), (Table 4). On using modified Swain-Lupton model, for the meta-X series, C_β gave an excellent correlations in all solvents except in both solventsCDCl₃ and CCl₄which gave a moderately good with normal reaction constants for field (f) and resonance (r), with blending constants λ (ρ_r/ρ_f) in the range (0.348-0.381), (Table 5). In a comparison with meta-CH₂X series, C_β gave good correlations in all solvents except inCCl₄and C₆H₆ which gave crude trends, (**Table 6**). With lower field effects (**f**) and higher resonance effects (**r**) in all solvents, with blending constants (λ) in the range (**1.556-3.666**). The lowering in the field effect may be attributed to the long distance from the substituent **X**, in the meta-**CH**₂**X** series, to **C**_{β}, while the higher resonance effect may be attributed to the resonance structures of some **CH**₂**X** substituents (**X**= **NMe**₂, **OMe**, **OPh** and **CN**) with the aromatic ring, which enhance the resonance effect of **C**_{β} (**Scheme 2**). 11

Substituent	EtOH	Me ₂ SO	Me ₂ CO	CDCl ₃	CCl ₄	C ₆ H ₆
Н	0.00	0.00	0.00	0.00	0.00	0.00
m-Me	0.23	0.10	0.15	0.19	0.24	0.29
m-OMe	-0.01	-0.06	-0.01	-0.14	0.09	0.11
m-OPh	-0.77	-0.82	-0.78	-0.72	-0.59	-0.76
m-NMe ₂	1.33	1.21	1.34	1.14	1.33	1.48
m-F	-1.55	-1.46	-1.43	-1.38	-1.38	-1.45
m-Cl	-1.70	-1.63	-1.65	-1.70	-1.57	-1.75
m-Br	-1.86	-1.71	-1.75	-1.80	-1.63	-1.80
m-I	-1.89	-1.67	-1.77	-1.85	-1.75	-1.82
m-CF ₃	-1.95	-1.77	-1.76	-1.85	-1.78	-1.96
m-CN	-2.72	-2.29	-2.37	-2.85	-2.59	-2.74
m-NO ₂	-2.77	-2.44	-2.50	-2.93	-2.70	-2.88
m-Et	0.25	0.14	0.25	0.30	0.31	0.44
m-CH ₂ OMe	-0.16	-0.11	-0.04	-0.19	0.00	-0.03
m-CH ₂ OPh	-0.22	-0.20	-0.19	-0.37	-0.23	-0.26
m-CH ₂ NMe ₂	-0.23	-0.15	-0.16	-0.14	0.16	0.19
m-CH ₂ F	-0.53	-0.55	-0.45	-0.70	-0.58	-0.55
m-CH ₂ Cl	-0.65	-0.59	-0.63	-0.74	-0.72	-0.67
m-CH ₂ Br	-0.72	-0.64	-0.70	-0.83	-0.74	-0.79
m-CH ₂ I	-0.58	-0.59	-0.64	-0.79	-0.66	-0.73
m-CH ₂ CN	-0.90	-0.69	-0.78	-1.19	-1.02	-1.00
p-Me	0.06	0.03	-0.01	0.01	-0.04	0.05
p-Et	0.10	-0.01	0.09	0.04	0.00	0.10
p-CH ₂ OMe	-0.36	-0.30	-0.20	-0.35	-0.21	-0.21
p-CH ₂ OPh	-0.23	-0.36	-0.37	-0.43	-0.33	-0.41
p-CH ₂ NMe ₂	-0.41	-0.24	-0.22	-0.23	-0.12	-0.10
p-CH ₂ F	-0.66	-0.62	-0.60	-0.81	-0.76	-0.73
p-CH ₂ Cl	-0.78	-0.64	-0.72	-0.91	-0.79	-0.78
p-CH ₂ Br	-0.83	-0.73	-0.79	-0.92	-0.89	-0.84
p-CH ₂ CN	-0.96	-0.73	-0.79	-1.25	-1.16	-1.09

Table 2. ¹³C SCS of C_{α} for meta- and para-substituted methylcinnamate in different solvents.

Table 3. Correlation analysis of ^{13}C SCS of C_{β} for meta-substituted methylcinna matein different solvents on using Hammett's model.

