2024, 21(6): 2093-2103
https://doi.org/10.21123/bsj.2023.8690
P-ISSN: 2078-8665 - E-ISSN: 2411-7986

S

Baghdad Science Journal

Solvability of the Quaternary Continuous Classical Boundary Optimal
Control Dominated by Quaternary Parabolic System

Jamil A. Ali Al-Hawasy , Fetan J. Naji *

Department of Mathematics, College of Science, University of Mustansiriyah, Baghdad, Iraq.

*Corresponding Author

Received 04/03/2023, Revised 01/07/2023, Accepted 03/07/2023, Published Online First 20/11/2023,

Published 1/6/2024

—G)
© 2022 The Author(s). Published by College of Science for Women, University of Baghdad.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

Abstract

The purpose of this paper is to study the solvability of the quaternary continuous classical boundary
optimal control vector problem dominated by quaternary nonlinear parabolic boundary value problem
with state constraints. The existence theorem for a quaternary continuous classical boundary optimal
control vector with equality and inequality state constraints is stated and demonstrated under suitable
assumptions. The mathematical formulation of the quaternary adjoint eqs. associated with the
guaternary nonlinear parabolic boundary value problem with state constraints is discovered. The Fréchet
derivative of the cost function and the constraints functions are derived. The necessary and sufficient
theorems (conditions) for optimality of the quaternary continuous classical boundary optimal control
vector problem are stated and demonstrated under suitable assumptions.

Keywords: Adjoint Egs. , Constraint Continue Classical Optimal Control Vector, Necessary Conditions,
Quaternary Nonlinear Parabolic System, Sufficient Condition, The Fréchet Derivative.

Introduction

Optimal ~ control ~ problem  (OCP)  means
endogenously controlling a parameter in a
mathematical model to produce an optimal (cost)
output. The problem comprises an objective (or cost)
function, which is a function of the state and control
variables, the constraints on the control, and the
dominating system. The problem seeks to optimize
the objective function subject to the constraints
construed by the model describing the evolution of
the underlying system. Optimal control problems
play an important role in many practical applications,
such as in medicine', aircraft 2, economics?, robotics
4, weather conditions *and many other scientific
fields. There are two types of optimal control
problems; the classical and the relax type, each one

is either continuous or discrete, also each one of them
is dominated either by ODEQgs ® or by PDEQs®.

The study of the continuous classical type began with
the continuous classical boundary optimal control
problems dominated by nonlinear parabolic or
elliptic or hyperbolic PDEs. Then, these studies were
generalized to deal with systems dominated by
coupling nonlinear PDEs of these three types®!!, and
then were generalized also to deal systems
dominated by triple nonlinear PDEs of these three
types 2. In each type of these classical continuous
boundary optimal control problems, the problem
consists of; an initial or a boundary value problem
(the dominating egs.), the objective (cost) function of
the classical continuous control vector, and the
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constraints on the state vector (equality and
inequality state constraints). The study in each one of
these problems included; the state and proof for the
existence theorem of a continuous classical boundary
optimal control that satisfies the state constraints
under suitable conditions, the derivation of the
mathematical formulation of the adjoint egs.
associated with the state egs. , the derivation of the
Freichet derivative of the cost function and the state
constraints functions, and the state and proof of the
necessary (conditions) theorem and the sufficient
(conditions) theorem for optimality. All these studies
encouraged us to study the generalization of these
problems to include the quaternary continuous
classical boundary optimal control vector problem
dominated by quaternary nonlinear parabolic
boundary value problem. According to this idea of
generalization, it is necessary to find a mathematical
model for the dominating eq. , as well as the cost
function and the constraints on the state function, the
spaces of definition for the control, and the state
vectors, all of which need to be generalized. Hence
all the theorems and the results included in the above
studies for the continuous classical boundary optimal
control dominated by the couple and the triple

Materials and Methods

The following mathematical concepts are important
and are used next in this paper.

Definition 1 : Let Q c R" , a function g:Q x
R* - R is called of the Carathéodory Type, if it is
continuous w.r.t. y and u for fixed x € Q and
measurable w.r.t. x if it is fixed (y, u).

Definition 2 13: Let 1: A — B be a function from an
open set A in a normed space E into a normed space
B, and r € A. If there is a bounded linear operator
lpCr+h)—p)-Lhls _
lrlla '

Then, ¥ is called Fréchet differentiable at r.
Moreover, L is called the Fréchet derivative of i at
r.

