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ABSTRACT: 

 
In this research a new formula of B-spline functions have been used to 

approximate a set of given data points   10&,,2,1,  iii xniyx   for 

both uniform and non uniform spaced, that is when  1,,2,11   nixxh iii   

satisfy either  1,,2,1,1   nihh ii   or 1,,2,1,1   nihh ii  . 

 

The first order B-spline    xBi

1
, the second order B-spline  xBi

2
and 

the third order B-spline  xBi

3
 have been used. In the second & third order B-

spline we need the first &second derivatives at x=0, in this research we use 

Lagrange's interpolation polynomial & Taylor's series to find yy & at x=0 using 

three point formula for both cases, i.e., uniform & non uniform spaced. 

 

The research contains the flowchart and the algorithm that described our work     

with its implementation, also the program written using visual basic language. 
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INTRODUCTION: 

 
Splines are piecewise polynomials of degree n joined together at the break 

points with n-1 continuous derivatives. The break points are called "knots" [8]. 

 

There are many types of spline [11]:  classical spline, B-spline, Bezier and non 

uniform rational B-spline (NURBS) .Even thought they all are based on different 

mathematical concepts, they have one thing in common, and the "control points" are 

editable. 

 

In this research we deal with B-Splines [9], which are standard representation 

of smooth non-linear geometry in numerical calculations. B-Splines were introduced 

around 1940's in the context of approximation theory by Schoenberg. B-spline mean 

basis and the letter B in B-spline stands for basis. 

 

Scaling the knots uniformly will not change the definition of the basis 

function. But changing the relative positioning of the knots will change the shape and 

therefore change the definition of the basis functions [10]. If the knots are evenly 

spaced the bases are called "uniform B-Splines", otherwise, they are "non uniform B-

spline". 

 

In this work a new formula of B-spline functions introduced by Mustafa in [10] 

have been used to approximate a given set of data points using: 

 

(1) First order B-spline  xBi

1
  . 

(2) Second order B-spline  xBi

2
 . 

(3) Third order B-spline  xBi

3
. 

 

The rule for (2) and (3) contains first & second derivatives so we use some special 

types of numerical differentiation to approximate it. 
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1- Definitions & Properties Of B-Spline: 

Definition (1-1) [2]: Bezier curves are a class of approximation Splines. They 

are defined using control points, but don't necessarily pass through all the control 

points. The general form of Bezier curve is: 
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    Where kp  the thk  control points, and nkB ,  is a Bernstein polynomial: 
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    , where ),( knc  is a binomial coefficient. 

 

  Definition (1-2) [3]: A B-spline is a generalization of the Bezier curve. Let a 

vector known as the knot vector be defined  
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  Where T is a non decreasing sequence with   1,0it  , and defines control points 

npp ,,0  .Define the degree as 
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       Define the basis function as 
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 The above relation is called the recurrence relation. 

 

Definition (1-3) [2]: the B-Splines of order zero are defined by  
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The B-spline basis functions of order one are defined by  
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otherwise
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The B-spline basis functions of order two are defined by 
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And finally the B-spline basis functions of order three are defined by 
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 Definition (1-4) [2]: in the above definitions ix    are called parametric knot 

values, for an open curve, they are given by: 
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  Where 10  knj   , and the range of  x  is 10  knx . 

 

 Theorem 1:  suppose that 0k  , and suppose that  1 kii xx  , then for all x   , 
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          Proof: [5]    
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2- Numerical Differentiation Using Lagrange's Interpolation 

Polynomial & Taylor series[4]:  

   Suppose that  nxxx ,,, 10  are (n+1) distinct numbers in some interval I and 

that  

   Icf n 1 , We have 
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For some  x  lies in I, where  xLk  denotes the thk  Lagrange coefficient 

polynomial for f at nxxx ,,, 10  .Differentiating (10) we obtain:   
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Put jxx   in (11), we get 
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So, 
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Equation (13) is called an (n+1)-point formula to approximate  jxf   since a 

linear combination of the (n+1) values  kxf   is used for nk ,,1,0  . 

          In this work we use three- point formula: 
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   Substitute the above equations in (13) we get 
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 For j=0, 1, 2, equations (14) & (15) used for unequal spaced. 

 

 The three point formula can be converting to find   xf   for equally spaced, 

that is, when    .02, 01201  hsomeforhxhxxhxx  

Using equation (14) with hxxhxxxx j 2,, 02010  gives: 
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  To find  0xf    we use Taylor series formula, as follows: 
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Substitute (16) in (17) to get  )( 0xf   ; 
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    Equations (16) & (18) used for equally spaced. 

 

3- B-spline curves: 

 
  B-spline curves [7] are the proper and powerful generalization of Bezier 

curves. They provide local control on the curve shape as opposed to global control 

by using a special set of blending functions that provide local influence. They also 

provide the ability to add control points without increasing the degree of the 

curve. 

 

        The theory of B-spline curves separates the degree of resulting curve from 

the number of the given points. The B-spline curve defined by the (n+1) control 

points ip   given by: 
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Now a new formula of: the first order B-spline  xBi

1
, second order B-spline 

 xBi

2
 and third order B-spline  xBi

3
 have been explained and discussed in more 

details. 

 

   (3-1) The First Order B-Spline  xBi

1 [10]:  

   

This kind of B-spline is called linear spline; it is defined from the recurrence 

relation defined by equation (3), then we 
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  Now, if we take k=1& n=1, we obtain by using equation (9):   

    10&11003210  xxxxx  

 

        Substitute this in equation (19), we get 
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 Therefore, we have: 

 

        101 10  xxpxpxya                                          (20) 
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The control points 10 & pp  obtained by substituting x=0 & x=1 in  xBi

1
 that 

is nypyp  100 ,  .  

 

 (3-2) The Second Order B-Spline  xBi

2 [10]: 

This kind of B-spline is called is called quadratic spline, by equation (3), we 

get:  
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Now, if we take k=2 & n=2, we get by equation (9) that: 

    10&111000543210  xxxxxxx . 

 

    Substitute in equation (19) we have: 
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Therefore, we have: 
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20 & pp Can be found by substitute x=0 & x=1 in  xBi

2
 that is nypyp  200 , . 

  1p  Can be found by taking the first derivative of (21) w.r.t x when x=0, we get: 
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 (3-3) The Third Order B-Spline  xBi

3 [10]: 

The third order B-spline is called also cubic spline, from equation (3) we know 

that:         
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Now if we take k=3 & n=3 we obtain by using equation (9): 

 

    10&1111000076543210  xxxxxxxxx . 

 

   By do the same thing described in (3-1) & (3-2), we get: 
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   30 & pp Can be found by substitute x=0 & x=1 in  xBi
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 that is nypyp  300 , . 

To obtain 21 & pp differentiate (22) twice when x=0 to get 21 & pp  as follows: 
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Now differentiate (22) again w.r.t x to get: 
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 For more details about the properties of these new formulas of B-Spline 

functions see the work done by Mustafa in [10].     


