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 The solution of nonlinear Fredholm integro-differential equations plays a significant role 

in analyzing many nonlinear events that occur in chemistry, physics, mathematical 

biology, and a variety of other fields of science and engineering. A physical event can be 

represented by a differential equation, an integro-differential equation since many of these 

equations cannot be solved directly or it is difficult to solve. Numerical approaches that 

are useful combinations of numerical integration must frequently be used. This work 

presents a method for solving the type of nonlinear Fredholm integro-differential equation 

(NFIDE) of the second kind.  The Leibnitz rule is used with the Haar wavelet collocation 

method in this paper to solve NFIDE numerically. Some techniques are used to transfer 

the equation into an algebraic system through an operational matrix. The convergence 

analysis had been proved through this work and the numerical experiments had been 

given to illustrate the effectiveness of the proposed method based on MATLAB 

programming.  
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1. Introduction  

The main text formatIntegro-differential equations have several applications in mathematics, science, and technology. 

Integro-differential equations appear often in fluid mechanics, biological models, solid-state physics, kinetics in chemistry, 

and so on. Most problems are difficult to solve, especially analytically[1-5]. However, analytical solutions to Integro-

differential equations do not exist or are difficult to find. Therefore, various numerical approaches for solving Integro-

differential equations have been developed. 

 

 Consider the Fredholm integro-differential equation as the form  

                                                

  𝑦′′(𝑥) = 𝑓(𝑥) + λ∫ 𝑘(𝑥, 𝑡)𝐺(𝑦(𝑡))𝑑𝑡,
𝑏

𝑎

                                   (1) 

with initial conditions 

𝑦(𝑎) = α, 𝑦′(𝑎) = β, 
 

where the function  𝑓 ∈ 𝐿2[𝑎, 𝑏) and the kernel  𝑘 ∈ 𝐿2[𝑎, 𝑏), and 𝐺(𝑦(𝑡)) is a nonlinear function defined on the interval 

[𝑎, 𝑏], the solution of the integro-differential equation is denoted by the unknown function 𝑦(𝑥) . 
 

Wavelet theory is a relatively new and still developing method in applied mathematics. Since 1991, many kinds of wavelet 

methods have been used to solve different kinds of integro-differential equations numerically, and the possibility is to 

apply the method of Haar wavelets, which are the mathematically easiest wavelets. Haar wavelets have also been utilized 

for solving the two-dimensional nonlinear mixed Volterra-Fredholm-Hammerstein integral equation as well as the delay 

Volterra-Fredholm integral equation[6-7]. 
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The Haar wavelet technique was employed by Lepik. [8], Babolian. [9], and Aziz et al. [10] to solve nonlinear Fredholm 

integral equations. In fact, the application of the Leibnitz rule based on the Haar wavelet collocation technique in 

numerical analysis is not new, and the Haar wavelets provide a number of benefits, such as simplicity, orthogonality, and 

extremely compact support. Sparse representation, fast transformation, and the ability to generate a quick algorithm for 

matrix representation are the major benefits of the Haar wavelets approach. Because the Haar basis is the simplest instance 

of a spline wavelet, resulting in the polynomial degree being set to zero, the computing costs of Haar wavelets are 

extremely minimal. So, we utilize them to solve a number of problems by converting them into a system of non-linear 

equations at collocation points and solving them with Matlab. In [11-13], Haar wavelet approaches are applied to different 

problems and fields. 

 

The present study is prepared as follows: The Haar wavelet properties and definitions are covered in section 2. In sections 

3 and 4,  the convergence analysis of the Haar wavelets and the Haar wavelet operational matrix and its integrals are given 

respectively. In section 5, the solution procedure is presented. Finally, some numerical experiments with conclusions are 

shown in sections 6 and 7, respectively. 

 

2. Haar Wavelet Properties  

 

Among the different wavelet kinds, Haar wavelets are the most basic. They are real-line step functions that can only accept 

the numbers 0, 1, and (−1). We used the Haar wavelet method because it is fast, easy, flexible, and simple to compute. A 

family of switching rectangular wave forms with variable amplitudes is known as the Haar functions. Haar wavelets are 

generally defined on the interval [0,1], but in many applications, they are formed on the interval [𝑎, 𝑏]. The interval [𝑎, 𝑏] 
is subdivided into m equal parts. In this case, the orthogonal set of Haar functions is defined as [14], [15] on the interval 
[𝑎, 𝑏]. 
 

 

2.1. Haar wavelets and their definitions 

 

Haar wavelets are created by integrating pairs of piecewise constant functions. Furthermore, the Haar functions are 

orthogonal, which makes them an excellent transform basis. Because of discontinuities at breaking points, the Haar 

functions are not differentiable. 

 

Suppose that the integration interval [𝑎, 𝑏] is partitioned into 2𝐽+1 subintervals of equal length, where 

Δ𝑥 =
𝑏−𝑎

2𝐽+1
. 𝐽 ∈ 𝑁 represents the highest degree of resolution. The translation and dilation parameters are indicated by 𝑗 =

0,1,2,… , 𝐽 and 𝑘 = 0,1,2,… 2𝑗 − 1 correspondingly. The Haar family is defined a 

 

 ℎ𝑖(𝑥) = {
1    if 𝑥 ∈ [𝜉1, 𝜉2)

−1 if 𝑥 ∈ {𝜉2, 𝜉3)

0         otherwise

                                                                    (2)                             

 

where ξ1 =
𝑘

𝑚
, ξ2 =

𝑘+0.5

𝑚
, and ξ3 =

𝑘+1

𝑚
, while 𝑚 = 2𝑗.  