L:E — B such that: lim
h—0

Definition 3% Let (E, || - ||) be a real normed space,
B(# @) c E, and leti: B — R be a given functional.
The functional i is called weakly lower semi
continuous if every sequence (K, )nen in a set B
converges weakly to some K€eB , ie:

lim infy(Ky) = $(K).

nonlinear PDEs of the parabolic type must be stated
and proved for the “new” proposed quaternary
continuous classical boundary optimal control
problem.

In this paper; the quaternary continuous classical
boundary optimal control vector problem dominated
by quaternary nonlinear parabolic boundary value
problem is proposed, it starts at first with some given
principles and mathematical concepts, and then the
description for the problem is given, the main results
of this work consist of; the existence theorem of a
quaternary continuous classical boundary optimal
control vector (minimizing the cost function and
satisfying the equality and inequality state
constraints) is stated and demonstrated under
suitable assumptions. The mathematical formulation
for the adjoint quaternary eqgs. associated with the
quaternary nonlinear parabolic boundary value
problem is discovered and then the Fréchet
derivative for the cost function and the state
constraints functions (equality and inequality state
constraints) are obtained. Finally, the necessary
(conditions) theorem for optimality and the sufficient
(conditions) theorem for the proposed problem are
stated and demonstrated under suitable assumptions.

Definition 4 15: Let L be a bounded linear operator
on a Hilbert space H. The operator L*:H — H is
defined by: (L7, z) = (r,L*z) forany r, z € H is said
to be the adjoint operator of L.

Theorem 1 13: Let D be a measurable subset of R? |
and ¥:D - Rwithy € L'(D,R), if [((v)dv = 0
(or < 0,= 0), for each measurable set S c D. Then,
Y(w) =0 (or<0,=0),ae.inD.

Theorem 2%3: Let U be a convex subset of a vector
space X, K be a positive cone in a normed space Z
with K° # @ be a convex, Go:U » R, G;:U » R™
mz=0 , Gy:U > Z, W=
{fueU|G;(u) =0,G,(u) € —K}.

If G;, 1 =0,1,2, are (m + 1) —locally continuous at
u € U, and have (m + 1) —derivatives at u, and if
Gy (w) has a minimum at u in W, then u satisfies the
“Kuhn-Tucker-Lagrange’s Multipliers” , i.e.

There exist0 <A, €R, 4; €ER™, 0< A1, €7,

with ¥2_0]4;| = 1st,Yw e W

AoDGo(u,w —u) + AIDGy (u,w — u) +

()lz,DGz(u,W - u)) = Ol and (AZiGZ(u’)) =0.
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Proposition 1 : Let f: D ¢ R% x R™ — R™ be of

the Carathédory type, F(y) = fo()(,y()()) dy,

and [I[f(x. W < {00 +nCOlyI*V(x,y) € D x

R,y € LP(D x R"), where¢ € LY(D X R),n €
P

Lr-¢(D x R), and a € N, if p € [1,0). Then F is

continuous on LP (D x R™).

Proposition 2°: Let f and f,,: D ¢ R? x R™ - R™
be of the Carathédory type, let F:LP(D) —» R s.t.
F) = [ foy(0)dx, and lIf Gyl < 00 +

B
nOllylle, Y(x,y) € D x R%p,q # 0,y € LP(D X
R™).
Pq
where { € LY9(D x R), n € L»-(D X R), B € [0, p]
and%+%=1,ifp¢00,andn:0, if p = oo,

Then the Fréchet derivative of F exists and is given
by 6’k = [ f,(x,y00)k(x) dx, Yy € P (D x
R™).

In the following section, the description of the
proposed problem is given; it includes the
mathematical formulation for the model which is
represented by the dominating boundary value
problem, the cost function, the state constraints
functions, the constraints on the control, and the
weak form for the dominating egs.

Problem Description:

Let I be a boundary of the open bounded regionQ c
R2,Q=1IxQ,2=TxI,and x = (xq,x;,). The
quaternary continuous classical boundary optimal
control vector problem consists of the state
quaternary egs. , which are considered as (in Q):

a ady.
Yie — ?,j:la_xi(alij a_xj) + b1y — bsy, + beys +

b7y4=f1()(;5;yl), 1

a ay.
Yot — ?,j:la_xi(aZl'j a_xj) + by, + bsy; — bgys —

b11ys = f2(X, 5, ¥2), 2
0 i)

Y3t — %,j:la_){i(a&'j a_zj) + b3ys + boy, — bey1 +

bisys = f3(X,5,¥3), 3

a ady
YVat — ?,j:la_xl_(aélij a_xj) + bsyys — by, +

b11y2 — bisys = fa(X, S, Ya), 4

With the following conditions:

