Alpha Star Generalized *ω* **- Closed Sets in Bitopological Spaces**

By

Qays Hatem Imran

Al-Muthanna University, College of Education, Department of Mathematics Al-Muthanna, Iraq E-mail : alrubaye84@yahoo.com

Abstract:

 The aim of this paper is to introduce the concepts of alpha star generalized *ω* - closed sets, alpha star generalized *ω* - open sets and study their basic properties in bitopological spaces.

Keywords: $\tau_1 \tau_2$ - alpha star generalized ω closed sets, $\tau_1 \tau_2$ - alpha star generalized ω open sets, $\tau_1 \tau_2$ - generalized ω - closed sets.

1. Introduction:

 Levine, [7] initiated the study of generalized closed sets in topological spaces in 1970. In 1963, J. C. Kelly, [2] defined: a set equipped with two topologies is called a bitopological space, denoted by (X, τ_1, τ_2) where (X, τ_1) and (X, τ_2) are two topological spaces. Semi generalized closed sets and generalized semi closed sets are extended to bitopological settings by F. H. Khedr and H. S. Al-saadi, [1]. K. Chandrasekhara Rao and K. Kannan, [5,6] introduced the concepts of semi star generalized closed sets in bitopological spaces. Moreover, the concept of generalized closed sets were introduced in ideal bitopological spaces by Noiri and Rajesh [9]. In 1986, T. Fukutake, [8] generalized this notion to bitopological spaces and he defined

a set *A* of a bitopological space *X* to be an *ij*generalized closed set (briefly *ij*-*g*-closed) if j - $cl(A) \subseteq U$ whenever $A \subseteq U$ and *U* is τ_i -open in *X*, *i*, *j* = 1,2 and *i* \neq *j*. For any subset $A \subseteq X$, τ_i -int(*A*) and τ_i -cl(*A*) denote the interior and closure of a set *A* with respect to the topology τ_i , for $i = 1, 2$. The closure and interior with respect to the topology τ_i of *B* relative to *A* is written as τ_i - $cl_B(A)$ and τ_i - $\text{int}_B(A)$ respectively. A point $x \in X$ is called a condensation point of *A* if for each $U \in \tau$ with $x \in U$, the set $U \bigcap A$ is uncountable. *A* is called ω - closed if it contains all its condensation points. The complement of an *ω* - closed set is called *ω* - open. It is well known that a subset *A* of a space (X, τ) is ω - open if and only if for each $x \in A$, there exists $U \in \tau$ such that $x \in U$ and $U \cap W$ is countable. The family of all ω - open subsets of a space (X, τ) , by τ_{φ} or $\omega O(X)$, forms a topology on X finer than . The *ω* - closure and *ω* interior with respect to the topology τ_i , that can be defined in a manner similar to τ_i - $cl(A)$ and τ_i - $int(A)$, respectively, will be denoted by τ_i - $cl_{\omega}(A)$ and τ_i - $\text{int}_{\omega}(A)$, respectively. A^c or $X - A$ denotes the complement of *A* in *X* unless explicitly stated. The aim of this communication is to introduce the concepts of $\tau_1 \tau_2$ - alpha star generalized closed sets, $\tau_1 \tau_2$ - alpha star generalized ω - closed sets, $\tau_1 \tau_2$ - alpha star generalized *ω* - open sets and study their basic properties in bitopological spaces. We shall require the following known definitions.

Definition 1.1:

A subset *A* of a bitopological space

 (X, τ_1, τ_2) is called

(i)
$$
\tau_1 \tau_2
$$
 - α - open [4] if

 $A \subseteq \tau_1$ - $\text{int}(\tau_2 - cl(\tau_1 - \text{int}(A)))$.

(ii) $\tau_1 \tau_2$ - α - closed [4] if $X - A$ is

 $\tau_1 \tau_2$ - α - open.

Equivalently, a subset *A* of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ - α - closed if τ_2 - $cl(\tau_1$ - $int(\tau_2 - cl(A))) \subseteq A$. (iii) $\tau_1 \tau_2$ -generalized closed (briefly

$$
\tau_1 \tau_2
$$
 - g -closed) [8] if τ_2 - $cl(A) \subseteq U$

whenever $A \subseteq U$ and U is τ_1 -open in *X*,

(iv) $\tau_1 \tau_2$ -generalized open (briefly

 $\tau_1 \tau_2$ - *g* - open) [8] if $X - A$ is $\tau_1 \tau_2$ - *g* closed.