 

The index i in Eq.(2) is evaluated by using 𝑖 = 𝑚 + 𝑘 + 1, and in the case of minimal values 𝑚 = 1, 𝑘 = 0, then  𝑖 = 2. 

The maximal value of 𝑖 is 𝑁 = 2𝐽+1. For 𝑖 ≥ 2,  Eq.(2) is accurate.  

The Haar scaling function at the value of 𝑖 = 1 is defined as follows: 

                                                        

ℎ1(𝑥) = {1    if 𝑥 ∈ [𝑎, 𝑏) 
0      otherwise

                                                                           (3) 

        

The collocation Points is given by 𝑥𝑙 =
𝑙−0.5

𝑁
, where 𝑙 = 1,2,… , 𝑁, and 𝐻(𝑖, 𝑙) = ℎ𝑖(𝑥𝑙) is the Haar coefficient matrix 

which is a square matrix of the dimension 𝑁 × 𝑁. If we take 𝐽 = 3 we obtain the Harr coefficient matrix of order 16 which 

is defined as follows: 
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𝐻(16,16) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 −1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 −1 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1
1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 

 

2.2 Approximation of function by Haar wavelets 

 

If 𝑓(𝑥) is any function on [𝑎, 𝑏] with finite energy and square intelligibility, then 𝑓 ∈ 𝐿2[𝑎, 𝑏) can be represented as an 

infinite sum of Haar wavelets 

 

𝑓(𝑥) = ∑𝑎𝑖ℎ𝑖(𝑥)

∞

𝑖=1

, 

 

The Haar coefficients are represented as 𝑎𝑖. The series can be truncated to finite terms if 𝑓 is a piecewise constant or must 

be approximated by a piecewise constant at each subinterval, as shown below . 

 

𝑓(𝑥) = ∑𝑎𝑖ℎ𝑖(𝑥)

𝑚

𝑖=1

. 

 

2.3 Convergence analysis of the Haar wavelets 

 

In this section, we will discuss the convergence analysis of the Haar wavelets by integration Eq.(2), from 0 to 𝑥, and using 

the initial conditions with properties of approximation of the functions of Haar wavelets, then we have  

𝑦(𝑥) = α + β𝑥 +∫ (𝑥 − 𝑡) (∑𝑎𝑛ℎ𝑛(𝑡)

∞

𝑛=0

)𝑑𝑡
𝑥

0

+∫ (𝑥 − 𝑡)(∑∑𝑎𝑖𝑏𝑗ℎ𝑖(𝑥)ℎ𝑗(𝑡)

𝑘−1

𝑗=0

𝑘−1

𝑖=0

)(∑𝑎�̃�

𝑘−1

𝑛=0

ℎ𝑛(𝑡))
𝑥

0

. 

 

Now we suppose that 𝑦(𝑥) ∈ 𝐶′[0,1] with  |𝑦′(𝑥)| ≤ 𝐿, for each 𝑥 ∈ (0,1). To approximate the function 𝑦(𝑥) we suppose  

the following relation 

 

𝑦𝑘(𝑥) = ∑𝑎𝑛

𝑘−1

𝑛=0

ℎ𝑛(𝑡), 

where 𝑘 = 2(𝑟+1), 𝑟 = 0,1,2,…, then 

𝑦(𝑥) − 𝑦𝑘(𝑥) = ∑ 𝑎𝑛

∞

𝑛=2𝑟+1

ℎ𝑛(𝑡). 

 

So, we construct the norm of the given equation as follows : 

‖𝑦(𝑥) − 𝑦𝑘(𝑥)‖𝐿2[0,1) = (∫ (|𝑎𝑛(𝑥) − 𝑢𝑘(𝑥)|
2)𝑑𝑥

1

0

)

1
2
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       = (∫ ∑ 𝑎𝑛

∞

𝑛=2𝑟+1

ℎ𝑛(𝑥) ∑ 𝑎�̂�

∞

�̂�=2𝑟+1

ℎ𝑛(𝑥)𝑑𝑥
1

0

)

1
2

 

        = ( ∑ ∑ 𝑎𝑛

∞

�̂�=2𝑟+1

∫ ℎ𝑛(𝑥)ℎ�̂�(𝑥)𝑑𝑥
1

0

∞

𝑛=2𝑟+1

)

1
2

 

       = ∑ (𝑎𝑛)
1
2

∞

𝑛=2𝑟+1

. 

Therefore                                      

‖𝑦(𝑥) − 𝑦𝑘(𝑥)‖𝐿2[0,1)
2 = ∑ 𝑎𝑛

2

∞

𝑛=2𝑟+1

,                                                               (4) 

       

where 𝑎𝑛 is the inner product between 𝑦(𝑥) and ℎ𝑛(𝑥). 