0yr _ 2 dy. _
6n: = Zl,j:l Qrij JZCOS(TH’)&') =v.(x,5),onZ,5

¥r(x,0) = y2(x), on Q, 6

where f € (LZ(Q))4 =L%*(Q), is a vector of
function for each x=(x;,x,)€Q, VY€
(Hz(n))4 = H%() is the quaternary vector state
solution corresponding to quaternary continuous
classical boundary control vector # € (L2(Z))" =

L2(2). a;(xs), bij(s), cij(us), di(xs),

br+3(X,8), byr+s(X,s),  bary3(x,s) and
byr+3(x,s) € C*(Q), and n,. (for r = 1,2,3,4) is an
outer normal vector on the boundary X and (n,, x;)
is the angle between n,. and y; — axis.

The objective function and the state constraints
are considered as:

GO({}) = fQ[g01(X:S:y1) + 902()(:5:}’2) +
903t $,¥3) + Goa (X, s, ¥4)1dxds +
Jslko1 Gt s, w1) + koo (x, 5, w2) +
kos (X, s,w3) + koa(x, s, ws)]do 7
G (V) = fQ[gll(X' s;¥1) + 912005, y2) +
91300 5, ¥3) + 9140 5, ya)ldxds +
Jslki1 Gt s, we) + k2 (s, wo) +
k13()(, S, W3) + k14_()(, S, W4)]d0- = 0 y 8
G, (V) = fQ[921(X' $,¥1) + 922005, y2) +
923005, Y3) + 924X s, y4)] dxds +
Jslka1 (0 s, w1) + kop (5, w2) +
ko3 s,ws) + kau(x,s,we)]do <0, 9
The set of admissible quaternary continuous
classical boundary control vector is considered as:
Uy ={# = (v, v3,v3,m,) €EL2(Z)| V€U
R*a.e.inX, G, (¥) =0,G,(%) <0},U isaconvex
set.
LetV_V)=W1XW2XW3XW4
={W: W= (w;,wp,ws,ws) EH' () }.
The weak form of the state quaternary egs. (when
y € H?*(Q)) is:

15, w1) + a1 (s, 1, wy) + (b1(8)y1, wia —
(bs(5)y2,w1)a + (be(s)ys, wi)q +
(b7()ya wi)a = (fi,w)a + (v, wi)r, 10
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(r1(0),w1)g = P, wi)a 11

(Y25, W2) + az(s,¥2,w3) + (b2 (8)y2, wa)a +
(bs($)y1,w2)q — (bo(8)ys, Wwa)q —
(b11()ya,w2)a = (f2sw2)a + (V2, w2)r 12

(r2(0), w2)a = (¥3, W2)q , 13

(735, W3) + az(s,y3,w3) + (b3(s)ys, w3)q +
(by(5)y2,w3)q — (be(S)y1, W3)q +
(b15(8)ya w3)a = (f3,w3)q + (v3,W3)r, 14

(r3(0),w3)q = (¥3,W3)q , 15

(Vas Wa) + a4 (S, ¥4, Wy) + (b4 (8)Yas Wa)g —
(b7(8)y1, wa)q + (b11(S)y2, Wa)q —

(b15(5)y3, Wa)a = (fasWa)q + (Vg Wa)r , 16
(74(0),wy)q = (}’f:sz)Q ) 17
where vr = 1,2,3,4,

0y, vy
ar(s,yr, wy) = fﬂ Zgj=1 arij()(: s) B_LB_; d

Assumptions (A):

(i) f, Vr = 1,2,3,4 is of the Carathédory type, and
satisfies

| -C6s, ) | < mr(os) + crlyel, where
(x.s) €0Q,u,y €ER,c. > 0and n, € L?(Q,R).

(i) f-, Vr = 1,2,3,4 satisfies the Lipchitz conditions
w.rt. y,i.e.

|fr()(:5: yr) - fr()(:s:yr)l < Lrl Yr — yrli
where .,y € Rand L, > 0,

(il ar (s, yro wp) | < arll yelloll wrells,
|(br(S) ¥r, wida | < Brll yrlloll wrello,
ar (s, Yr» ¥r) = el yellf,

(br(S) ¥r» Yr)a = Bell 3115, vr = 1,2,3,4,

[(Bri3(8) ¥r wi)a | < €l Yelloll wallo,

vr =234,

[(B2r43(8) ¥r w2)a | < &l Yrlloll wallo

vr = 1,34,

[(B3r43(8) ¥r w3da | < &l Yrlloll wallo

vr =1,2,4,

|(Bar+3(8) Yrs Wada | < Exll yrlloll wallo

vr =123,

c(s,9,9) = ai(s, y1, y1) + (b1(S) y1, ¥1)a +
ax(s, y2, ¥2) + (b2(8) y2, y2)o +
az(s, ¥3, ¥3) + (b3(s) ¥3, ¥3)a +
as (s, Yar Ya) + (b4(S) Yar Ya)a
ct,y.9) = alyli . IYIF = Xr=1ll y 13, With
a, Br, € (r=1,23,4)and a are real positive
constants.