ρ_m	S.D	r	f-Taft	F	
4.964±0.22	0.1914	0.9899	0.108	494.73	
4.443±0.18	0.1555	0.9920	0.095	604.14	
4.561±0.19	0.1665	0.9910	0.099	551.56	
4.466±0.24	0.2080	0.9849	0.130	338.74	
4.450±0.23	0.1931	0.9874	0.123	390.53	
3.694±0.14	0.1189	0.9930	0.089	709.32	
	$\begin{array}{c} \rho_m \\ 4.964 {\pm} 0.22 \\ 4.443 {\pm} 0.18 \\ 4.561 {\pm} 0.19 \\ 4.466 {\pm} 0.24 \\ 4.450 {\pm} 0.23 \\ 3.694 {\pm} 0.14 \end{array}$	$\begin{array}{c c} \rho_m & S.D \\ \hline 4.964 \pm 0.22 & 0.1914 \\ \hline 4.443 \pm 0.18 & 0.1555 \\ \hline 4.561 \pm 0.19 & 0.1665 \\ \hline 4.466 \pm 0.24 & 0.2080 \\ \hline 4.450 \pm 0.23 & 0.1931 \\ \hline 3.694 \pm 0.14 & 0.1189 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

n=12; r= linear correlation coefficient; F= F-Snedecor.

Table 4. Correlation analysis of ${}^{13}C$ SCS of C_{β} for meta-XCH₂-substituted methylcinnamate in different solvents on using Hammett's model.

Solvent	ρ_{m}	S.D	r	f-Taft	F
EtOH	3.916±0.83	0.2296	0.8585	0.409	22.40
Me ₂ SO	3.179±0.84	0.2330	0.8012	0.478	14.34
Me ₂ CO	3.458±0.90	0.2484	0.8068	0.469	14.92
CDCl ₃	4.451±1.00	0.2787	0.8432	0.442	19.65
CCl ₄	4.466±1.10	0.2962	0.8282	0.489	17.51

C ₆ H ₆	3.310±0.84	0.2318	0.8142	0.481	15.17
n=10; r	= linear correlation	n coefficient; F	F = F-Snedecor.		

Table 5.	DSP correla	ation	analysis	of ¹³ C	SCS	of	Cβ	for	meta-substituted methylcinnamate	in
	di	ifferen	t solven	ts on	using	mod	i fi? d	Swa	in-Lupton model.	

Solvent	F	r	λ	S.D	R	f-Taft	F
EtOH	4.828±0.25	1.839±0.15	0.381	0.1565	0.9940	0.088	372.56
Me ₂ SO	4.440±0.24	1.544±0.14	0.348	0.1452	0.9935	0.089	345.13
Me ₂ CO	4.521±0.24	1.618±0.14	0.358	0.1501	0.9935	0.090	341.15
CDCl ₃	4.399±0.32	1.607±0.19	0.365	0.1966	0.9884	0.130	190.70
CCl ₄	4.302±0.26	1.671±0.16	0.389	0.1627	0.9920	0.103	277.44
C ₆ H ₆	3.688±0.18	1.288±0.10	0.349	0.1086	0.9950	0.081	426.81

n=12; λ = blending constant (ρ_r/ρ_f); R= Multiple regression coefficient; F= F-Snedecor.

Table 6.	DSP	correlation	analysis of ¹	°C SCS	5 of	C_{β} for	meta-XCH ₂ -substituted methylcinnamate	in
		diffe	rent solvents	on u	sing r	nodifie	d Swain-Lupton model.	

Solvent	F	r	λ	S.D	R	f-Taft	F
EtOH	2.090±0.66	4.405±0.73	2.107	0.1253	0.9649	0.223	47.53
Me ₂ SO	1.303±0.68	4.198±0.76	3.222	0.1298	0.9503	0.266	32.50
Me ₂ CO	1.299±0.54	4.762±0.60	3.666	0.1031	0.9731	0.195	62.98
CDCl ₃	2.412±0.96	4.946±1.07	2.051	0.1825	0.9439	0.290	28.74
CCl ₄	2.804±1.30	4.363±1.45	1.556	0.2477	0.8989	0.409	14.73
C ₆ H ₆	1.686±0.86	3.845±0.96	2.280	0.1637	0.9236	0.340	20.27

n=10; λ = blending constant (ρ_r / ρ_f); R= Multiple regression coefficient; F= F-Snedecor.

 C_{α} of the meta-X series, on using Hammett's model, gave moderately good correlations in all solvents with reverse reaction constants in the range (-5.03)–(-4.22), (Table 7). In a comparison with meta-CH₂X series, which gave only crude trends in all solvents with reverse reaction constants in the range (-4.60)-(-3.02),(Table 8). On using a modified Swain-Lupton model, C_{α} of the meta-X series gave a moderately good correlations in all solvents, (**Table 9**), with a reverse reaction constants for a field (**f**)and a resonance (**r**) and blending constants (λ) in the range (**0.425-0.504**), while the C_a, of the meta-CH₂X series gave moderately good correlations in all solvents except inCCl₄ and C₆H₆solvents which gave only crude trends with reverse reaction constants for both a field and a resonance, (**Table 10**), with blending constants in the range (**1.395-2.122**). 13

Table 7. Correlation analysis of ${}^{13}C$ SCS of C_{α} for meta-substituted methylcinnamate in different solvents on using Hammett's model.