By substituting ψ𝑛(𝑥) = ℎ𝑛(𝑥) = 𝑚
1

2𝐻(𝑚𝑥 − 𝑘), 𝑘 = 0,1,… ,𝑚 − 1, in inner product of 𝑎𝑛, we get  

                        

𝑎𝑛 = ∫ 𝑚
1
2

1

0

𝐻(𝑚𝑥 − 𝑘)𝑦(𝑥)𝑑𝑥                                                         (5) 

 

Substituting Eq.(2) in Eq.(5) we obtain 

 

𝑎𝑛 = 𝑚
1
2∫ 𝑦(𝑥)𝑑𝑥

𝑘+0.5
𝑚

𝑘
𝑚

−∫ 𝑦(𝑥)𝑑𝑥

𝑘+1
𝑚

𝑘+0.5
𝑚

. 

 

There exist 𝑥1 and 𝑥2 according to the mean value theorem 

 
𝑘

𝑚
≤ 𝑥1 <

𝑘 + 0.5

𝑚
 𝑎𝑛𝑑 

𝑘 + 0.5

𝑚
≤ 𝑥2 <

𝑘 + 1

𝑚
, 

then 

𝑎𝑛 = 𝑚
1
2 {(

𝑘 + 0.5

𝑚
)𝑦(𝑥1) − (

𝑘 + 1

𝑚
−
𝑘 + 0.5

𝑚
)𝑦(𝑥2)}. 

 

By simplification the above equation, we obtain 

 

𝑎𝑛 =
1

2√𝑚
(𝑦(𝑥1) − 𝑦(𝑥2)), 

 

therefore 

𝑎𝑛
2 =

1

2𝑚
(𝑦(𝑥1) − 𝑦(𝑥2))

2
 

and 

𝑎𝑛
2 =

1

2𝑚
(𝑥2 − 𝑥1)

2𝑦′2(𝑥0)  ≤
1

4𝑚3
𝐵2. 

From Eq.(4), we have 

‖𝑦(𝑥) − 𝑦𝑘(𝑥)‖𝐿2[0,1)
2 = ∑𝑎𝑛

2

∞

𝑛=𝑘

 

                                                         

      = ∑ ( ∑ 𝑎𝑛
2

2𝑚−1

𝑛=𝑚

)

∞

𝑗=𝑟+1

, 

 

    ≤ ∑ ( ∑
1

4𝑚3

2𝑚−1

𝑛=𝑚

𝐵2)

∞

𝑗=𝑟+1

, 
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    = 𝐵
2∑

1
4𝑚2

∞
𝑗=𝑟+1 , 

 

     =
𝐵2

3

1

𝑘2
. 

Therefore 

‖𝑦(𝑥) − 𝑦𝑘(𝑥)‖𝐿2[0,1)
2 = 𝑂 (

1

𝑘
). 

 

2.4 The Haar wavelet operational matrix and its integrals 

 

The following equation  

𝑃1,𝑖(𝑥) = ∫ ℎ𝑖(𝑡)𝑑𝑡
𝑥

0

 

 

defines the operational matrix of integration, which is  𝑁 ×𝑁 square matrix. The form  

 

𝑃𝑠+1,𝑖(𝑥) = ∫ 𝑃𝑠,𝑖(𝑡)𝑑𝑡
𝑥

0

, 𝑤ℎ𝑒𝑟𝑒  𝑖 = 1,2, …𝑁 

 

 and 𝑠 = 1,2, … , 𝑛 is used to develop a general operational matrix. According to the function 𝑃1,𝑖(𝑥) and using Eq.(2) 

contracted the following integrals 

 

  𝑃1,𝑖(𝑥) = {
𝑥 − 𝜉1   if 𝑥 ∈ [𝜉1, 𝜉2)

𝜉3 − 𝑥   if 𝑥 ∈ {𝜉2, 𝜉3)

0        elsewhere

               (6) 

 

 𝑃2,𝑖(𝑥) =

{
 
 

 
 
1

2!
(𝑥 − 𝜉1)

2                    if 𝑥 ∈ [𝜉1, 𝜉2)

1

4𝑚2 −
1

2!
(𝜉3 − 𝑥)

2      if 𝑥 ∈ {𝜉2, 𝜉3)

1

4𝑚2                                if 𝑥 ∈ [𝜉3, 1)

0                                   elsewhere

      (7) 

 

 𝑃3,𝑖(𝑥) =

{
 
 

 
 
1

6
(𝑥 − 𝜉1)

2                                    if 𝑥 ∈ [𝜉1, 𝜉2)

1

4𝑚2 (𝑥 − 𝜉2) −
1

6
(𝜉3 − 𝑥)

3      if 𝑥 ∈ {𝜉2, 𝜉3)

1

4𝑚2  (𝑥 − 𝜉2)                              if 𝑥 ∈ [𝜉3, 1)

0                                                  elsewhere

     (8) 

 

and the fourth integrals can be formed as the followin 

 

𝑃4,𝑖(𝑥) =

{
 
 

 
 
1

24
(𝑥 − 𝜉1)

4                                                          if 𝑥 ∈ [𝜉1, 𝜉2)

1

8𝑚2
(𝑥 − 𝜉2)

2 −
1

24
(𝜉3 − 𝑥)

4 +
1

192𝑚4       if 𝑥 ∈ {𝜉2, 𝜉3)

1

8𝑚2  (𝑥 − 𝜉2)
2 +

1

192𝑚4                                  if 𝑥 ∈ [𝜉3, 1)

0                                                                           elsewhere

    (9) 

 

The generalized integrals of Haar functions of the order n are considered as below: 

 

𝑃𝑠,𝑖(𝑥) =

{
 
 

 
 

1

𝑠!
(𝑥 − 𝜉1)