Theorem 3'2: With Assumptions (A), for each fixed
quaternary continuous classical boundary control
vector ¥ € L2(Q), Eq.10 — Eq.17 has a unique
guaternary vector state solution

je(2aw)' = L2aw), ;€ (12aw")* =
L2(I,w™).

Theorem 4'2: With Assumptions (A), the following
two cases are held:

a- Let y, y + Ay be the quaternary vector states
solution corresponding to the bounded quaternary
continuous classical boundary control vectors ¥
U+ AU € L%(X) resp., then ( with x denote for
various cosntants):

105 ll2q) < KlIAT,
105121, < KI1AT;

b- The operator ©-y; from L%(%) into
L® (I, L? (n))or into L2 (Q) is continuous.

Assumptions (B):

The functions gy, , k;- (VI = 0,1,2,and r = 1,2,3,4)
are of the Carathédory type on (Q x R) and on
(2 X R) resp., and satisfy:

| 90- s, ) < vir (o s) + Clr(yr)zi
| klr()(;S, vr)l < 511‘()(:5) + dlr(vr)za

where y,, v, € R with y;,. € L1(Q), 6 € L}(2) .

Lemma 1: With Assumptions (B), the functional
G, (@) is continuous on L?(X) for each [ = 0,1,2.

Proof: The continuity of the integrals
fQ glr()(r Sr)’r) d)(ds, fz‘ klr()(: S vr) do on
L%2(Q),L>(X) respe,Vr =1,2,3,4&1=0,1,2 are
obtained from Assumptions (B), with using
Proposition 1, and hence G,(v) for each [ = 0,1,2 is
continuous on L2(X) foreach | = 0,1,2.
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Theorem 5 If V is compact in U # . If Go (D) is
convex w.r.t. v for fixed (x,s,y). Then there exists

Results and Discussion

Main Results

In this part, the existence theorem for a quaternary
continuous classical boundary optimal control vector
satisfying the equality and inequality constraints is
stated and demonstrated. The mathematical
formulation for the quaternary adjoint egs. associated
with the quaternary nonlinear state eqs. is
discovered. Then the Fréchet derivative for the cost
functional and the state constraints functions are
obtained. The necessary and sufficient theorems for
optimality are stated and demonstrated under
suitable assumptions.

Theorem 6: If U; # @, G,(¥) (for each [ = 0,2) is
convex w.rt. ¥ and for fixed (x,s,¥), G;(¥) is
independent of ¥. Then there exists a constraints
guaternary continuous classical boundary optimal
control vector.

Proof: From the hypotheses on V, U, is weakly
compact. Since U i # 0, then there exists a
minimizing  sequence{#,} € U, VK, st
lim Go(By) = infzoy . Go(¥). Then there exists a
n—oo A

subsequence of {v,} say again {v,} s.t. Uy % in
L?(Z) and |||l < ¢, Vk .Hence by Theorem 3,
there exists a sequence for the quaternary state
solutions{y,} corresponding to the sequence of the
guaternary continuous classical boundary control
vector {v;}.

In Theorem 3, it is proved that the y, 5 y in L2(Q),
and y is a quaternary state solution of the Eq. 10- Eq.
17, corresponding to the quaternary continuous
classical boundary control vector ©. It remains to
show that the limit ¥ satisfies Eq.7- Eq.9.

Since Gy (V) = fQ[gn(X: S, Y1k) +

9120, 8, Yar) +
913 S Y3i) + 9140 S, Yar)]d xds.

S
From Lemma 1, with y, -y in L?(Q), and by
Proposition 1, one gets:

Jo 91705, yriddxds = [, 91-(x, 5,y ) dxds.
Which gives, G, (V) = Ilim G1(vy) = 0.

a quaternary continuous classical boundary optimal
control vector.

