

Weak N-open sets

Amer I. l Al-Saeed

Dept. of Mathematics/College of Science /Al-Mustansiriya University

Received in:30/April/2015,Accepted in:6/December/2016

Abstract

In this paper we introduce new class of open sets called weak N-open sets and we study the relation between N-open sets , weak N-open sets and some other open sets. We prove several results about them.

Keywords: N-open, semi-open, α -open, b-open, β -open, ω -closed.

Introduction

Let (X,τ) be a topological space (or simply, a space) and $A \subseteq X$. Then the closure of A and the interior of A will be denoted by cl(A) and int(A), respectively. A subset $A \subseteq X$ is called semi-open [1] if there exists an open set $O \in \tau$ such that $O \subseteq A \subseteq cl(O)$. Clearly A is semi-open if and only if $A \subseteq cl(int(A))$. The complement of a semi-open set is called semi-closed [1]. A is called preopen [2] (respt. α -open [3],b-open[4], β -open[5]) if $A \subseteq int(cl(A))$ (respt. $A \subseteq int(cl(int(A)))$, $A \subseteq cl(int(A)) \cup int(cl(A))$, $A \subseteq cl(int(clA))$). A space (X,τ) is called anti-locally countable [8] if every non-empty open subset is uncountable. In [6], the concept of α -closed subsets was explored where a subset A of a space (X,τ) is α -closed if it contains all of its condensation points (a point α is a condensation point of α if $\alpha \cap \alpha$ is uncountable for every open α containing α . The complement of an α -closed set is called α -open or equivalently for each α is that α is a condensation point of α is countable. α -closure and α -interior, that can be defined in an analogous manner to α and α -closed subsets, see [7,8].

Weak N-open sets

Definition[8,9] 2.1: A subset A of a topological space (X, τ) is called:

- 1) pre- ω -open if $A \subseteq \operatorname{int}_{\omega}(cl(A))$.
- 2) $\alpha \omega$ -open if $A \subset \operatorname{int}_{\alpha}(cl(\operatorname{int}_{\alpha}(A)))$.
- 3) b- ω -open if $A \subseteq \operatorname{int}_{\omega}(cl(A)) \cup cl(\operatorname{int}_{\omega}(A))$.
- 4) β ω -open if $cl(\operatorname{int}_{\omega}(cl(A)))$.
- 5) N-open subset of X if for any x in A there exists an open set U containing x such that U\A is finite.

Remark[9] 2.2:

Every open set is N-open and every N-open set is ω -open.

The converse of above remark may be not true in general as seen in the following examples. **Examples 2.3:**

- (1) Let N be the set of natural numbers with topology defined on it by
 - $\tau = \{U_i: U_i = \{i, i+1, i+2,...\}, i \in \mathbb{N}\} \cup \{\phi\}, \text{ then } U_5 \cup \{3\} \text{ is N-open since for any } a \in U_5$
- {3} there exists U_2 containing a and $U_2 \setminus (U_5 \cup \{3\}) = \{2,4\}$ is finite, but $U_5 \cup \{3\}$ is not open.
- (2) Let (R, τ_u) be usual topological space and Let Q be rational numbers then $R \setminus Q$ is ω -open Since for any $x \in R \setminus Q$ there is open set $(x \varepsilon, x + \varepsilon)$ containing x and $(x \varepsilon, x + \varepsilon) \setminus (R \setminus Q)$ is countable, but not N-open, since every open set A containing x implies $A \setminus (R \setminus Q)$ is infinite. The family of all N-open sets in a topological space (X, τ) will be denoted by NO(X), and it is clear form a topology τ^N on X which is finer than τ .

Remark 2.4: For any finite topological space $\tau^N = P(X)$ (that is any subset of X is N-open). **Definition [9] 2.5:** Let (X,τ) be a topological space. And $A \subseteq X$, then the union of all N-open contained in A is called N-interior and we will denote it by int_N (A).

Note that the N-interior is the maximal N-open which contains in A.

Proposition 2.6: Let (X,τ) be a topological space. And $A,B\subseteq X$, then

Ibn Al-Haitham J. for Pure & Appl. Sci.