𝑠                                                                                   if 𝑥 ∈ [𝜉1, 𝜉2)

1

𝑠!
{(𝑥 − 𝜉1)

𝑠 − 2(𝑥 − 𝜉2)
𝑠}                                                       if 𝑥 ∈ {𝜉2, 𝜉3)

1

𝑠!
{(𝑥 − 𝜉1)

𝑠 − 2(𝑥 − 𝜉2)
𝑠 + (𝑥 − 𝜉3)

𝑠}                               if 𝑥 ∈ [𝜉3, 1)

0                                                                                                    elsewhere

   (10) 

 

If we choose different values for 𝐽, for example, if we take 𝐽 = 2, then 𝑁 = 8, so we get the following matrices 
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𝑃1,𝑖(8,8)
1

16
=

[
 
 
 
 
 
 
 
1 3 5 7 9 11 13 15
1 3 5 7 7 5 3 1
1 3 3 1 0 0 0 0
0 0 0 0 1 3 3 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1 ]

 
 
 
 
 
 
 

 

and 

𝑃2,𝑖(8,8)
1

16
=

[
 
 
 
 
 
 
 
 
1/32 9/32 25/32 49/32 81/32 121/32 169/32 225/32
1/32 9/32 25/32 49/32 79/32 103/32 119/32 127/32
1/32 9/32 23/32 31/32 1 1 1 1
0 0 0 0 1/32 9/32 23/32 31/32

1/32 7/32 1/4 1/4 1/4 1/32 1/4 1/4
0 0 1/32 7/32 1/4 1/32 1/4 1/4
0 0 0 0 1/32 7/32 1/4 1/4
0 0 0 0 0 0 1/32 7/32 ]

 
 
 
 
 
 
 
 

 

 

But if we select 𝐽 = 3, then 𝑁 = 16, we obtain the following matrices 

 

 

𝑃1,𝑖(16,16)
1

32
=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
1 3 5 7 9 11 13 15 15 13 11 9 7 5 3 1
1 3 5 7 7 5 3 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 3 5 7 7 5 3 1
1 3 3 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 3 3 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 3 3 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 3 3 1
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

and 𝑃2,𝑖(16,16) is given as  

 

=
1

2048

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 9 25 49 81 121 169 225 289 361 441 529 625 729 841 961
1 9 25 49 81 121 169 225 287 343 391 431 463 487 503 511
1 9 25 49 79 103 119 127 128 128 128 128 128 128 128 128
0 0 0 0 0 0 0 0 1 9 25 49 79 103 119 127
1 9 23 31 32 32 32 32 32 32 32 32 32 32 32 32
0 9 0 0 1 9 23 31 32 32 32 32 32 32 32 32
0 9 0 0 0 0 0 0 1 9 23 31 32 32 32 32
0 9 0 0 0 0 0 0 0 0 0 0 1 9 23 31
1 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8
0 0 1 7 8 8 8 8 8 8 8 8 8 8 8 8
0 0 0 0 1 7 8 8 8 8 8 8 8 8 8 8
0 0 0 0 0 0 1 7 8 8 8 8 8 8 8 8
0 0 0 0 0 0 0 0 1 7 8 8 8 8 8 8
0 0 0 0 0 0 0 0 0 0 1 7 8 8 8 8
0 0 0 0 0 0 0 0 0 0 0 0 1 7 8 8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 
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2.5 The solution procedure 

 

This section introduced a Leibnitz-Haar wavelet collocation technique for solving a second-order nonlinear Fredholm 

integro-differential equation by reducing it to an equivalent differential equation with initial conditions. The Leibnitz rule 

for integral differentiation is used in the conversion [16]. 

Consider the following integral equation:  

𝐹(𝑥) = 𝜆∫ 𝑘(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡
𝑔2(𝑥)

𝑔1(𝑥)

                                  (11) 

 
therefore, the differentiation of integrals exists in Eq.(1) and is derived by 

 

𝐹′(𝑥) =
𝑑𝐹

𝑑𝑥
𝑘(𝑥, 𝑔2(𝑥))(𝑦(𝑔2(𝑥))

𝑑𝑔2(𝑥)

𝑑𝑥
− 𝑘(𝑥, 𝑔1(𝑥))(𝑦(𝑔1(𝑥)) + 𝜆∫

𝜕𝑘(𝑥, 𝑡)

𝜕𝑥
𝑦(𝑡)𝑑𝑡

𝑔2(𝑥)

𝑔1(𝑥)

,     (12) 

 

if 𝑔1(𝑥) = 𝑎 and 𝑔2(𝑥) = 𝑏, where 𝑎 and 𝑏 are constants, then the Leibnitz rule for Eq.(11) reduces to 

                                                                              

            𝐹′(𝑥) =
𝑑𝐹

𝑑𝑥
= 𝜆∫

𝜕𝑘(𝑥, 𝑡)

𝜕𝑥
𝑦(𝑡)𝑑𝑡

𝑔2(𝑥)

𝑔1(𝑥)

                  (13)  

 
The numerical computing technique has been as described in the following: The first step, we differentiate Eq.(1) with 

regard to 𝑥 by using the Leibnitz rule, then we obtain differential equations as shown below: 

𝑦′′′(𝑥) = 𝑓′(𝑥) + 𝜆𝐹′(𝑥) 

𝑦(𝑖𝑣)(𝑥) = 𝑓′′(𝑥) + 𝜆𝐹′′(𝑥) 
⋮                                                                                                                            

(14) 

 𝑦(𝑛)(𝑥) = 𝑓(𝑛−2)(𝑥) + 𝜆𝐹(𝑛−2)(𝑥) 
 

and so on until 𝐹(𝑛) = 0, 𝑛 = 3,4, … with initial conditions 𝑦(0) = 𝛼, 𝑦′(0) = 𝛽, 𝑦′′(0) = 𝛾, 𝑦′′′(0) = 𝛿, …𝑦(𝑛−1)(0) =
𝜂.  