Solvent	ρ_m	S.D	r	f-Taft	F
EtOH	-4.828±0.36	0.3051	0.9737	0.182	184.06
Me_2SO	-4.219±0.33	0.2814	0.9711	0.188	165.31
Me ₂ CO	-4.412±0.36	0.3097	0.9680	0.202	149.23
CDCl ₃	-4.677±0.49	0.4213	0.9492	0.259	90.580
CCl_4	-4.648±0.35	0.2976	0.9731	0.190	179.28
C ₆ H ₆	-5.026±0.36	0.3100	0.9752	0.184	193.25

n=12; r= linear correlation coefficient; F= F-Snedecor.

Table 8. Correlation analysis of ${}^{13}C$ SCS of C_{α} for meta-XCH₂-substituted methylcinnamate in different solvents on using Hammett's model.

Solvent	$\rho_{\rm m}$	S.D	r	f-Taft	F
EtOH	-3.731±0.71	0.1957	0.8820	0.383	27.97
Me ₂ SO	-3.020±0.58	0.1622	0.8769	0.364	26.68
Me ₂ CO	-3.404±0.75	0.2078	0.8491	0.438	20.66
CDCl ₃	-4.476±0.95	0.2630	0.8579	0.412	22.30
CCl ₄	-4.345±0.99	0.2752	0.8402	0.493	19.17
C ₆ H ₆	-4.597±1.06	0.2949	0.8367	0.514	18.71
n=10;	r= linear correlation				

r= linear correlation coefficient; n=10;

Table 9. DSP correlation analysis of ${}^{13}C$ SCS of C_{α} for meta-substituted methylcinnamate in different solvents on using modified Swain-Lupton model.

Solvent	F	r	Λ	S.D	R	f-Taft	F
EtOH	-4.514±0.43	-1.942±0.26	0.430	0.2665	0.9823	0.159	122.64
Me ₂ SO	-3.963±0.41	-1.682±0.25	0.425	0.2548	0.9788	0.170	102.39
Me ₂ CO	-4.098±0.45	-1.798±0.27	0.439	0.2779	0.9767	0.181	94.37
CDCl ₃	-4.138±0.59	-2.084±0.35	0.504	0.3644	0.9659	0.224	62.73
CCl ₄	-4.249±0.39	-1.951±0.23	0.459	0.2408	0.9844	0.154	140.10
C ₆ H ₆	-4.592±0.40	-2.110±0.24	0.459	0.2451	0.9859	0.145	158.09

n=12; λ = blending constant (ρ_r/ρ_f); R= Multiple regression coefficient; F= F-Snedecor.

Table 10. DSP correlation analysis of ${}^{13}C$ SCS of C_{α} for meta-XCH₂-substituted methylcinnamate in different solvents on using modified Swain-Lupton model.

Solvent	F	r	λ	S.D	R	f-Taft	F
EtOH	-2.125±0.47	-3.999±0.52	1.882	0.0892	0.9798	0.175	83.12
Me ₂ SO	-1.855±0.53	-3.037±0.59	1.637	0.1003	0.9607	0.225	41.87
Me ₂ CO	-1.817±0.63	-3.854±0.70	2.122	0.1194	0.9586	0.251	39.95
CDCl ₃	-2.674±0.97	-4.587±1.08	1.715	0.1849	0.9413	0.289	27.17
CCl ₄	-2.879±1.23	-4.015±1.37	1.395	0.2346	0.9017	0.421	15.22

C ₆ H ₆	-2.955±1.30	-4.387±1.44	1.485	0.2463	0.9039	0.429	15.65

n=10; λ = blending constant (ρ_r/ρ_f); R= Multiple regression coefficient; F= F-Snedecor.

In comparison, **f** for meta-**X** series are greater than that of the meta-**CH**₂**X** series, which may be attributed to the greater distance between the meta-**CH**₂**X**substituent and C_{α} , while the **r** values are greater for C_{α} and this may be attributed to the resonance structures of some **CH**₂**X** substituents (**X**= **NMe**₂, **OMe**, **OPh** and **CN**) with the aromatic ring, which enhance the resonance effect of C_{α} (**Scheme 2**).