From Lemma 1, the function g;,.(x,s,y.) is
continuous w.r.t. y,. (Vr =1,2,3,4 & 1l =0,2), and
one obtains

fQ ng(X' S'yrk)dxds - fQ ng(X' S'Yr)d){ds- 18

From the hypotheses on k., the function
ki-(x,s,v.) is weakly lower semi continuous
w.r.t. v, then by using (18), the following inequality
iS obtained:

fQ 9ir (s, ¥ )dxds + [5 k- (x5, wy)do <

,}1_{{}0 inf fg ki-(x, s, wyy)do + fQ 9irC s, y)dyds
= lim inf s kir Qs wrg)do +

liminf [, g Ot s, yric)dxds.

ie. G(V) < I}im inf G;(v,), for 1=0,2, but
G, (Vi) < 0,then G,(¥) < 0 and one gets that v €
Wy.
And

lnfﬁeV—V’AGo(ﬁ) . GO (1_7)) = mln]gEWAGO(ﬁ)

Thus ¥ is a constraints quaternary continuous
classical boundary optimal control vector.

The Necessary and the sufficient theorems for
Optimality:

The following assumptions are needed to discover
the Fréchet derivative for the cost function, which is
used next in the proof of the necessary and the
sufficient conditions for optimality.

Assumptions (C):
If, fry, glryrand hy, (forl=012&r =1,2,3,4)
are of the Carathédory type on (Q X R), and on (X X

R) respe, st |gw, (s ) | < 7i(0s) +
Clrlyrla |klryr()(: S, Wr) | < glr()(v S) + dlrlwrl and
fl‘yr()(’s’y‘r‘) S Z‘r‘()(!s)v

where (x,s) € Q, y, v €ER, ¥, L, € L2(Q) and
5, € L2(2).
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Theorem 7: Dropping the index [ in g;, h;, for each
[ = 0,1,2, consider Eqg. 7, and:

H(x,s, Yr» Zy, vr) = Z#:l( err s, :Vr) +
9r OGS, v) + ke (s, vp))

The adjoin  z, = z,,, orz, associated with state
egs. are formulated in Q as:

a 0z
n 1
—Z15 — Zi,j:1a_xi<aij 6_)5,') + byzy — bsz, +

bezs + b724 = 21 f1,, (1) + gy, 1), 19
—Zy5 — Z?jzlai)(i(bij gixzj) + byzy + bsz; — bgzg —
byyz4 = szzy2 (v2) + gy, (2), 20
2y — z;}jﬂaim(cij Z—j;) + byzs + bozy — ez, +
bysz4 = Z3f3y3 (¥3) + gy, (v3), 21
245 = Za e (4 Z—;) + byzy — byzy +
b1z — bi523 = Zufa,, (Va) + 9y, (Va) - 22

With the following conditions:

0z,

=0,0n%, 23

on,
z.(T) =0, 0on Q. 24

Then the Fréchet derivative of G is:

(‘ zZ1 + k1v1 Av,

I Zz + kz AU

10 _ v2 2

G'(W)Av = J 23+, || Bvs
z

Av,

do.
Zy + k4v4

Proof: The weak from of the quaternary adjoint egs.
foreach v, € V,Vr = 1,2,3,4, is:

—(z15,w1) + a1(s,z1, wy) + (b1(5)z1, W) g —
(bs(5)z2, w1)q + (be(s)z3,Ww1)g +
(b7(5)za,Ww1)a = (z1f1,,Wia + (gy,, Wi)a, 25

—(226:W2) + a3(5, 23, W) + (b2(5)z2, wa)q +
(bs(s)z1,wz)q — (bo(s)z3, W) 0 —
(b11(8)z4, W) = (22f2,,,W2)a + (gy, W2)a 26

— (235, W3) + a3(s, 23, w3) + (b3(s)z3,w3)q +
(bo(s)z3,w3)q — (be(s)z1, w3)q +
(b15(s)z4, w3)q =

(Z3f3y3:W3)ﬂ + 9y, W3da 27

—(Zas Wa) + a4 (s, 24, Wy) + (b4 (8)Z4, Wa)q —
(b7(s)z1,wa)q + (b11(8)z2, Wa) g —
(by5(s)z3,W)q =

(Zafay,, Wa)a + (9y, Wada , 28

Now, utilizing y,. = Ay, , w, = z,,Vr = 1,2,3,4, in
Eq.10, Eq.12, Eq.14& EQ.16 resp., integrating both
sides w.r.t. t from O to T to get:

foT(A}’m z;)dt + fOT[ ay (s, Ay, 21) +
(b1($)Ayy,21)q — (bs(s)Ay,, 21)q +

(l;e(S)A}’3»Z1)Q + 7§b7(5)A}’4' Zy)qlds =
fo (f1(}’1 + Ayl):zl)ﬂds - fO (fl(yl), Zl)QdS +
fOT(Avl'Zl)F ds , 29