 

In the second step, we suppose that 

𝑦(𝑛)(𝑥) = ∑𝑎𝑖ℎ𝑖(𝑥)

𝑁

𝑖=1

,                                                                                   (15) 

 

and using the Haar wavelets collocation approach. 

 

The third step is to integrate Eq.(15) until we achieve the approximate solution, as shown below 

 𝑦(𝑛−1)(𝑥) = 𝛿 +∑𝑎𝑖𝑃1,𝑖(𝑥)                                                                       (16)

𝑁

𝑖=1

 

 𝑦(𝑛−2)(𝑥) = 𝛾 + 𝛿𝑥 +∑𝑎𝑖𝑃2,𝑖(𝑥)                                                             (17)

𝑁

𝑖=1

 

 𝑦(𝑛−3)(𝑥) = 𝛽 + 𝛾𝑥 + 𝛿
𝑥2

2
+∑𝑎𝑖𝑃3,𝑖(𝑥)

𝑁

𝑖=1

                                               (18) 

⋮ 

 𝑦(𝑥) = 𝛼 + 𝛽𝑥 + 𝛾
𝑥2

2!
+ 𝛿

𝑥3

3!
+⋯+ 𝜂

𝑥𝑛

𝑛!
+∑𝑎𝑖𝑃𝑛,𝑖(𝑥)

𝑁

𝑖=1

                    (19) 

 

The final step is to replace Eq.(15)-Eq.(19) in Eq.(14), which reduces the nonlinear system of 𝑁  equations with 𝑁 

unknowns, and then employ Newton's technique to obtain the Haar coefficients 𝑎𝑖 , Where 𝑖 = 1, 2,… , 𝑁. Eventually 

replacing Haar coefficients in Eq.(19) to determine the suitable approximation solutions of Eq.(1). 
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3. Numerical Experiments 

 

This section illustrates the performance of a proposed method, through an implementation based on Matlab programming. 

The pointwise error is used to measure the error between the numerical and analytical solutions. We denote by E errors 

term described by  

 

𝐸𝐻𝑊𝑀 = 𝑦(𝑥) − 𝑌𝐻𝑊𝑀 . (𝑥). 
 

Let us introduce the three accuracy indicators when using space step size ℎ. 

 

The pointwise error  

 

𝜀𝐻𝑊𝑀 = |𝐸(𝑥𝑖)| 
 

The 𝑙∞ norm of the error  

 

𝑙∞(𝐸𝐻𝑊𝑀 , ℎ) = max
0≤𝑖≤𝑁

|𝐸𝐻𝑊𝑀(𝑥𝑖)| 

 

The 𝑙2 norm of the error 

  

𝑙2(𝐸𝐻𝑊𝑀 , ℎ) = √ℎ∑|𝐸𝐻𝑊𝑀(𝑥𝑖)|2
𝑁

𝑖=0

. 

 

Example 3.1. Consider second order  nonlinear Fredholm integro-differential equation 

                              

 𝑦′′(𝑥) = −𝑠𝑖𝑛𝑥 −
𝜋𝑥

16
+
𝜋2

32
+
1

8
∫ (𝑥 − 𝑡)𝑦2(𝑡)𝑑𝑡                
𝜋

0

   (20) 

 

with initial conditions 𝑦(0) = 1, 𝑦′(0) = 0, and exact solution 𝑦(𝑥) = 𝑠𝑖𝑛𝑥. 

 

Differentiating the Eq.(20) with respect to 𝑥, gives 

 

𝑦′′′(𝑥) = −𝑐𝑜𝑠𝑥 −
𝜋

16
+
1

8
∫ 𝑦2(𝑡)𝑑𝑡
𝜋

0

, 

 

we have the following differential equation by differentiating the above equation again according to 𝑥, 

 

  𝑦(𝑖𝑣)(𝑥) = 𝑠𝑖𝑛𝑥,                                                                              (21) 
 

with initial conditions 𝑦(0) = 0, 𝑦′(0) = 1, 𝑦′′(0) = 0, 𝑦′′′(0) = −1. 

 

Using the Haar wavelet approach, we suppose that 

 

         𝑦(𝑖𝑣)(𝑥) =∑𝑎𝑖ℎ𝑖(𝑥)

𝑁

𝑖=1

.                                                         (22) 

 

The approximate solution can be illustrated below after integrating Eq.(22), and applying the initial conditions. 