Vol.29 (1) 2016

- (1) $int(A) \subseteq int_{\mathcal{N}}(A) \subseteq int_{\mathcal{N}}(A) \subseteq A$
- (2) A is N-open iff $int_N(A) = A$.
- (3) $\operatorname{int}_{N}(X)=X$ and $\operatorname{int}_{N}(\phi)=\phi$
- (4) $\operatorname{int}_{N}(\operatorname{int}_{N}(A)) = \operatorname{int}_{N}(A)$.
- (5) If $A \subseteq B$, then $int_N(A) \subseteq int_N(B)$.
- (6) $\operatorname{int}_{N}(A) \cup \operatorname{int}_{N}(B) \subseteq \operatorname{int}_{N}(A \cup B)$.
- (7) $\operatorname{int}_{N}(A \cap B) = \operatorname{int}_{N}(A) \cap \operatorname{int}_{N}(B)$.

Proof

As in the usual case

By the following example we note that in general $A \subset \text{int}_N$ (A) and

 $int_N (A \cup B) \subset int_N (A) \cup int_N (B)$

Example 2.7: Let (R, τ_u) be the usual topological space and Let A=(2,3] and B=(3,4], then $\operatorname{int}_N(A)=(2,3)$, $\operatorname{int}_N(B)=(3,4)$, hence $A \subset \operatorname{int}_N(A)$ and $\operatorname{int}_N(A \cup B)=(2,4)$, and $\operatorname{int}_N(A) \cup \operatorname{int}_N(B)=(2,4)\setminus\{3\}$, therefore $\operatorname{int}_N(A \cup B) \subset \operatorname{int}_N(A) \cup \operatorname{int}_N(B)$.

Definition[9] 2.8: Let (X,τ) be a topological space. And $A \subseteq X$, then the intersection of all N-closed sets containing A is called N-closure of A and we will denote it by $cl_N(A)$.

Note that the N-closure is the smallest N-closed containing A.

Proposition 2.9: Let (X,τ) be a topological space. And $A,B\subseteq X$, then

- (1) $A \subseteq cl_{\omega}(A) \subseteq cl_{N}(A) \subseteq cl(A)$.
- (2) A is N-closed iff cl_N (A)=A.
- (3) $cl_N(X)=X$ and $cl_N(\phi)=\phi$.
- (4) $cl_N(cl_N(A)) = cl_N(A)$.
- (5) If $A \subseteq B$, then $cl_N(A) \subseteq cl_N(B)$.
- (6) $cl_N(A \cup B) = cl_N(A) \cup cl_N(B)$.
- (7) $cl_N(A \cap B) \subseteq cl_N(A) \cap cl_N(B)$.
- (8) $\operatorname{int}_{N}(X\backslash A) = X\backslash cl_{N}(A)$.
- (9) $cl_N(X\backslash A) = X\backslash int_N(A)$.

Proof

As in the usual case

Proposition [9] 2.10: Let (X,τ) be a topological space. And $A \subseteq X$, then $x \in cl_N(A)$ iff for every N-open set U containing x, then $A \cap U \neq \emptyset$.

The following are new modified definition.

Definition 2.11: Let (X,τ) be a topological space. A subset A of X is called

- (1) α N-open if $A \subseteq int_N(cl(int_N(A)))$.
- (2) pre-N-open if $A \subseteq int_N (cl((A)))$.
- (3) b- N-open if $A \subseteq int_N(cl(A)) \cup cl(int_N(A))$.
- (4) β N-open if $A \subseteq cl$ (int_N (cl (A))).

The complement of α - N-open (resp. pre-N-open, b- N-open, β - N-open) set is called α - N-closed (resp. pre-N-closed, b- N-closed, β - N-closed)

Proposition 2.12: In any topological space the following are satisfied

- (1) Every N-open is α N-open.
- (2) Every α -N-open is pre-N-open.
- (3) Every pre-N-open is b-N-open.
- (4) Every b-N-open is β -N-open.

Proof (1) suppose that A is N-open, then by Proposition (2.9(2)) $A = int_N(A) \subseteq cl$ ($int_N(A)$) and by Proposition(2.6(4,5)) $A \subseteq int_N(cl (int_N(A)))$, hence A is α - N-open.