(v) $\tau_1 \tau_2$ - α generalized closed (briefly

 $\tau_1 \tau_2$ - α g - closed) [4] if τ_2 - $\alpha c l(A) \subseteq U$

whenever $A \subseteq U$ and *U* is τ_1 -open in *X*.

(vi) $\tau_1 \tau_2$ - α generalized open (briefly

 $\tau_1 \tau_2$ - α g - open) [4] if $X - A$ is $\tau_1 \tau_2$ - α g closed.

Definition 1.2:

 A subset *A* of a bitopological space (X, τ_1, τ_2) is called

(i) $\tau_1 \tau_2$ -generalized ω -closed (briefly $\tau_1 \tau_2$ - *g* ω -closed) [3] if τ_2 - $cl_{\omega}(A) \subseteq U$ whenever $A \subseteq U$ and *U* is τ_1 -open in *X*. (ii) $\tau_1 \tau_2$ -generalized ω - open (briefly $\tau_1 \tau_2$ - *g* ω -open) [3] if $X - A$ is $\tau_1 \tau_2$ - *g* ω closed. (iii) $\tau_1 \tau_2$ - α generalized ω - closed (briefly $\tau_1 \tau_2$ - α g ω -closed) if τ_2 - $\alpha c l_{\omega}(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_1 -open in X. (iv) $\tau_1 \tau_2$ - α generalized ω - open (briefly $\tau_1 \tau_2$ - α g ω - open) if $X - A$ is $\tau_1 \tau_2$ - α g ω closed.

2. Alpha Star Generalized Closed Sets:

 In this section we define and study the concept of $\tau_1 \tau_2 - \alpha^*$ generalized closed sets in bitopological spaces.

Definition 2.1:

 A subset *A* of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ - α^* generalized closed (briefly $\tau_1 \tau_2 - \alpha^* g$ - closed) if τ_2 - $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_1 - open in *X*.

Example 2.2:

Let $X = \{a,b,c\}, \tau_1 = \{\phi, X, \{a\}, \{b,c\}\}\,$ ${\tau}_2 = {\phi, X, \{a\}, \{b\}, \{a, b\}}$. Then $\{a, b\}$ is $\tau_1 \tau_2$ - $\alpha^* g$ - closed and {*a*} is not $\tau_1 \tau_2$ - $\alpha^* g$ - closed.

Definition 2.3:

 A subset *A* of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ - α^* generalized open (briefly $\tau_1 \tau_2 - \alpha^* g$ - open) if and only if $X - A$ is $\tau_1 \tau_2 - \alpha^* g$ - closed.

Theorem 2.4:

The arbitrary union of $\tau_1 \tau_2 - \alpha^* g$ closed sets A_i , $i \in I$ in a bitopological space (X, τ_1, τ_2) is $\tau_1 \tau_2 - \alpha^* g$ - closed if the family $\{A_i, i \in I\}$ is τ_2 - locally finite.

Proof:

Let $\{A_i, i \in I\}$ be τ_2 - locally finite and *A*_{*i*} is $\tau_1 \tau_2 - \alpha^* g$ - closed in *X* for each $i \in I$. Let $\bigcup A_i \subseteq U$ and *U* is τ_1 -open in *X*. Then, $A_i \subseteq U$ and *U* is τ_1 -open in *X* for each $i \in I$. Since A_i is $\tau_1 \tau_2 - \alpha^* g$ - closed in *X* for each $i \in I$, we have τ_2 - $cl(A_i) \subseteq U$. Consequently, $\bigcup [\tau_2 - cl(A_i)] \subseteq U$. Since the family $\{A_i, i \in I\}$ be τ_2 - locally finite, τ_2 - $cl(\bigcup(A_i)) = \bigcup (\tau_2 \cdot cl(A_i)) \subseteq U$. Therefore, $\bigcup A_i$ is $\tau_1 \tau_2 - \alpha^* g$ - closed in *X*.

