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Abstract 
 

This paper deals with the nonlinear large-angle bending dynamic analysis of curved beams which investigated by 

modeling wave’s transmission along curved members. The approach depends on the wave propagation in one-

dimensional structural element using the method of characteristics. The method of characteristics (MOC) is found to be 

a suitable method for idealizing the wave propagation inside structural systems. Timoshenko’s beam theory, which 

includes transverse shear deformation and rotary inertia effects, is adopted in the analysis. Only geometrical non-

linearity is considered in this study and the material is assumed to be linearly elastic. Different boundary conditions and 

loading cases are examined. 

From the results obtained, it is found that the geometrical shape, boundary conditions, material properties of the 

members as well as the load type and direction have considerable effects on the response of the member. 
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1. Introduction: 
 

 Recently, there has been a marked interest in 
the information of dynamic characteristics of 

many engineering applications such as high-speed 

machinery, airplane structure, tall building…etc. 
The rapid expansion in the study of wave 

propagation was prompted, in part, by the 

necessity to understand the transient history of 
such structures that are subjected to rapidly 

applied loads. The behavior of structural elements 

under impact or impulsive loads is a subject of a 

great interest in the structural dynamic analysis. 
When forces are applied to an elastic body over a 

very short period, the response should be 

considered in terms of the wave propagation 
theory.  

The study of transient wave has an important 

implication and applications for structures 

subjected to such loads. With the rapid 
development of computational capabilities, 

nonlinear analysis in the structural engineering 

has become an important field of research. The 
objective is the realistic assessment of the actual 

behavior of structures. For this reason a great deal 

of attention has been given for studying the non-

linearity effects. The vibration of planer curved 
beams, arches and rings have been the subject of 

numerous studies due to their wide variety of 

potential applications, such as bridges, aircraft 
structures, and turbo machinery blades. Therefore, 

studying the dynamic response, in the elastic 

region, of this simple structural component under 
various loading conditions would help in 

understanding and explaining the behavior of 

more complex structures under similar loading. 

filters to be implemented at baseband and thus be 
integrated.  

 

 

2. Formulation: 
 

In the present case, the propagation of elastic 
waves along curved members is considered. 

Waves in such members behave in more complex 

manner, because they are composed of a 
combination of waves causing the overall effect to 

be dissipative. The propagation of waves along 

one-dimensional members has been described by 
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Timoshenko, et al. (1974) [11]. In order to 
formulate and simplifying the problem, the 

following assumptions are considered: 

1. The material is linearly elastic.  
2. Timoshenko’s beam theory is used.  

3. The effects associated with the change of 

cross section properties in the neighborhood 

of the wave front are negligible.  
4. The element has a constant cross section area 

A, constant second moment of area. 

5. The material is of constant density ρ. 
 

S

dS

 
Fig. 1. Curved Beam Element. 

 

In the following formulation, an equation of 
motion in polar coordinates is obtained for each 

type of waves and material property [Al-Da’ami 

(1992) [4]]. This leads to pairs of partial 
differential equations relating a force and a 

velocity or a moment and an angular velocity. 

Consider a curved element, of length ds, with a 
radius of curvature R, and the central angel dθ, as 

shown in figure (1).  The element has a constant 

cross section area (A), constant second moment of 

area (I) and material density (ρ). By the 
characteristic method and material's properties, 

the following equations are obtained:                     

i-Tangential, along C
dt

ds
  

  quC
R

QC

R

V
EA

dt

dU
AC

dt

dF
    …(1)         

ii-Radial, along   Cs
dt

ds
                                                   

 

)2...(1

1





qvCsAGK
R

FCs

R

U
AGK

dt

dV
ACs

dt

dQ





 

iii-Bending, along C
dt

ds
  

QC
dt

d
IC

dt

dM



                  …(3) 

 
The above characteristic equations can be 

integrated along the lines L'P& R'P in case of 

shear wave and LP & RP in case of tangential 

wave and bending wave as illustrated in        
figure (2-a). 

 

 
 

Fig. 2-a.  Numerical Characteristic Scheme in s-t 

Plane of Flexural Waves in Curved Member. 
 

 
 

 
Fig. 2-b.  Boundary Characteristics with Forces 

and Velocities. 

 

The method of boundary characteristics can 

be used to model the dynamic behavior of curved 

members. For this purpose the following notes are 
adopted [Chan (1983), Alsarraj (1989)]:  

1. The beam is regarded as a prismatic member. 

2. The beam capable to transmit axial, shear and 

moment waves. 
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3. All displacements are assumed small 
compared to the overall dimensions of 

structure. 

4. Any node on the beam have two faces, the 
first face located on the end of element (i) and 

the second face located on the start of the 

element (i+1), where the node located 

between element (i) and element (i+1), as 
shown in figure (2-b). 

Any node on the curved beam has three 

characteristic equations (three forces and three 
velocities per node).  

The internal forces at either end of any 

element can be written in matrix form as; 

from equations (1), (2) &(3) the following relation 
can be obtained:- 

nnn VCefF }{][}{}{ 1                …(4) 

where, the matrices nf }{  ,  [Ce]n  , nV}{  and 

nF }{ 1  are as defined in Appendix A. 

Here, (S = -1) for forward characteristic lines 
[C+ equation] and (S= +1) for backward 

characteristic lines [C-equation]. The subscript (n) 

denotes the node on the member in which the 
values of {F} and {V} are the unknown end 

forces and velocities can be found for every step. 

The force on the start of the next element is 
found as:  

 

nnn FFF }{}{}{ 12                       …(5) 

 

where, nF}{  are the external load on the node 

which given, and the velocities are the same in the 

first face. By this procedure the forces and 

velocities on each node along the curved member 

can be obtained. Also this method can be applied 
to the forces and moments at any location on the 

beam. 