- (2) Suppose that A is α -N-open, then $A \subseteq \operatorname{int}_N(cl(\operatorname{int}_N(A))) \subseteq \operatorname{int}_N(cl(A))$ (by Proposition(2.6(1))), hence A is pre-N-open.
- (3) Suppose that A is pre-N-open, then $A \subseteq int_N(cl(A)) \subseteq int_N(cl(A)) \cup (cl(int_N(A)))$ therefore A is b-N-open.
- (4) Suppose that A is b-N-open, then $A \subseteq \operatorname{int}_N(cl(A)) \cup (cl(\operatorname{int}_N(A)), \operatorname{if} A \subseteq \operatorname{int}_N(cl(A)))$
- (A)), then $A \subseteq cl$ (int_N (cl (A))), and if $A \subseteq int_N$ (cl (A)), then $A \subseteq cl$ (int_N (A)) $\subseteq cl$ (int_N (cl (A))) (by Proposition(2.9(1))), that is A is β -N-open.

The converse of proposition (2.12) may be not true in general to show that see the following examples

Examples 2.13: (1) Let X be infinite set and A,B,C and D be subsets of X such that each of them is infinite and the collection $\{A,B,C,D\}$ be a partition of X, define the topology on X by $\tau = \{\phi, X,A,B,\{A,B\},\{A,B,C\}\}$, where $\{A,B,C\} = A \cup B \cup C$ and that similarly for $\{A,B\},\{A,B,D\}$ and $\{B,C,D\}$.

Then $\{A,B,D\}$ is α -N-open but not N-open and $\{B,C,D\}$ is b-N-open but not pre-N-open.

- (2) In example (2.7) let $A = Q \cap [0,1]$, then A is β -N-open but not b-N-open.
- (3) In example (2.7) let A= Q, then A is pre-N-open but not α -N-open

Proposition 2.14: In any topological space the following are satisfied

- (1) Every α -open set is α -N-open, and every α -N-open set is α - ω -open.
- (2) Every pre-open set is pre-N-open, and every pre-N-open set is pre- ω -open.
- (3) Every b-open set is b-N-open, and every b-N-open set is b- ω -open.
- (4) Every β -open set is β -N-open, and every β -N-open set is β - ω -open.

Proof (1) suppose that A is α -open set, that is $A \subseteq \text{int}(cl(\text{int }(A)))$ and by proposition (2.9(1))

We have $A \subseteq \operatorname{int}(cl(\operatorname{int}(A))) \subseteq \operatorname{int}_N(cl(\operatorname{int}_N(A)))$, then A is α -N-open and if A is α -N-open,

Also by proposition (2.9(1)) we have $A \subseteq \operatorname{int}_N(\operatorname{cl}(\operatorname{int}_N(A))) \subseteq \operatorname{int}_\omega(\operatorname{cl}(\operatorname{int}_\omega(A)))$, then A is α - ω -open.

similar proof for the other cases.

Remark 2.15: The following examples show that the converse of some points of proposition (2.14) may be not true in general

Examples 2.16: (1) In example (2.3(1)) Let $A = \{1,2,3\}$, then A is $\alpha - \omega$ -open (since X=N is countable) but not β -N-open since U₄ is open and X\U₄=A then A is closed hence cl(A)=A and int_N (A)= ϕ since $l \in A$ and only open set containing 1 is X and X\A not finite hence A is not N-open and does not contain N-open set unless ϕ , hence $A \not\subset cl(int_N (cl(A))) = \phi$, therefore A is not β -N-open.

- (2) Let $X=\{1,2,3\}$ and $\tau=\{X,\phi,\{a\},\{b\},\{a,b\}\}$. Then $\{c\}$ is an α -N-open but not β -open. **Lemma [8] 2.17:** Let (X,τ) be a topological space, then the following properties hold:
- 1. Every ω -open set is α - ω -open.
- 2. Every α ω -open set is pre- ω -open.
- 3. Every pre- ω -open set is b- ω -open.
- 4. Every b- ω -open set is β - ω -open.

The following diagram explains the relation among the above concepts.

Definition 2.18[8]: A topological space (X,τ) is called door space if every subset of X is open or closed.

Proposition 2.19: If (X,τ) is door space, then every pre-N-open set is N-open.