fy (Ayze22)ds + [ [az(s,Ayz,20) +

(b2 ($)Ay,,z2)q +

(bs($)Ayy, 22)q—(bo(s)Ay3,22)q —
(b11(5)Ays, 2)alds = f) (fo(2 +

Ay,), z3)ads — fOT(fz(}’2).Zz)nd5 +
foT(AUZIZz)FdS, 30

fOT(A%s'Zs) dt + foT[ as(s,Ays, z3) +
(b3(s)Ays,23)q + (bo(5)Ay2, 23)q —

(QB(S)AVLZQQ + (b15($)Ays, z3)glds =
fo (fz(ys +

Ays),23)qds — [} (f5(3), 23)ads + f, (Avs, z5)rds
) 31

Iy (Ayss, z4) dt + [ [as(s,Ays,24) +
(b4($)Ay4, 24) o — (b7(s)Ay1,24)q +
(b11(s)Ay2,24) 0 —

(b15(s)Ay3,24)lds = f()T(f4(3’4 +

Ay,), z4)ads — fOT(f4(y4), Z4)qds + fOT(AUm Zy)rds

) 32
Adding Eq.29-Eq.32 together, to get:
Jy @Yo, 2y ds + f c(t,5,9)ds = [ (fi(s +
Ay1),21)qds — f(;r(f1()’1)'z1)nd5 +

T T
J (AU1:Z1)F ds + Jo (2 +

Ay;),23)ds — [ (f2(2), Z2)ads +
[} By, z)rds + [ (fs (3 + Ays), z3)ads —
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I (fs(73), 23)ads + [ (Avs, z3)rds + [ (fu(va +

T T
Ay,), z4)ads — fo (fa(¥a), z4)ads + fo (Avy, zy)r ds
. 33

Now, from Proposition 2:

I O + By, 2)0ds — [, (f,(), 2 )qds =
fy Uy, By, z0)ds + 00 (By) 183l

where &4 (Ay,) = 0 & [|Ay, |l = 0, Vr = 1,2,3.

Hence

) O +
Ay, z0)ads — [ (fr (), z)ds] =
Sioa(fy ey, Ay zy) ds) + &, (A0)||Bo]|,, 34

where S_; &1 (Ay) 18y, llg = e1@)||By ]| -
Now, substituting Eqg. 33 in Eq. 34, to get:
Jy @ys ) ds + [ c(t,5,5)ds =

21Uy (Fry, Ay 2, ) ds) + &5 (B0) |80, +
fOT(Avl,Zl)F ds + + fOT(sz,Zz)F ds +
[y (Avs, z5)p ds + [ (Avy, z4)r ds, 35
where, ||E5||2 >0, &) - 0.

Substituting w,. = Ay, in the Eq.25- EQ.28 resp.,
integration of both sides w.rt. t from 0 to T,
integration by parts the first term in the L.H.S. of
each one of them, and finally adding all the resulting
eqgs. together, to obtain:

Iy (By5,2) ds + [ c(t,5,9)ds =

foT (Z1f1y1'A3’1)Q ds + fOT (91y1»A}’1)Q ds +

foT (szzyz'AYZ)Q ds + fOT (gzyer)’z)Q ds +
foT (Z3f3y3'AJ’3)Q ds + fOT(93y3:A3’3)Q ds +

Iy @afa,, Ay)ads + [, (9a,, . Ay)ads 36

Subtracting Eqg. 36 from Eq. 35, to get:

fOT (91y1'A3’1)Q ds + fOT (gzyz,Ayz)Q ds +

Iy (G35, 8Y3)a ds + J (ay,, Bya)a ds =
&1 (8v)[[av]|, +

fOT(Avl'Zl)F dS + fOT(sz,Zz)l" dS +
T T
fo (Avs, z3)rds + fo (Avy, z4)rds. 37

By the definition of the Fréchet derivative and
Theorem 4, one has:

G(B+4v) = G(B) = Xi=y [, 9ry, Ayr dxds +

iy fykr, vy do +ey (B0)|[B]), 38
where &,(Av) = (¢, + £5)(Av) - 0 and ||Av]|, -
0.
Now, substituting Eq.37 in Eq.38, to get:
G(T+Av) - G@) =

$=1 fE(AVr; Zr) do + 2;4::1 fz krvrAvr do
+ey (80) |5

Since the Fréchet derivative of G is G( + Av) —
G(®) = (G'(#),Av) + &4(Av) ||Av]|,,, then

zy +ky, Av,

_ I Z2 + kz AU

102 _ v2 2
G' (V)Av = 25+ k3u3 Avs do.