Theorem 2.5:

The arbitrary intersection of $\tau_1 \tau_2 - \alpha^* g$ open sets A_i , $i \in I$ in a bitopological space (X, τ_1, τ_2) is $\tau_1 \tau_2 - \alpha^* g$ - open if the family $\{A_i^c, i \in I\}$ is τ_2 - locally finite.

Proof:

Let $\{A_i^c, i \in I\}$ be τ_2 - locally finite and A_i is $\tau_1 \tau_2 - \alpha^* g$ - open in *X* for each $i \in I$. Then, A_i^c is $\tau_1 \tau_2 - \alpha^* g$ - closed in *X* for each $i \in I$. Then by theorem (2.4), we have $\bigcup (A_i^c)$ is $\tau_1 \tau_2 - \alpha^* g$ - closed in *X*. Consequently, $(\bigcap A_i)^c$ is $\tau_1 \tau_2 - \alpha^* g$ - closed in *X*. Therefore, $\bigcap A_i$ is $\tau_1 \tau_2 - \alpha^* g$ -open in *X*.

3. Alpha Star Generalized *ω* **- Closed Sets:**

 In this section we define and study the concept of $\tau_1 \tau_2 - \alpha^*$ generalized ω - closed sets in bitopological spaces.

Definition 3.1:

 A subset *A* of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ - α^* generalized ω -closed (briefly $\tau_1 \tau_2$ - $\alpha^* g \omega$ -closed) if τ_2 - $cl_{\omega}(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_1 - open in *X*.

Example 3.2:

Let X be the set of all real numbers R , $\tau_1 = {\phi, R, R - Q}$, $\tau_2 = {\phi, R, Q}$, where *Q* is the set of all rational numbers. Then $R-Q$ is $\tau_1\tau_2$ - $\alpha^*g\omega$ - closed.

Theorem 3.3:

Let (X, τ_1, τ_2) be a bitopological space and $A \subseteq X$. Then the following are true. (i) If *A* is τ_2 - ω - closed, then *A* is $\tau_1 \tau_2$ - $\alpha^* g \omega$ - closed. (ii) If *A* is τ_1 -open and $\tau_1 \tau_2$ - $\alpha^* g \omega$ -closed, then *A* is τ_2 - ω - closed. (iii) If *A* is $\tau_1 \tau_2 - \alpha^* g \omega$ - closed, then *A* is $\tau_1 \tau_2$ - $g\omega$ -closed. **Proof:** (i) Suppose that *A* is τ_2 - ω - closed, let $A \subseteq U$ and *U* is τ_1 - open in *X*. Then τ_2 - $cl_{\omega}(A) = A \subseteq U$. Consequently, A is $\tau_1 \tau_2$ - $\alpha^* g \omega$ - closed. (ii) Suppose that *A* is τ_1 - open and

 $\tau_1 \tau_2$ - $\alpha^* g \omega$ - closed . Let $A \subseteq A$ and A is τ_1 - open . Then τ_2 - $cl_{\omega}(A) \subseteq A$. Therefore, τ_2 - $cl_{\omega}(A) = A$. Consequently *A* is τ_2 - ω closed.

(iii) Suppose that *A* is $\tau_1 \tau_2 - \alpha^* g \omega$ - closed, let $A \subseteq U$ and *U* is τ_1 - open in *X*. Since *U* is τ_1 -open in *X*, we have τ_2 - $cl_{\omega}(A) \subseteq U$. Consequently, *A* is $\tau_1 \tau_2$ - $g\omega$ - closed.

Since, τ_2 - $cl_{\omega}(A) \subseteq \tau_2$ - $cl(A)$, we have the following theorem.

Theorem 3.4:

Every $\tau_1 \tau_2 - \alpha^* g$ - closed set is $\tau_1 \tau_2$ - $\alpha^* g \omega$ - closed and every τ_2 - closed set is $\tau_1 \tau_2 - \alpha^* g \omega$ -closed.