Proof: Let A be pre-N-open. If A is open then it is N-open. Otherwise A is closed, then $A \subseteq \operatorname{int}_N(cl(A)) = \operatorname{int}_N(A) \subseteq A$, then by proposition(2.6(2)) A is N-open.

Proposition 2.20: Let (X,τ) be a topological space. And Let A be b-N-open such that int $_{N}(A) = \phi$, then A is pre-N-open.

Proof It is clear

Lemma 2.21[10]: Let (X,τ) be a topological space. And U be an open set of X, then $cl(U \cap A) = cl(U \cap cl(A))$ and hence $U \cap cl(A) \subseteq cl(U \cap A)$ for any subset A of X.

Proposition 2.22: A subset U of a topological space (X,τ) is pre-N-open set iff there exists a pre-N-open set A such that $U \subseteq A \subseteq cl(U)$.

Proof since $U \subseteq A \subseteq \operatorname{int}_N(cl(A))$, also $cl(A) \subseteq cl(cl(U)) = cl(U)$, and by proposition(2.6(5)) we have $\operatorname{int}_N(cl(A)) \subseteq \operatorname{int}_N(cl(U))$, that is $U \subseteq \operatorname{int}_N(cl(U))$, hence U is pre-N-open set.

Conversely: suppose that U is pre-N-open. If we take A=U, then A is pre-N-open set such that $U \subseteq A \subseteq cl(U)$.

Ibn Al-Haitham J. for Pure & Appl. Sci.

Vol.29 (1) 2016

Proposition 2.23: A subset A of a topological space (X,τ) is semi open iff A is β -N-open and int_N $(cl(A)) \subseteq cl(int(A))$.

Proof Let A be semi open set, then $A \subseteq cl$ (int (A)) $\subseteq cl$ (int $_N$ (A)) $\subseteq cl$ (int $_N$ (cl(A))) (by proposition (2.9(1)), hence A is β -N-open. Now, cl(A) $\subseteq cl$ (int (A)), then int $_N$ (cl(A)) $\subseteq cl$ (int (A)) (by proposition (2.9(1)).

Conversely: $A \subseteq cl (int_N (cl (A))) \subseteq cl (cl (int (A))) = cl (int (A))$, hence A is semi open set.

Proposition 2.24: In any topological space the intersection of a β -N-open set and open set is β -N-open.

Proof Let Ube an open set and A be a β -N-open since every open set is N-open, then by lemma (2.21) we have $U \cap A \subseteq U \cap cl$ (int_N(A)) $\subseteq cl$ (U \cap cl (int_N(cl (A)))

$$= cl \left(\operatorname{int}_{N}(\mathbf{U}) \cap \operatorname{int}_{N}(cl(\mathbf{A})) \right)$$

= $cl \left(\operatorname{int}_{N}(\mathbf{U} \cap cl(\mathbf{A})) \right)$ (by proposition 2.9(7))

That is $U \cap A \subseteq U \cap cl (int_N(A)) \subseteq cl (int_N(cl (U \cap A)))$.

Hence $U \cap A$ is β -N-open.

Proposition 2.25: In any topological space the intersection of a b-N-open set and an open set is b-N-open.

Proof Let A be a b-N-open and U be an open set, then

$$\begin{split} \mathbf{U} \cap \mathbf{A} &\subseteq \mathbf{U} \cap [\operatorname{int}_{N}(\ cl\ (\mathbf{A})) \cup \ cl\ (\ \operatorname{int}_{N}(\mathbf{A}))] = [\mathbf{U} \cap \operatorname{int}_{N}(\ cl\ (\mathbf{A}))] \cup [\mathbf{U} \cap \ cl\ (\operatorname{int}_{N}(\mathbf{A}))] \\ &= [\operatorname{int}_{N}(\mathbf{U}) \cap \operatorname{int}_{N}(\ cl\ (\mathbf{A}))] \cup [\mathbf{U} \cap \ cl\ (\operatorname{int}_{N}(\mathbf{A}))] \\ &\subseteq [\operatorname{int}_{N}(\mathbf{U} \cap \ cl\ (\mathbf{A}))] \cup [\ cl\ (\mathbf{U} \cap \operatorname{int}_{N}(\mathbf{A}))] \\ &\subseteq \operatorname{int}_{N}(\ cl\ (\mathbf{U} \cap \mathbf{A})) \cup \ cl\ (\ \operatorname{int}_{N}(\mathbf{U} \cap \mathbf{A})). \end{split}$$

Hence $U \cap A$ is b-N-open.