For the para- CH_2X series, on using Hammett's model, C_β , gave only crude trends correlations with normal reaction constants in the range (4.41-5.40)(Table 11). On using a modified Swain-Lupton model, a crude trends correlations were

14

also obtained with normal reaction constants for both a field and a resonance, with blending constants λ in the range (1.673-2.397) Table 12.

On using Hammett's model, C_{α} gave good correlations in all moderately solvents except in CCl_4 and C_6H_6 solvents which gave crude trends, with reverse reaction constants in the range (-2.15)-(-3.00), Table 13. A modified Swain-Lupton model. also gave moderately good correlations in all solvents except in CCl₄ and C_6H_6 solvents which gave crude trends also, Table 14, and reverse reaction constants for both a field and a resonance, with blending constants λ in the range (1.148-1.993).

4. Model performance assessment and the effect of solvent on CH₂X groups

For both C_{β} and C_{α} for meta-X series and the para- CH_2X series, the quality of Hammett's model and the modified Swain-Lupton model were found to be similar, while for C_{β} and C_{α} of the the meta- CH_2X series the modified Swain-Lupton model is the best one. There is no significant difference between reaction constants values in the same model, of the same atom in the same series in different solvents. The final conclusion, is that no solvent effect on CH_2X groups on using Hammett's and modified Swain-Lupton models. Al-Shawi : A Correlation Analysis Study of Substituent Effects by ¹³C Nuclear Magnetic Resonance Spectrometry:...

Scheme 2.

Solvent	ρ _p	S.D	r	f-Taft	F
EtOH	5.002±0.68	0.2487	0.9418	0.382	54.74
Me ₂ SO	4.625±0.85	0.3126	0.8994	0.493	29.63
Me ₂ CO	4.998±0.85	0.3129	0.9116	0.462	34.54
CDCl ₃	5.401±0.75	0.2768	0.9381	0.392	51.55
CCl ₄	5.119±0.80	0.2952	0.9236	0.434	40.69
C ₆ H ₆	4.414±0.73	0.2699	0.9165	0.455	36.75
n=9;	r= linear correlation	coefficient;	F= F-Snedecor.		

Table 11. Correlation analysis of ${}^{13}C$ SCS of C_{β} for para-XCH₂-substituted methylcinnamate in different solvents on using Hammett's model.

Table 12.	DSP	correlation	analysis of ¹	¹³ C SCS of	C_β for	para-XCH ₂ -sub	stituted methylcinnama	ate in
		differe	ent solvents	on using	modifie	d Swain-Lupton	model.	

Solvent	f	r	λ	S.D	R	f-Taft	F
EtOH	3.043±1.06	7.297±1.20	2.397	0.2019	0.9675	0.310	43.87
Me ₂ SO	2.839±1.56	6.717±1.76	2.366	0.2964	0.9236	0.467	17.37
Me ₂ CO	3.042±1.52	7.288±1.71	2.396	0.2879	0.9370	0.425	21.53
CDCl ₃	4.032±1.43	7.005±1.62	1.737	0.2720	0.9492	0.385	27.30
CCl ₄	3.906±1.58	6.536±1.78	1.673	0.2994	0.9333	0.440	20.19
C ₆ H ₆	3.008±1.37	6.060±1.54	2.015	0.2599	0.9333	0.438	20.24

n=9; λ = blending constant (ρ_r/ρ_f); R= Multiple regression coefficient; F= F-Snedecor.

Table13. Correlation analysis of 13 C SCS of C_a for para-XCH2-substituted methylcinnamate in
different solvents on using Hammett's model.

Solvent	ρ _p	S.D	R	f-Taft	F
EtOH	-2.919±0.16	0.0600	0.9894	0.127	320.38
Me ₂ SO	-2.151±0.27	0.1011	0.9476	0.207	61.32
Me ₂ CO	-2.392±0.38	0.1403	0.9214	0.274	39.31
CDCl ₃	-3.256±0.47	0.1719	0.9349	0.250	48.57
CCl ₄	-2.971±0.52	0.1924	0.9066	0.332	32.28
C ₆ H ₆	-3.000±0.53	0.1944	0.9066	0.323	32.24

n=9;

r= linear correlation coefficient; F= F-Snedecor.

Table 14. DSP correlation analysis of ${}^{13}C$ SCS of C_a for para-XCH2-substituted methylcinnamate indifferent solvents on using modified Swain-Lupton model.