Remark 3.5:

Theorem 3.6:

If *A* is $\tau_1 \tau_2 - \alpha^* g \omega$ - closed in *X* and $A \subseteq B \subseteq \tau_2$ - $cl_{\omega}(A)$, then *B* is $\tau_1 \tau_2$ - $\alpha^* g \omega$ closed. **Proof:**

Suppose that *A* is $\tau_1 \tau_2 - \alpha^* g \omega$ - closed in X and $A \subseteq B \subseteq \tau_2$ - $cl_{\omega}(A)$. Let $B \subseteq U$ and *U* is τ_1 -open in *X*. Then $A \subseteq U$. Since *A* is $\tau_1 \tau_2$ - $\alpha^* g \omega$ - closed, we have τ_2 - $cl_{\omega}(A) \subseteq U$. Since $B \subseteq \tau_2$ - $cl_{\omega}(A)$, τ_2 - $cl_{\omega}(B) \subseteq \tau_2$ - $cl_{\omega}(A) \subseteq U$. Hence *B* is $\tau_1 \tau_2$ - $\alpha^* g \omega$ - closed.

Theorem 3.7:

If *A* and *B* are $\tau_1 \tau_2 - \alpha^* g \omega$ - closed sets then so is $A \cup B$.

Proof:

Suppose that *A* and *B* are $\tau_1 \tau_2 - \alpha^* g \omega$ closed sets . Let *U* be τ_1 - open in *X* and $A \cup B \subseteq U$. Then $A \subseteq U$ and $B \subseteq U$. Since *A* and *B* are $\tau_1 \tau_2 - \alpha^* g \omega$ - closed sets, we have τ_2 - $cl_{\omega}(A) \subseteq U$ and τ_2 - $cl_{\omega}(B) \subseteq U$. Consequently, τ_2 - $cl_{\omega}(A \cup B) \subseteq U$. Therefore, $A \cup B$ is $\tau_1 \tau_2 - \alpha^* g \omega$ -closed.

Theorem 3.8:

Let $B \subseteq A \subseteq X$ where *A* is τ_1 -open and $\tau_1 \tau_2$ - $\alpha^* g \omega$ - closed in *X*. Then *B* is $\tau_1 \tau_2$ - $\alpha^* g \omega$ - closed relative to *A* if and only if *B* is $\tau_1 \tau_2 - \alpha^* g \omega$ - closed relative to *X*. **Proof:**

Suppose that $B \subseteq A \subseteq X$ where *A* is τ_1 - open and $\tau_1 \tau_2$ - $\alpha^* g \omega$ - closed. Suppose

that *B* is $\tau_1 \tau_2 - \alpha^* g \omega$ - closed relative to *A*. Let $B \subseteq U$ and *U* is τ_1 -open in *X*. Since $A \subseteq X$, *A* is τ_1 -open, we have $A \cap U$ is τ_1 - open in *X*. Consequently $A \cap U$ is τ_1 -open in *A*. Since $B \subseteq A$, $B \subseteq U$, we have $B \subseteq A \cap U$. Since *B* is $\tau_1 \tau_2 - \alpha^* g \omega$ closed relative to *A*, we have τ_2 - $cl_{\omega}(B_A)$ $\subseteq A \cap U$. Therefore, $\tau_2 \text{-} cl_{\omega}(B_A) \subseteq U$. Since *A* is τ_1 -open, we have τ_2 - $cl_{\omega}(B_A)$ = τ_2 - $cl_{\omega}(B) \bigcap A = \tau_2$ - $cl_{\omega}(B) \subseteq U$. Hence B is $\tau_1 \tau_2$ - $\alpha^* g \omega$ - closed relative to *X*. Conversely, suppose that *B* is $\tau_1 \tau_2 - \alpha^* g \omega$ closed relative to *X*. Let $B \subseteq U$ and *U* is τ_1 -open in *A*. Since $A \subseteq X$, we have *U* is τ_1 -open in *X*. Since *B* is $\tau_1 \tau_2 - \alpha^* g \omega$ closed relative to *X*, we have τ_2 - $cl_{\omega}(B) \subseteq U$. Now, τ_2 - $cl_{\omega}(B_A) =$ τ_2 - $cl_{\omega}(B) \bigcap A = \tau_2$ - $cl_{\omega}(B) \subseteq U$. Therefore , *B* is $\tau_1 \tau_2 - \alpha^* g \omega$ - closed relative to *A*.