Proposition 2.26: In any topological space the intersection of a α -N-open set and an open set is α -N-open.

Proof: Let A be an α -N-open set and U be an open set, then

$$\begin{array}{c} \operatorname{U} \cap \operatorname{A} \subseteq \operatorname{int}_{N}(\operatorname{U}) \, \cap \, \operatorname{int}_{N}(\operatorname{cl}\left(\operatorname{int}_{N}(\operatorname{A})\right)) \subseteq \operatorname{int}_{N}(\operatorname{U} \cap \, \operatorname{cl}\left(\operatorname{int}_{N}(\operatorname{A})\right)) \\ \subseteq \operatorname{int}_{N}(\operatorname{cl}\left(\operatorname{U} \cap \operatorname{int}_{N}(\operatorname{A})\right) \\ \subseteq \operatorname{int}_{N}(\operatorname{cl}\left(\operatorname{int}_{N}(\operatorname{U} \cap \operatorname{A})\right). \end{array}$$

Therefore $U \cap A$ is α -N-open.

Remark 2.27: The intersection of two pre-N-open (resp. b-N-open, β -N-open) set need not be pre-N-open (resp. b-N-open, β -N-open) in general to show that for pre-N-open see the following example.

Example 2.28: In example (2.7) let A=Q and B= (R\Q) \cup {1}. Then A and B are pre-Nopen , b-N-open and β -N-open sets but A \cap B= {1} is not pre-N-open set since $\operatorname{int}_N(cl(\{1\})) = \phi$

A \cap B is not b-N-open since $\operatorname{int}_N(cl(\{1\})) \cup cl(\operatorname{int}_N(\{1\})) = \phi \cup \phi = \phi$.

A \cap B is not β -N-open since cl (int_N(cl({1})))= cl(int_N({1}))= cl(ϕ)= ϕ .

Proposition 2.29: In any topological space the union of any family of b-N-open (resp. pre-N-open, β -N-open) set is b-N-open (resp. pre-N-open, β -N-open).

Proof: Let $\{A_{\alpha}\}_{\alpha \in \Lambda}$ be a family of b-N-open sets, since $A_{\alpha} \subseteq int_{N}(\mathit{cl}(A_{\alpha})) \cup \mathit{cl}(int_{N}(A_{\alpha})) \cup \mathit{cl}(int_{N}(A_{\alpha})) \cup \mathit{cl}(int_{N}(A_{\alpha})) \cup \mathit{cl}(int_{N}(A_{\alpha})) \cup \mathit{cl}(int_{N}(A_{\alpha})) \}$

Vol.29 (1) 2016

$$\begin{split} &\subseteq [\bigcup_{\alpha \in \Lambda} \, \operatorname{int}_{N}(\operatorname{\mathit{cl}}\,(A_{\alpha}))] \, \cup [\bigcup_{\alpha \in \Lambda} \, \operatorname{\mathit{cl}}\,(\operatorname{int}_{N}(A_{\alpha}))] \\ &\subseteq \operatorname{int}_{N}(\bigcup_{\alpha \in \Lambda} \, (\operatorname{\mathit{cl}}\,(A_{\alpha}))) \cup \, \operatorname{\mathit{cl}}\,(\bigcup_{\alpha \in \Lambda} \, (\operatorname{int}_{N}(A_{\alpha}))) \\ &\subseteq \operatorname{int}_{N}(\operatorname{\mathit{cl}}\,(\bigcup_{\alpha \in \Lambda} \, (A_{\alpha}))) \cup \operatorname{\mathit{cl}}\,(\operatorname{int}_{N}(\bigcup_{\alpha \in \Lambda} \, (A_{\alpha}))). \end{split}$$

Hence $\bigcup_{\alpha \in \Lambda} A_{\alpha}$ is b-N-open.(A similar proof for the other cases).