Solvent	F	r	λ	S.D	R	f-Taft	F
EtOH	-2.497±0.28	-3.413±0.31	1.367	0.0523	0.9930	0.111	212.04
Me ₂ SO	-1.663±0.53	-2.723±0.59	1.640	0.0998	0.9560	0.205	32.01
Me ₂ CO	-1.641±0.71	-3.270±0.80	1.993	0.1355	0.9376	0.265	21.83
CDCl ₃	-2.838±0.96	-3.745±1.08	1.320	0.1817	0.9376	0.264	21.85
CCl ₄	-2.782±1.09	-3.193±1.23	1.148	0.2071	0.9072	0.332	13.95
C ₆ H ₆	-2.443±1.07	-3.653±1.21	1.495	0.2038	0.9121	0.338	14.85

n=9; λ = blending constant (ρ_r/ρ_f); R= Multiple regression coefficient; F= F-Snedecor.

5. References

- Hammett L. P., J. Am. Chem. Soc., 1937,59, 96-103.
- 2- Hancock C. K. and Westmoreland J.
 S., J. Am. Chem. Soc., 1958, 80, 545-548
- 3- Ludwig M., Baron V., Kalfus K., pytela O., and Vecera M., Collect. Czech. Chem. Commun., 1986, 51, 2135-2142.
- 4- Chapman N. B. and Shorter J. (Eds.), Correlation Analysis in Chemistry: Recent Advances, Plenum, New York, 1978, O. Exner, Chap. 10.
- 5- Pytela O., Ludwig M., and Vecera M., Collect.Czech. Chem. Commun., 1986, 51, 2143-2150.
- 6- Hoefnagel A. J. and Wepster B. M.,J. Chem.Soc., Perkin Trans. 2, 1989, 977-986.
- 7- Jiang X. -K., Hui Y. –Z., and Fan W. –Q., Acta Chim. Sin., Engl. Ed., 1985, 111-119.
- Jiang X.-K., Fan W. –Q., and Hui Y. –Z., J. Am. Chem. Soc., 1984, 106, 7202-7205.

9- Fan W. –Q. and Jiang X.-K., J. Am. Chem. Soc., 1985, 107, 7680-7684.

10- Happer D. A. R., Aust. J. Chem., 1981, **53**, 21.

- 11- Happer D. A. R. and Steenson B.E., J. Chem. Soc., perkin Trans. 2, 1983, 843.
- 12- Bromilow J., Brownlee R. T., Craik D. J., Fiske P. R., Rowe J. E. and Sadek M., J. Chem. Soc., perkin Trans. 2, 1981, 753.
- 13- Ehrenson S., Brownlee R. T. C. and Taft R. W., Prog. Phys. Org. Chem., 1973, 10, 1.
- 14- Happer D. A. R. and Steenson B.E., Aust. J. Chem., 1985, 38, 337.
- 15- Craik D. J., Levy G. C. and Brownlee R. T. C., J. Org. Chem., 1983, 48, 1601.
- 16- HanschC., Leo A. and Taft R. W., Chem. Rev. 1991, **91**, 165-195.

دراسة التحليل الترابطي لتأثير المعوض باستخدام مطيافية الرنين النووي المغناطيسي C-13 . تأثير المذيب على الازاحات الكيمياوية لذرتى C_a و C_b لمثيل السناميت المعوض.

> صبيح عبد الودود عثمان الشاوي قسم الكيمياء- كلية العلوم- جامعة البصيرة البصيرة- العراق

> > الملخص

para-CH₂, meta- الكيميائية لمعوض الكربون -13 لذرتي الكربون (C_{α} , C_{β}) للمعوضات C_a, meta- الإزاحات الكيميائية لمعوض الكربون -13 لذرتي الكربون (C_{α} , C_{β}) للمثيل سناميت حيث:

X= H, Me, OMe, OPh, NMe₂, F, Cl, Br, I, CF₃, CN, NO₂

في ستة مذيبات مختلفة (EtOH, Me₂SO, Me₂CO, CDCl₃, CCl₄, C₆H₆) درست باستخدام نوعين مختلفين من معامل المعوض: معامل المعوض أحادي الحد (MSP) (أنموذج هامت) ومعامل المعوض ثنائي الحد (DSP) (أنموذج سواين لبتون المعدل) جودة أنموذجي هامت و سواين- لبتون المعدل كانا متماثلين لكلا ذرتي الكربون (C_{α} ,) في السلسلتين و بينما كان أنموذج سواين - لبتون المعدل, الأضل لسلسلة meta-CH₂X في السلسلة ي

لاتوجد اختلافات جوهرية بين قيم ثوابت التفاعل للأنموذج نفسه و للذرة لنفسها و السلسلة نفسها في مذيبات مختلفة. الاستنتاج النهائي لا يوجد تأثير للمذيب على مجاميع المدروسة بمطيافية الرنين النووي المغناطيسي (¹³C-NMR) باستخدام أنموذجي هامت و سواين – لبتون المعدل.