𝑦′′′(𝑥) = −1 +∑𝑎𝑖𝑃1,𝑖(𝑥)                                                         (23)

𝑁

𝑖=1

 

𝑦′′(𝑥) = −𝑥 +∑𝑎𝑖𝑃2,𝑖(𝑥)

𝑁

𝑖=1

                                                          (24) 
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         𝑦′(𝑥) = 1 −
𝑥2

2
+∑𝑎𝑖𝑃3,𝑖(𝑥)                                                             (25)

𝑁

𝑖=1

 

𝑦(𝑥) = 𝑥 −
𝑥3

3!
+∑𝑎𝑖𝑃4,𝑖(𝑥)

𝑁

𝑖=1

.                                                                       (26) 

 

The approximate solution of Eq.(20) is given by Eq.(26). Now by replacing Eq.(22) in the differential Eq.(21), then reduce 

the nonlinear system as follows 

∑𝑎𝑖ℎ𝑖(𝑥)

𝑁

𝑖=1

= 𝑠𝑖𝑛𝑥,                                                                                           (27) 

 

Newton's technique was employed to get the Haar coefficients 𝑎𝑖, in Eq.(27). Finally, we substitute the values of Haar 

coefficients 𝑎𝑖, in Eq.(26), we get the approximate solution. 

 

Table 1. Comparison between the exact solution and approximate solution of Example 3.1 

 

𝒙𝒊(/𝟑𝟐) 𝒚(𝒙) 𝒀𝑯𝑾𝑴(𝒙) 𝜺𝑯𝑾𝑴 𝒍𝑯𝑾𝑴
∞  𝒍𝑯𝑾𝑴

𝟐  

1 0.031245 0.031245 9.9321e-10 

4.8174e-05 2.1289e-04 

3 0.093613 0.093613 4.2708e-08 

5 0.15561 0.15562 2.0353e-07 

7 0.21701 0.21701 5.626e-07 

9 0.27756 0.27756 1.1987e-06 

11 0.33702 0.33702 2.19e-06 

13 0.39517 0.39517 3.6141e-06 

15 0.45177 0.45178 5.5476e-06 

17 0.50661 0.50662 8.0664e-06 

19 0.55947 0.55948 1.1245e-05 

21 0.61015 0.61017 1.5156e-05 

23 0.65844 0.65846 1.9873e-05 

25 0.70417 0.70419 2.5465e-05 

27 0.74714 0.74717 3.2002e-05 

29 0.7872 0.78724 3.955e-05 

31 0.82418 0.82423 4.8174e-05 
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Figure 1. Comparison between the exact solution and approximate solution of Example 3.1 

 

Example 3.2. Consider second-order nonlinear Fredholm integro-differential equation 

 

       𝑦′′(𝑥) + 𝑥𝑦′(𝑥) − 𝑥𝑦(𝑥) = 𝑒𝑥 − 𝑠𝑖𝑛𝑥 +∫ 𝑠𝑖𝑛𝑥
1

0

𝑒−2𝑡𝑦2(𝑡)𝑑𝑡                                                        (28) 

 

with initial conditions 𝑦(0) = 1, 𝑦′(0) = 1, an analytical solution is 𝑦(𝑥) = 𝑒𝑥. 

 

Differentiating the Eq.(28) twice with respect to 𝑥, gives 

 

 𝑦′′′(𝑥) + 𝑥𝑦′′(𝑥) + 𝑦′(𝑥) − 𝑥𝑦′(𝑥) − 𝑦(𝑥) = 𝑒𝑥 − 𝑐𝑜𝑠𝑥 +∫ 𝑐𝑜𝑠𝑥
1

0

𝑒−2𝑡𝑦2(𝑡)𝑑𝑡                            (29) 

and 

  𝑦𝑖𝑣(𝑥) + 𝑥𝑦′′′(𝑥) + 2𝑦′′(𝑥) − 𝑥𝑦′′(𝑥) − 2𝑦′(𝑥) = 𝑒𝑥 + 𝑠𝑖𝑛𝑥 − ∫ 𝑠𝑖𝑛𝑥
1

0

𝑒−2𝑡𝑦2(𝑡)𝑑𝑡                   (30) 

 

from Eq.(28), we have 

 

    −∫ 𝑠𝑖𝑛𝑥
1

0

𝑒−2𝑡𝑦2(𝑡)𝑑𝑡 = 𝑒𝑥 − 𝑠𝑖𝑛𝑥 − 𝑦′′(𝑥) − 𝑥𝑦′(𝑥) + 𝑥𝑦(𝑥)                                                        (31) 

 

Replacing Eq.(30) into Eq.(31), we obtain 

 

𝑦𝑖𝑣(𝑥) + 𝑥𝑦′′′(𝑥) + 2𝑦′′(𝑥) − 𝑥𝑦′′(𝑥) − 2𝑦′(𝑥)  = 𝑒𝑥 + 𝑠𝑖𝑛𝑥 + 𝑒𝑥 − 𝑠𝑖𝑛𝑥 − 𝑦′′(𝑥) − 𝑥𝑦′(𝑥) + 𝑥𝑦(𝑥)         
 

𝑦𝑖𝑣(𝑥) + 𝑥𝑦′′′(𝑥) + 3𝑦′′(𝑥) − 𝑥𝑦′′(𝑥) − 2𝑦′(𝑥) + 𝑥𝑦′(𝑥) − 𝑥𝑦(𝑥) = 2𝑒𝑥                                           (32). 
 

By simplification the Eq.(32), we get the differential equation as the following form  

 

𝑦𝑖𝑣(𝑥) + 𝑥𝑦′′′(𝑥) + (3 − 𝑥)𝑦′′(𝑥) − (2 − 𝑥)𝑦′(𝑥) − 𝑥𝑦(𝑥) = 2𝑒𝑥                                                        (33) 
 

with initial conditions 

 

𝑦(0) = 1, 𝑦′(0) = 1, 𝑦′′(0) = 1, 𝑦′′′(0) = 1. 