Contra N-continuous

Definition 3.1: A function f from a topological space (X,τ) into a topological space (Y, τ') is Called:

- 1- Contra-continuous if the inverse image of each open subset of Y is closed subset of X [11].
- 2- ω -continuous if the inverse image of each open subset of Y is ω -open subset of X [6].
- 3- Contra- ω -continuous if the inverse image of each open subset of Y is ω -closed subset of X [13].
- 4- N-continuous if the inverse image of each open subset of Y is N-open subset of X [9].
- 5- Contra N-continuous inverse image of each open subset of Y is N-closed subset of X.

Since every closed set is N-closed, then every contra continuous is contra-N-continuous, and since every N-closed is ω -closed, then every contra-N-continuous is co- ω -continuous. But in general: the converse of above may be not true, show the following examples **Examples 3.2:**

- 1- Let f be the identity function from the set of natural numbers with indiscrete topology onto itself with the discrete topology, then f is contra-N-continuous but not contracontinuous.
- 2- Let f be the identity function from the set of rational numbers with indiscrete topology onto itself with the discrete topology, then f is ω -continuous and contra- ω -continuous but f is not contra-N-continuous.
- 3- Let $X=\{1,2,3\}$, $Y=\{a,b\}$, $\tau_X=\{X, \phi,\{2\}\}$ and $\tau_Y=\{Y, \phi,\{b\}\}$. Define f from X into Y by f(1)=a, f(2)=f(3)=b, then f is contra-N-continuous but not continuous.
- 4 -Consider the two functions f and g from usual topological space into space $Y=\{0,1\}$ with

topology defined by $\tau_y = \{Y, \phi, \{0\}\}\$ defined by

$$f(x) = \begin{cases} 0 & x \in R \setminus A \\ 1 & x \in A \end{cases} \quad g(x) = \begin{cases} 1 & x \in R \setminus A \\ 0 & x \in A \end{cases} \quad \text{where } A \text{ is finite set in } R.$$

Then f is continuous but not contra-N-continuous and g is contra-N-continuous but not ω -continuous

The following diagram explains the relation among the above concepts.

Ibn Al-Haitham J. for Pure & Appl. Sci.

HIPAS

Vol.29 (1) 2016

Continuous N-continuous ω-continuous

Definition [13] 3.3: Let A be a subset of a topological space (X,τ) . The kernel of A is the set defined as $\ker(A) = \bigcap \{U \in \tau : A \subseteq U\}$

Lemma [13] 3.4: The following properties hold for subsets A and B of a topological space (X,τ)

- 1- $x \in \ker(A)$ iff $A \cap F = \phi$ for any closed subset F containing x.
- $2-A \subseteq \ker(A)$ and $A = \ker(A)$ if A is open in X.
- 3- If $A \subseteq B$, then $\ker(A) \subseteq \ker(B)$.

Theorem 3.5: Let f be a function from topological (X,τ) into a topological space (Y,σ) . Then the following are equivalent:-

- 1- f is contra N-continuous.
- 2- For every closed subset F of Y, $f^{-1}(F)$ is N-open.
- 3- For each $x \in X$ and each closed subset F of Y containing f(x), there exists an N-open U containing x such that $f(U) \subseteq F$.
- 4- $f(cl_N(A) \subseteq \ker (f(A))$ for all $A \subseteq X$.
- 5- $cl_N(f^{-1}(B)) \subseteq f^{-1}(\ker(B))$ for all $B \subseteq Y$.

Proof $(1 \Rightarrow 2)$ Let $F \subseteq Y$ closed set. Then YF is open and since f is contra N-continuous, then $f^{-1}(Y \setminus F)$ is N-closed in X, but $f^{-1}(Y \setminus F) = X \setminus f^{-1}(F)$, that is, $f^{-1}(F)$ is N-open.

 $(2 \Rightarrow 3)$ Let $x \in X$ and $F \subseteq Y$ such that $f(x) \in F$, we have $x \in f^{-1}(F)$ which is N-open set Put $U = f^{-1}(F)$, then we have $f(U) = f(f^{-1}(F)) \subseteq F$, hence $f(U) \subseteq F$.