Corollary 3.9:

If *A* is $\tau_1 \tau_2 - \alpha^* g \omega$ - closed, τ_1 - open in *X* and *F* is τ_2 - ω - closed in *X*, then $A \cap F$ is τ_2 - ω - closed in *X*.

Proof:

Since *A* is $\tau_1 \tau_2 - \alpha^* g \omega$ - closed, τ_1 - open in *X*, we have *A* is τ_2 - ω - closed in *X* . { By Theorem (3.3) (ii) }. Since *F* is τ_2 - ω -closed in *X*, $A \cap F$ is τ_2 - ω -closed in X .

Theorem 3.10:

If *A* is $\tau_1 \tau_2 - \alpha^* g \omega$ - closed in *X*, then τ_2 - $cl_{\omega}(A)$ – A contains no nonempty τ_1 - closed set . **Proof:** Suppose that *A* is $\tau_1 \tau_2 - \alpha^* g \omega$ - closed in *X*. Let *F* be τ_1 - closed and $F \subseteq \tau_2$ - $cl_{\omega}(A) - A$. Since *F* be τ_1 - closed, we have F^c is τ_1 - open. Since $F \subseteq \tau_2$ - $cl_{\omega}(A) - A$, we have $F \subseteq \tau_2$ - $cl_{\omega}(A)$ and $A \subseteq F^c$. Since *A* is $\tau_1 \tau_2$ - $\alpha^* g \omega$ - closed in *X*, we have τ_2 - $cl_{\omega}(A) \subseteq F^c$. Consequently, $F = \phi$. Hence τ_2 - $cl_{\omega}(A)$ – A contains no nonempty $\tau_{\scriptscriptstyle 1}$ - closed set. \blacksquare

Corollary 3.11:

Let *A* be $\tau_1 \tau_2 - \alpha^* g \omega$ - closed, then *A* is τ_2 - ω - closed if and only if τ_2 - $cl_{\omega}(A)$ - A is τ_1 - closed.

Proof:

Suppose that *A* is $\tau_1 \tau_2 - \alpha^* g \omega$ -closed. Since *A* is τ_2 - ω - closed, we have τ_2 - $cl_{\omega}(A) = A$. Then τ_2 - $cl_{\omega}(A) - A = \phi$ is τ_1 - closed . Conversely, suppose that *A* is $\tau_1 \tau_2$ - $\alpha^* g \omega$ - closed and τ_2 - $cl_{\omega}(A)$ - A is τ_1 - closed. Since *A* is $\tau_1 \tau_2$ - $\alpha^* g \omega$ - closed, we have τ_2 - $cl_{\omega}(A)$ – A contains no nonempty τ_1 - closed set { by Theorem (3.10) }. Since τ_2 - $cl_{\omega}(A) - A$ is itself τ_1 - closed, we have τ_2 - $cl_{\omega}(A) - A = \phi$. Then τ_2 - $cl_{\omega}(A) = A$. Hence *A* is τ_2 - ω - closed. \blacksquare

Theorem 3.12:

If *A* is $\tau_1 \tau_2 - \alpha^* g \omega$ - closed and $A \subseteq B \subseteq \tau_2$ - $cl_{\omega}(A)$, then τ_2 - $cl_{\omega}(B) - B$ contains no nonempty τ_1 - closed set. **Proof:**

Let *A* be $\tau_1 \tau_2 - \alpha^* g \omega$ - closed and $A \subseteq B \subseteq \tau_2$ - $cl_{\omega}(A)$. Then *B* is $\tau_1 \tau_2$ - $\alpha^* g \omega$ - closed. {By Theorem (3.6)}. Hence τ_2 - $cl_{\omega}(B)$ – *B* contains no nonempty τ_1 - closed set.{By Theorem (3.10)}. ■

4. Alpha Star Generalized *ω* **- Open Sets:**

 We begin this section with a relatively new definition.

Definition 4.1:

 A subset *A* of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ - α^* generalized ω -open (briefly $\tau_1 \tau_2$ - $\alpha^* g \omega$ -open) if and only if $X - A$ is $\tau_1 \tau_2 - \alpha^* g \omega$ -closed.