 

Using the Haar wavelet approach, we suppose that 
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𝑦(𝑖𝑣)(𝑥) =∑𝑎𝑖ℎ𝑖(𝑥).

𝑁

𝑖=1

                                                                              (34) 

 

The approximate solution can be found below after integrating Eq.(34), and applying the initial conditions. 

𝑦′′′(𝑥) = 1 +∑𝑎𝑖𝑃1,𝑖(𝑥)

𝑁

𝑖=1

                                                                       (35) 

 

𝑦′′(𝑥) = 1 + 𝑥 +∑𝑎𝑖𝑃2,𝑖(𝑥)

𝑁

𝑖=1

                                                                (36) 

 

𝑦′(𝑥) = 1 + 𝑥 +
𝑥2

2
+∑𝑎𝑖𝑃3,𝑖(𝑥)

𝑁

𝑖=1

                                                        (37) 

 

𝑦(𝑥) = 1 + 𝑥 +
𝑥2

2
+
𝑥3

3!
+∑𝑎𝑖𝑃4,𝑖(𝑥).                                                

𝑁

𝑖=1

(38) 

 

The approximate solution of Eq.(28) is given by Eq.(38). Now by replacing Eq.(34) in the differential Eq.(31), then reduce 

the nonlinear system as the following form: 

 

∑𝑎𝑖ℎ𝑖(𝑥)

𝑁

𝑖=1

+ 𝑥 (∑𝑎𝑖𝑃2,𝑖(𝑥)

𝑁

𝑖=1

)+ (3 − 𝑥)(1 + 𝑥 +∑𝑎𝑖𝑃2,𝑖(𝑥)

𝑁

𝑖=1

)− (2 − 𝑥)(1 + 𝑥 +
𝑥2

2
+∑𝑎𝑖𝑃3,𝑖(𝑥)

𝑁

𝑖=1

)

− 𝑥 (1 + 𝑥 +
𝑥2

2
+
𝑥3

3!
+∑𝑎𝑖𝑃4,𝑖(𝑥)

𝑁

𝑖=1

) = 2𝑒𝑥 .      (39) 

 

Newton's technique was employed to get the Haar coefficients 𝑎𝑖 in Eq.(39). Finally, we substitute the values of Haar 

coefficients 𝑎𝑖 in Eq.(38), we get the approximate solution. 

 

Table 2. Comparison between the exact solution and approximate solution of Example 3.2. 

 

𝒙𝒊(/𝟑𝟐) 𝒚(𝒙) 𝒀𝑯𝑾𝑴(𝒙) 𝜺𝑯𝑾𝑴 𝒍𝑯𝑾𝑴
∞  𝒍𝑯𝑾𝑴

𝟐  

1 1.0317 1.0317 2.2892e-09 

0.0090 0.0275 

3 1.0983 1.0983 1.4976e-07 

5 1.1691 1.1691 1.2346e-06 

7 1.2445 1.2445 5.6305e-06 

9 1.3248 1.3248 1.8454e-05 

11 1.4102 1.4103 4.8817e-05 

13 1.5012 1.5013 0.00011115 

15 1.598 1.5982 0.00022661 

17 1.7011 1.7015 0.00042447 

19 1.8108 1.8115 0.00074366 

21 1.9276 1.9288 0.0012342 

23 2.0519 2.0538 0.0019586 

25 2.1842 2.1872 0.0029936 

27 2.3251 2.3295 0.0044314 

29 2.475 2.4814 0.006381 

31 2.6346 2.6436 0.0089698 
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Figure 2. Comparison between exact solution and approximate solution of Example 3. 2. 

 

Example 3.3. Consider second-order nonlinear Fredholm integro-differential equation 

 

𝑦′′(𝑥) = 𝑒𝑥 +
1

4
(𝑒2 − 2)𝑥 +

1

2
∫ 𝑥(𝑡 − 𝑦2)(𝑡)𝑑𝑡,
1

0

                                     (40) 

 

with initial conditions 𝑦(0) = 1, 𝑦′(0) = 1, and exact solution 𝑦(𝑥) = 𝑒𝑥. 

 

Differentiating the Eq.(40) with respect to 𝑥, gives 

 

𝑦′′′(𝑥) = 𝑒𝑥 +
1

4
(𝑒2 − 2) +

1

2
∫ (𝑡 − 𝑦2)(𝑡)𝑑𝑡
1

0

. 

 

We have the following differential equation by differentiating the above equation again according to 𝑥, 

𝑦(𝑖𝑣)(𝑥) = 𝑒𝑥 ,                                                                                                        (41) 
 

with initial conditions 𝑦(0) = 1, 𝑦′(0) = 1, 𝑦′′(0) = 1, 𝑦′′′(0) = 1. 

 

Using the Haar wavelets approach, we suppose that 

 

𝑦(𝑖𝑣)(𝑥) =∑𝑎𝑖ℎ𝑖(𝑥)                                                                                      

𝑁

𝑖=1

   (42) 

 

The approximate solution can be found below after integrating Eq.(40), and applying the initial conditions. 