 $(3 \Rightarrow 4)$ Suppose that, there exists $y \in f(cl_N(A))$ and $y \notin \ker(f(A))$ for some subset A of X, then y = f(x) for some $x \in cl_N(A)$, hence there exists a closed set $F \subseteq Y$ such that $y \in F$ and $F \cap f(A) = \emptyset$, thus by (3) there exist $U \in \tau^N$ such that $f(U) \subseteq F$, then $U = f^{-1}(f(U)) \subset f^{-1}(F)$, hence $U \cap A = \emptyset$ and $x \notin cl_N(A)$, that is $y = f(x) \notin f(cl_N(A))$

U = J $(J(U)) \subseteq J$ (F), hence $U | | A = \emptyset$ and $x \notin cl_N(A)$, that is $y = J(x) \notin J(cl_N(A))$. Which is contradiction.

 $(4 \Rightarrow 5)$ Let $B \subseteq Y$. Then $\ker(f(f^{-1}(B)) \subseteq \ker(B))$ and by (4) we have

 $f(cl_N(f^{-1}(B))) \subseteq \ker(f(f^{-1}(B))) \subseteq \ker(B)$, hence $cl_N(f^{-1}(B)) \subseteq f^{-1}(\ker(B))$.

 $(5 \Rightarrow \! 1)$ Let V be any open of Y, then by lemma and the assumption

 $cl_{_N}(f^{-1}(V))\subseteq f^{-1}(\ker(V))=f^{-1}(V)$, therefore $\,cl_{_N}(f^{-1}(V))\subseteq f^{-1}(V)$. Hence

 $f^{-1}(V) = cl_N(f^{-1}(V))$ and then f is contra N-continuous.

References

- 1. Levine, N. (1963); Semi-open sets and semi-continuity in topological spaces, Math. Monthly., 70, 36-41.
- 2.Mashhour, A.S.; Abd El-Monsef, M.E. and El.Deeb, S.N. (1982), on pre-continuous and week precontinuous mappings, Proc. Math and phys. Soc. Egypt., 53, 47-53.
- 3. Njastad, O. (1965); On some classes of nearly open sets, Pacific J. Math., 15, 961-970.
- 4. Andrijević, D. (1996), On b-open sets, Math.. Vesik., 48, 59-64.
- 5. Abd El-Monsef, M., El-Deeb S.; and Mahmoud R. (1983), β-open sets and β-continuous mappings, Ball.Fac. Sci. Assuit Univ., 12, 77-90.
- 6. Hdeib, H. (1989), ω-Continuous functions, Dirasat., 16, 136-142.
- Al-Hawary, T. (2004), ω-generalized closed sets, international Journal of Applied Mathematics., 16(3), 341-353.
- 8. Noiri, T.; Al-Omari A. and Noorani S. (2009), Weak forms of ω -open sets and decompositions of continuity, Eur. J. Pure Appl. Math., 2, 73-84.
- 9. Al-Omari A. and Noorani M. S. Md. (2009), New characterization of compact space, proceedings of the 5th Asian Mathematical conference, Malaysia.
- 10. Engelking, R. (1989); General Topology, Heldermann Veriag Berlin, 2nd edition.
- 11. Dontchev, J. (1996); Contra-continuous function and strongly S-closed spaces, Internat. J. Math. And Math. Sci., 19(2), 303-310.
- 12 Al-Hawary, T. (2007), ω-continuous like mappings, Al-Manarah., 13(6), 135-147.
- 13. Mrsevic, M. (1978);On pairwise R and pairwise RI bitopological spaces, Bull. Math. Soc. Sci. Math. R.S. Roumanie., 30, 141-148.

المجموعات المفتوحة الضعيفة من النمط N

عامر اسماعيل السعيد الجامعة المستنصرية/ كلية العلوم/قسم الرياضيات

استلم البحث في:2015/4/30، قبل البحث في:2016/12/6

الخلاصة

في هذا البحث نقدم فئة جديدة من المجموعات المفتوحة تسمى المجموعات المفتوحة من النمط N والمجموعات المفتوحة الضعيفة N وقد تمت دراسة العلاقة بين هذه المجموعات المفتوحة ومجموعات مفتوحة أخرى. وتم اثبات عدة نتائج عنهم.

الكلمات المفتاحية: المجموعات المفتوحة من النمط N, المجموعات شبه المفتوحة, المجموعات المفتوحة من النمط α , المجموعات المفتوحة من النمط α , المجموعات المفتوحة من النمط α .