s Zy, + k4‘v4 AU4

Theorem 8: If v € WA is a quaternary continuous
classical boundary optimal control vector, then there
exist 1, € R, [ = 0,1,2, with 15,1, = 0, Y2 |4, =
1, s.t. the following conditions are satisfied

Y2 o MG(H(V —P) =0, v eW, 39
Moreover (35) is equivalent to

Hz(x,s,y,Z,v)0 = minHz(x,s,y,Z, 13)7, onX. 41

v'ev

Proof: Since G,;(v) and G/ (¥) are continuous and
linear w.r.t.(v' — #), then G,(¥) is p- differentiable

atvel, Vp and then by theorem 2, there exist 4; €
R, for [ = 0,1,2 withAy, 4, = 0 and Y72_,|1,| = 1,
s.t Eq.39 and Eq.41 hold, i.e.

Y2 oG )V —9)=0,v eT. 42

Applying Theorem 7, setting Av = (v’ — ), then
from Eq.42, one has

i Xios 4 (7 + ki, ) (0 = v do 2 0.
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Letz, = ZIZ:O A1z and krur = 212:0 Alkl?‘vr’ Vr =
1,2,3,4, then
sza(XlSlilZlﬁ).Edo-Zo. 43

To prove Eq.43 is equivalent to Eq.41, let {ﬁ} be a

dense sequence in UA, u be the Lebesgue measure on
Y and let S c X be a subset, s.t

ﬁk()(ls) 'if(X'S)ES
v(r.s)  Lif(rs) €S’

Therefore (43) becomes:

fSHg()(,S,}_/),Z,ﬁ) (VU —V)do = 0.

From Theorem 1, one obtains that:

Hz(x,s,9,Z,7) (¥, —v) =0, in T and then in
P =ﬂk Pk! with Pk =X - Zk and ‘U,(Zk) = O,Vk, but
P is independent on k, hence u(Z-—-P)=

u(Ug 2) = 0, but {v_,’()} is dense in Uy, so the above
inequality becomes
Hs(r,5,9,29) - (v =) 2 0,vv' € Uy, ae.inZ,

v(xs) =

= Hs(x.s,9, 2 %)% = minH;(x, s, ¥, Z, 3)v',0n X.

v'ev
The converse is obtained directly.
Theorem 9: Suppose for each r = 1,2,3,4 that f,.,
g1, are affine w.rt.y,. V(x,s) € Q, kq, is affine
w.r.t. v, V(x,s) € Z and the functions go,, g, are
convex w.r.t. v, V(x,s) € Q, the functions kg, k,,
are continuous w.rt.v,., V(x,s) €Z. Then the

necessary conditions in Theorem 6 with A, > 0 are
sufficient.

Proof: Suppose v € l_fA and satisfies the following
conditions:

[ H3(e5,9,2,9) - dvdo = 0,vv' € U,
/12G2('|3) = 0 .

Let G(#) = Y7_o 4,G,(¥), then from Theorem 7, one
has

G'(D) - Av = Y3y ,G{ (D) - Av =

lezo Y1 fz A (er + klrw) Av, do.

Since the functions f,. (in the R.H.S. of the Eq.1-
Eq.4) are affine, then

fr()(' S'yr) = frl(X' S)Yr + frz()(»s), Vr = 1:2:3:4’-

Let ¥ and ¥ be two quaternary continuous classical
boundary control vectors, then 3 = ¥ and y = y=
are their corresponding quaternary vector state
solutions (by Theorem3), i.e., from the first eq. for
Yy, one has:

7] dy
Yis — iz,jzla_)a(all] 3 1) + b1y1 — b5y, + beys +

b7ys = fu1y1 + fiz,in Q, 44

y1(x,0) =y? (0, onQ, 45
U 1a1UZ -cos(ng, x;) = v1(x,s),onX, 46

and

YVis — Ziz,j=1a%i (alij %) + b1y — bsy, + beys +

b7¥s = fu1y1 + f12, In Q, 47

%1060) =y7 (), on Q, 48
u 1%,2 -cos(ny, x;) = 71(x,s),onX. 49

By multiplying Eq.44- Eq.46 by 6 € [0,1] and
Eq.47- Eq.49 by (1 — @), resp. and then adding each
pair of the obtained egs. together, to get:

Oy, + (A —-0)y1)s — i

2
L=l gy, 0x;
0)y1) —bs(Oy, + (1 —60)y,) +  bs(8ys + (1 —

0)y3) + b;(0ys + (1 — 0)y,) = f11(0y; + (1 —

0)y1) + fiz, 50
0y1(x,0) + (1 — )71 (x, 0) = y7, 51
3(6y,+(1-6
i2.j=1 Qyij (yﬁTj)yl)cos(anz) =0v,+(1-
), , 52