Example 4.2:

In Example (3.2), *Q* is $\tau_1 \tau_2 - \alpha^* g \omega$ open.

Theorem 4.3:

A set *A* is $\tau_1 \tau_2 - \alpha^* g \omega$ - open if and only if $F \subseteq \tau_2$ -int_{ω}(A) whenever *F* is τ_1 - closed and $F \subseteq A$. **Proof:**

Suppose that *A* is $\tau_1 \tau_2 - \alpha^* g \omega$ -open. Suppose that *F* is τ_1 - closed and $F \subseteq A$. Then F^c is τ_1 -open and $A^c \subseteq F^c$. Since A^c is $\tau_1 \tau_2$ - $\alpha^* g \omega$ - closed, we have

 τ_2 - $cl_{\omega}(A^c) \subseteq F^c$. Since τ_2 - $cl_{\omega}(A^c)$ = $(\tau_2$ - $\text{int}_{\omega}(A))^c$, we have $F \subseteq \tau_2$ - $\text{int}_{\omega}(A)$. Conversely, suppose that $F \subseteq \tau_2$ - $\text{int}_{\omega}(A)$ whenever *F* is τ_1 - closed and $F \subseteq A$. Then $A^c \subseteq F^c$ and F^c is τ_1 -open. Since $F \subseteq \tau_2$ - $\text{int}_{\omega}(A)$, and τ_2 - $cl_{\omega}(A^c)$ = $(\tau_2$ - $\text{int}_{\omega}(A))^c$, we have τ_2 - $cl_{\omega}(A^c) \subseteq U$. Then A^c is $\tau_1 \tau_2 - \alpha^* g \omega$ -closed. Consequently, *A* is $\tau_1 \tau_2 - \alpha^* g \omega$ - open.

Theorem 4.4:

If *A* and *B* are separated $\tau_1 \tau_2 - \alpha^* g \omega$ open sets then $A \cup B$ is $\tau_1 \tau_2 - \alpha^* g \omega$ -open set*.*

Proof:

Suppose *A* and *B* are separated $\tau_1 \tau_2$ - $\alpha^* g \omega$ - open sets. Let *F* be τ_1 - closed and $F \subseteq A \cup B$. Since *A* and *B* are separated , we have τ_1 - $cl(A) \cap B = A \cap \tau_1$ - $cl(B) = \phi$ and τ_2 - $cl(A) \cap B = A \cap \tau_2$ - $cl(B) = \phi$. Then, $F \cap \tau_2$ - $cl(A) \subseteq (A \cup B) \cap$ τ_2 - $cl(A) = A$. Similarly, we can prove $F \bigcap \tau_2$ - $cl(B) \subseteq B$. Since *F* is τ_1 - closed, we have $F \bigcap \tau_1$ - $cl(A)$ and $F \bigcap \tau_1$ - $cl(B)$ are τ_1 - closed. Since *A* and *B* are $\tau_1 \tau_2$ - $\alpha^* g \omega$ open, we have $F \bigcap \tau_2$ - $cl(A) \subseteq \tau_2$ - $\text{int}_{\omega}(A)$ and $F \bigcap \tau_2$ - $cl(B) \subseteq \tau_2$ - $\text{int}_{\omega}(B)$. Now, $F = F \cap (A \cup B) \subseteq [F \cap \tau_2 - cl(A)]$ $\bigcup [F \cap \tau_2 - cl(B)] \subseteq \tau_2$ -int_{ω}($A \cup B$). Therefore, $A \cup B$ is $\tau_1 \tau_2 - \alpha^* g \omega$ -open.

Theorem 4.5:

If *A* and *B* are $\tau_1 \tau_2 - \alpha^* g \omega$ - open sets then so is $A \cap B$.