𝑦′′′(𝑥) = 1 +∑𝑎𝑖𝑃1,𝑖(𝑥)                                                                             (43)

𝑁

𝑖=1

 

𝑦′′(𝑥) = 1 + 𝑥 +∑𝑎𝑖𝑃2,𝑖(𝑥)

𝑁

𝑖=1

                                                                      (44) 

𝑦′(𝑥) = 1 + 𝑥 +
𝑥2

2
+∑𝑎𝑖𝑃3,𝑖(𝑥)                                                              (45)

𝑁

𝑖=1

 

⋮                                           

𝑦(𝑥) = 1 + 𝑥 +
𝑥2

2
+
𝑥3

3!
+∑𝑎𝑖𝑃4,𝑖(𝑥)

𝑁

𝑖=1

.                                                    (46) 
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The approximate solution of Eq.(40) is given by Eq.(46). Applying Eq.(42) to the differential Eq.(41) reduces the 

nonlinear system as follows: 

 

∑𝑎𝑖ℎ𝑖(𝑥)

𝑁

𝑖=1

− 𝑒𝑥 = 0,                                                                                       (47) 

 

then Newton's technique employed to get the Haar coefficients 𝑎𝑖 in Eq.(47). Finally, we substitute the values of Haar 

coefficients 𝑎𝑖 in Eq.(46), we obtain the approximate solution. 

 

Table 3. Comparison between the exact solution and approximate solution of Example 3.3. 

 

𝒙𝒊(/𝟑𝟐) 𝒚(𝒙) 𝒀𝑯𝑾𝑴(𝒙) 𝜺𝑯𝑾𝑴 𝒍𝑯𝑾𝑴
∞  𝒍𝑯𝑾𝑴

𝟐  

1 1.0317 1.0317 1.0117e-09 

5.6679e-05 2.4240e-04 

3 1.0983 1.0983 4.351e-08 

5 1.1691 1.1691 2.0857e-07 

7 1.2445 1.2445 5.8098e-07 

9 1.3248 1.3248 1.2484e-06 

11 1.4102 1.4102 2.3017e-06 

13 1.5012 1.5012 3.8349e-06 

15 1.598 1.598 5.9455e-06 

17 1.7011 1.7011 8.7349e-06 

19 1.8108 1.8108 1.2308e-05 

21 1.927 1.9276 1.6775e-05 

23 2.0519 2.0519 2.225e-05 

25 2.1842 2.1842 2.8851e-05 

27 2.3251 2.3251 3.6702e-05 

29 2.475 2.4751 4.5933e-05 

31 2.6346 2.6347 5.6679e-05 

 

 

 
Figure 3. Comparison between the exact solution and approximate solution of Example 3.3. 
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4. Conclusion 

The numerical solution of nonlinear Fredholm integro-differential equations of the second order was obtained in this work 

using the Haar wavelet collocation method based on the Leibnitz rule. To solve the resulting integral equations, the Haar 

wavelet function and its operational matrix were also applied. The integro-differential equations are reduced to a set of 

algebraic equations after being reduced to differential equations with initial conditions. The error analysis reveals that the 

approximation becomes more accurate as the level of resolution N is raised. As a result, a bigger N is advised for better 

results.  In the future, this work can be solved by using finite element methods. For more details, see [17-24]. Another 

interesting direction would be the using finite difference and compact finite difference methods, see [25-28]. 
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 لمعادلات فريدهولم التفاضلية التكاملية غير الخطيةطريقة مويجات هار  للحل العددي 
 

 1محمد شامي حسو  *2,1يونس عبد سبعاوي  1١نجم عبدالله محم
 

 ،كورد ستان العراق , العراق. >قسم علوم الرياضيات، كلية العلوم والصحة، جامعة كويه 1
 قسم تربية الرياضيات، كلية التربية ، جامعة تشك الدوليه، كورد ستان العراق , العراق 2

 

 الخلاصة: 

دورًا   تلعب  الخطية  غير  التكاملية  التفاضلية   فريدهولم  معادلات  حل  والفيزياء ان  الكيمياء  في  تظهر  التي  الخطية  غير  الأحداث  من  العديد  تحليل  في  مهمًا 

 ان المسائل الفيزيائىة يمكن وصفها كمعادلة تفاضلية ، معادلة تكاملية  ومعادلة    .والبيولوجيا الرياضية ومجموعة متنوعة من مجالات العلوم والهندسة الأخرى

من هذه المعادلات بشكل  تفاضلية تكاملية. يجب إستخدام الأساليب العددية التي تعتبر مجموعات مفيدة للتكامل العددي بشكل متكررلأنه لا يمكن إيجاد حل للعديد  

( الخطية  غير  التكاملية  التفاضلية  فريدهولم  معادلة  من  نوع  لحل  طريقة  العمل  هذا  يقدم  حلها.  يصعب  أو  قاعدة  NFIDEمباشر  تسُتخدم  الثاني.  النوع  من   )

(Leibnitz)  مع طريقة (collocation  Haar wavelet( في هذه البحث لحل )NFIDE جبري من التقنيات لنقل المعادلة إلى نظام  ( عدديًا. استخدم بعض 

ع بناءً  المقترحة  الطريقة  فعالية  توضح  لكي  عددية  تجارب  إعطاء  وتم  البحث  هذا  خلال  إثباته  تم  التقارب  تحليل  ان  تشغيلية.  مصفوفة  برمجة خلال  لى 

MATLAB . 

 

 

 

 

 

 

 

 

 

 

 

 

 

  