For the remainder egs.
used to get that:

Oy, + (1 —0)y2)s —
0 (6 1-60)y
‘Z'f=1a_xi(a2ij %ﬁ) + by (0y, + (1 -
0)y,) + bs(By, + (1 —0)y,) — be(Oy; + (1 —
9))23) —b11(0ys + (1 = 0)ys) = 21Oy, + (1 —
0)y1) + fa2 53
(Oys + (1 —0)y3)s —
[i] a2(6 1-60)y
?,j=1a_xi(a3ij W) + b3(0ys + (1 -
0)y3) + bo(0y, + (1 —0)y,) —  be(6y; + (1 —
9))21) + b15(0ys + (1 — 0)y,) = f31(0y, + (1 —
0)y1) + f32, o4
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Oys+ (1= 0)ya)s —
d a(o 1-0)y
zz,j=1a_Xi<a4ij (3’%})3’3)) +by(Oys + (1 -
0)ys) —b;(6y; + 1 —0)y) + by (By, + (1 —
0)y2) — bis(8ys + (1 — 0)y3) = fa1 Oy, + (1 —

0)y1) + faz 55
0y.(x,0) + (1 — 0)y,.(x,0) = y2(x), for r=
2,34, 56
(0y,r+(1-60)y,
lz,j=1 Arij %jmcos(nr,)ﬁ) =0v, +(1—

0)v, , forr = 2,3,4, 57

From EQ.50- Eq.57, one gets that the quaternary
continuous classical boundary control vector $ =
67 + (1 —60)7 has the corresponding quaternary
state vector 5 = 85 + (1 — 6)5.

Thus ¥ — y3 is convex- linear w.r.t. (y, v) for each

(. s) € Q.

Also, since

91rO6 8, yr) = I (0 Sy +
IZT(X' S)! le(X' S'yr) = IlT(X' S)UT + IZT(X' S)'

Then for the two quaternary continuous classical
boundary controls vectors ¥ and ¢ and their
corresponding quaternary vector state y = y; and
y =y, one obtains

G (67 + (1 = 6)7) = Ttey fog1r 05,0y + (1=
0)7-)dxds + Xi-1 f5 kir Ot s, 00 + (1 =

Conclusion

In this paper, the quaternary continuous classical
boundary optimal control vector dominated by the
quaternary nonlinear parabolic boundary value
problem with state constraints is proposed. The
existence theorem for a quaternary continuous
classical boundary optimal control vector with
equality and inequality constraints is stated and
demonstrated under suitable hypotheses. The
mathematical formulation of the adjoint quaternary
eqgs. associated with the quaternary nonlinear
parabolic state egs. is discovered. The Fréchet
derivative for the objective function and the state
constraints functions are obtained. Finally, under

0)7,;) do. Since the operator ¥ — y; is convex
linear, then:

G (67 + (1 = 0)7) = Xty [y 1hr (1, 5) (Oyr +
(1= 6)57) + Loy (. S)dxds +

Yro1 fz Iy (o s)(0vr + (1 = 0)7p) + (. s) do
=0G,(%) + (1 - 0)G,(V),

i.e., G;(u) is convex- linear w.r.t. (y, ¥).

From the hypotheses on the functions go, g2
(hor hor) Yr =1,2,3,4, One gets that the integrals
Y1 fQ Gor dxdt, X, fQ g2r dxdt

(X#=1f;kordo and Xi_ [ hyrdo) are convex
w.r.t. y(w.r.t. ) , which gives G, (¥) and G, (V) are
convex w.r.t. (y¥, %), and hence G (¥) is convex w.r.t.
¥, D).

On the other hand, from Theorem 8 and Proposition
2, the following is satisfied

G'(#) - Av = 0, which means G (%) has a minimum
at v, i.e.

PRVUAQESFRPHAC) 58
Let ¥ € U, with A, > 0, then from Eq.40 and Eq.58:

20Go(B) < A9Go(D) = Go(B) < Go(V), V7 €
Uy & (A9 > 0).

N

Hence v is a quaternary continuous classical
boundary optimal control vector.

suitable hypotheses both the necessary (conditions)
theorem and the sufficient (conditions) theorem for
optimality of the quaternary continuous classical
boundary optimal control vector problem are stated
and demonstrated.

The future scope of this paper is very interesting in
the field of applied mathematics since the proposed
model represents a generalization for the heat eq.
Furthermore, it represents multi objectives problems
which have many applications. On the other hand the
results are very important because they give the
green light for the ability to solve such problems
numerically.
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