Proof:

Suppose that *A* and *B* are $\tau_1 \tau_2 - \alpha^* g \omega$ open sets. Let *F* be τ_1 - closed and $F \subseteq A \cap B$. Then, $F \subseteq A$ and $F \subseteq B$. Since *A* and *B* are $\tau_1 \tau_2 - \alpha^* g \omega$ - open, we have $F \subseteq \tau_2$ -int_{ω}(A) and $F \subseteq \tau_2$ -int_{ω}(B). Hence $F \subseteq \tau_2$ - $\text{int}_{\omega}(A \cap B)$. Consequently, $A \cap B$ is $\tau_1 \tau_2 - \alpha^* g \omega$ -open set.■

Theorem 4.6:

If *A* is $\tau_1 \tau_2 - \alpha^* g \omega$ - open in *X* and τ_2 - int_{ω}(A) \subseteq *B* \subseteq *A*, then *B* is $\tau_1 \tau_2$ - $\alpha^* g \omega$ - open. **Proof:**

Suppose that *A* is $\tau_1 \tau_2 - \alpha^* g \omega$ - open in *X* and τ_2 - $\text{int}_{\omega}(A) \subseteq B \subseteq A$. Let *F* be τ_1 - closed and $F \subseteq B$. Since $F \subseteq B$, $B \subseteq A$, we have $F \subseteq A$. Since *A* is $\tau_1 \tau_2$ - $\alpha^* g \omega$ - open, we have $F \subseteq \tau_2$ -int_{ω}(A). Since τ_2 -int_{ω}(A) $\subseteq B$, we have τ_2 -int_{ω}(A) $\subseteq \tau_2$ -int_{ω}(B). Then $F \subseteq \tau_2$ - $\text{int}_{\omega}(B)$. Therefore, *B* is $\tau_1 \tau_2$ - $\alpha^* g \omega$ - open set.

Theorem 4.7:

If *A* is $\tau_1 \tau_2 - \alpha^* g \omega$ - closed in *X* then τ_2 - $cl_{\omega}(A)$ – A is $\tau_1 \tau_2$ - $\alpha^* g \omega$ - open. **Proof:**

Suppose that *A* is $\tau_1 \tau_2 - \alpha^* g \omega$ - closed in *X*. Let *F* be τ_1 -closed and $F \subseteq \tau_2$ - $cl_{\omega}(A) - A$. Since *A* is $\tau_1 \tau_2$ - $\alpha^* g \omega$ - closed in *X*, τ_2 - $cl_{\omega}(A)$ - A contains no nonempty τ_1 - closed set. Since

 $F \subseteq \tau_2 \cdot cl_{\omega}(A) - A, F = \phi \subseteq$ τ_2 - int_{ω} (τ_2 - $cl_{\omega}(A) - A$). Therefore, τ_2 - $cl_{\omega}(A)$ – A is $\tau_1 \tau_2$ - $\alpha^* g \omega$ - open.

Theorem 4.8:

If *A* is $\tau_1 \tau_2 - \alpha^* g \omega$ - open in a bitopological space (X, τ_1, τ_2) , then $G = X$ whenever *G* is τ_1 - open and τ_2 - $cl_{\omega}(A) \cup A^c$ \subseteq G . **Proof:**

Suppose that *A* is $\tau_1 \tau_2 - \alpha^* g \omega$ -open in a bitopological space (X, τ_1, τ_2) and G is τ_1 - open and τ_2 - $cl_{\omega}(A) \bigcup A^c \subseteq G$. Then, $G^c \subseteq (\tau_2 - \text{int}_{\omega}(A) \bigcup A^c)^c$ $=\tau_2$ - $cl_{\omega}(A^c) - A^c$. Since G^c is τ_1 - closed and A^c is $\tau_1 \tau_2 - \alpha^* g \omega$ - closed, we have τ_2 - $cl_{\omega}(A^c)$ – A^c contains no nonempty τ_1 - closed set in *X* {By Theorem (3.10)}. Therefore, $G^c = \phi$. Hence $G = X$.

Theorem 4.9:

The intersection of a $\tau_1 \tau_2 - \alpha^* g \omega$ -open set and τ_1 - ω - open set is always $\tau_1 \tau_2 - \alpha^* g \omega$ - open. **Proof:**

Suppose that *A* is $\tau_1 \tau_2 - \alpha^* g \omega$ - open and *B* is τ_1 - ω - open. Then *B^c* is τ_2 - ω - closed. Therefore, B^c is $\tau_1 \tau_2 - \alpha^* g \omega$ - closed. {By Theorem (3.3) (i) }. Hence *B* is $\tau_1 \tau_2 - \alpha^* g \omega$ open. Consequently, $A \cap B$ is $\tau_1 \tau_2 - \alpha^* g \omega$ open. ${By Theorem (4.5)}$.

Theorem 4.10:

If $A \times B$ is $\tau_1 \times \sigma_1 \tau_2 \times \sigma_2 \cdot \alpha^* g \omega$ open subset of $(X \times Y, \tau_1 \times \sigma_1, \tau_2 \times \sigma_2)$, then *A* is $\tau_1 \tau_2$ - $\alpha^* g \omega$ - open subset in (X, τ_1, τ_2) and *B* is $\sigma_1 \sigma_2$ - $\alpha^* g \omega$ - open subset in (Y, σ_1, σ_2) .

Proof:

Let *F* be a τ_1 -closed subset of (X, τ_1, τ_2) and let *G* be a σ_1 - closed subset of (Y, σ_1, σ_2) such that $F \subseteq A$ and $G \subseteq B$. Then $F \times G$ is $\tau_1 \times \sigma_1$ - closed in $(X \times Y, \tau_1 \times \sigma_1, \tau_2 \times \sigma_2)$ such that $F \times G \subseteq A \times B$. By assumption $A \times B$ is $\tau_1 \times \sigma_1 \tau_2 \times \sigma_2$ - $\alpha^* g \omega$ - open in $(X \times Y, \tau_1 \times \sigma_1, \tau_2 \times \sigma_2)$ and so $F \times G \subseteq$ $\tau_2 \times \sigma_2$ - $\mathrm{int}_{\omega}(A \times B) \subseteq \tau_2$ - $\mathrm{int}_{\omega}(A) \times$ σ_2 -int_{ω}(*B*). Therefore $F \subseteq \tau_2$ -int_{ω}(*A*) and $G \subseteq \sigma_2$ - $\text{int}_{\omega}(B)$. Hence A is $\tau_1 \tau_2$ - $\alpha^* g \omega$ - open and *B* is $\sigma_1 \sigma_2$ - $\alpha^* g \omega$ open.

References:

[1] F. H. Khedr and H. S. Al-Saadi , On pairwise semi-generalized closed sets , JKAU , Sci. , Vol. 21 , No. 2 , (2009) , 269 - 295 .

[2] J. C. Kelly, Bitopological spaces, Proc. London Math. Soc., 3 (13) (1963) ,71 - 89 .

[3] K. Chandrasekhara Rao and D. Narasimhan , Semi Star Generalized *ω* closed Sets in Bitopological Spaces , Int. J. Math. Sciences Vol. 4, 2009, No. 12 , 587 - 595 .

[4] K. Kannan , $\tau_1 \tau_2$ - Semi Star Star generalized closed sets , International Journal of Pure and Applied Mathematics , Vol. 76 , No.2 , (2012) , 277 - 294 .

[5] K.Chandrasekhara Rao and K. Kannan , Semi star generalized closed sets and semi star generalized open sets in bitopological spaces , Varahimir Journal of Mathematics 5(2) (2005) , 473 - 485 .

[6] K.Chandrasekhara Rao, K. Kannan and

D. Narasimhan, Characterizations of $\tau_1 \tau_2 - s^* g$ closed sets, Acta Ciencia Indica, XXXIII M , (3) ,(2007) , 807 - 810 .

[7] N. Levine , Generalized closed sets in topology , Rend. Circ. Mat. Palermo ,19 , No.2 (1970) , 89 - 96 .

[8] T. Fukutake , On generalized closed sets in bitopological spaces, Bull. Fukuoka Univ. Ed. Part III , 35(1986) , 19 - 28 .

[9] T. Noiri , N. Rajesh , Generalized closed sets with respect to an ideal in bitopological spaces , Acta Mathematica Hungarica , 125 , No.1 (2009) , 17 - 20 .

المستخلص:

 $-$ الهدف من هذا البحث هو تقديم مفاهيم مجموعات الفا ستار المعممة ω - المغلقة ، مجموعات الفا ستار المعممة ω المفتوحة ودراسة خصائصها الأساسية في الفضاءات ثنائية التبولوجي.