In the present study, large rotation due to the 
bending moment happens in the curved beam 

causes a change in the shape of the beam. In 

geometrical non-linearity the length and cross-

section of the member are changed after applying 
the load. But in this study it is assumed that the 

length and cross-section remain constant, the 

change of the angle and radius of the beam accrue 
only, this called (large angle bending behavior). 

For geometrical non-linearity curved beam 

problem, the effect of large rotation due to 
bending can become important. In the present 

development of the analysis a new value for the 

angle and radius of the structure is calculated at 

every time step. The equations of the new angle 
and radius for each step can be written as: 

 1 iioldnew t                      …(6) 

 

new

new

S
R




                                                 …(7) 

 

where, Ψ is the angular velocity for the node and 

ΔS is the length of the element. 
This could lead to change in the natural period 

and in the amplitude of vibration, thus producing 

nonlinear behavior of the member. 
 

 

3. Risultant and Discussion: 
 

Figure (3-a)  shows a comparison between the 

present work and that given by Ahmed [2] for the 
bending moment along the beam, while figure (3-

b) shows a comparison with Ali [5] for vertical 

deflection at mid span of the beam. Figures (3-a) 

and (3-b) show a good agreement between the 
present work and the given references. 

In small angle dynamic analysis, the change 

in beam angle and radius is regarded small during 
the analysis. Figure (4) shows a comparison 

between the large angle bending and small angle 

bending mode shapes for the first three modes at 
time of loading (0.08) sec. This could lead to a 

change in natural period and in amplitude of 

vibration which producing nonlinear behavior of 

the member. Also, it can be noticed that the large 
angle bending analysis lead to larger amplitudes 

of vibration and larger time periods than small 

angle bending.  
Figure (5) show the small angle behavior and 

large angle bending dynamic responses of a fixed-

fixed curved beam. It is clear that the behavior of 

the nonlinear wave propagation is seemed to be 
similar to the linear wave propagation. Moreover, 

it can be noticed that the large angle bending 

analysis gives more depressive effects than the 
large angle bending analysis, due to the change in 

the internal angle and change in curvature of the 

member, hence the geometrical shape of the 
member. Figures (6) & (7) represent for waves 

propagation of periodic and pulse loadings 

respectively, from these figures, it is noted that 

there are differences in the wave amplitude due to 
differences in load functions. In addition, it is 

noted that the values of the stresses in the second 

load function (pulse load) are greater than the first 
load function (periodic load) in spite of that the 

two load functions have the same amplitude (4000 

N), but the first load function is more dangerous 
than the second because the load is repeated with 

the time.  
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Fig. 3-a.   Moment Wave Propagation in Hinged-Fixed Beam. 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 
 

 

 

Fig. 3-b. Vertical Displacement History in a Curved Beam. 
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(a) Small-Angle Bending 

 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
(b) Large-Angle Bending 

 

Fig. 4.  Comparison of Mode Shape Between Small-Angle and Large-Angle Analysis of Curved Beam. 
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Fig. 5.  Comparison Between Small and Large Bending Responses of Curved Beam. 
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Fig. 6.   Wave Propagation in Curved Beam in Different Times. 
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Fig. 7.  Wave Propagation in Curved Beam in Different Times. 
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Fig. 8.  Effect of Load Direction on Dynamic Magnification Factor for Small-Angle Bending Response. 
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Fig. 9.  Effect of Load Direction on Dynamic Magnification Factor for  

Large-Angle Bending Response at Fixed End. 
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Fig. 10. Wave Propagation of Beam with Different Values for Radius of Gyration at (0.15msec). 
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Figure (8) shows the linear vibration of 
curved beam under different loading direction. It 

is shown that the value of (D.M.F) dose not 

exceed (2.0) and the opposite direction of load has 
(no effect) on the value of dynamic response, 

which is well known for small deformation. 

Figure (9) shows the Dynamic Magnification 

Factor (D.M.F) for large angle bending (the 
nonlinear behavior) and it is show that the 

direction of loading has greater effect on the 

dynamic response because the value of bending 
angle is changed with the time for each direction 

cause the deformation shape of the beam changed 

with different value for each direction. In 

addition, it is noted that the positive direction has 
greater effect than the negative direction on the 

dynamic response because that the positive 

direction leads to increase the tensile stress while 
the negative direction lead to increase the 

compressive stress, which causes to change the 

stiffness, and in compression stress the curved 
beam will be more stiffer while the tension stress 

will made the curved beam more flexible. 

Figure (10) shows the waves propagation with 

two different values for the radius of gyration for 
the curved beam. For the same material, sectional 

and geometrical properties, it can be seen that the 

larger the radius of gyration, the faster the 
propagation of the flexural waves with greater 

amplitude, this is because that when the thickness 

is increase (with constant cross section) the 
second moment of area is increase also which lead 

to increasing the stiffness of the member because 

the bending moment proportional directly with the 

second moment of area. 
 

                                          

4. Conclution: 
 

From the above results, the following 

conclusions can be drawn: 
1. The method of characteristics can be used to 

simulate the transient response of systems 

with straight or curved prismatic members 
subjected to any type of loading. 

2. In curved beam, the propagation of tangential 

waves is related to the degree of the curvature 

(beam subtended angle). The more curvature 
is the greater the dispersion of waves and the 

stronger interaction between the tangential 

and the flexural waves. 
3. In the large angle analysis, the curvature of 

the curved member will change with the type 

and amount of the load, and hence the 
geometrical shape will change. 

4. The main advantage of the method of 

characteristics that the non-linear equations 
are solved directly without need for any 

iterative or incremental procedures. 

 

 

5. Nomenclature: 
 

Units Definition Symbol 

m2 Nodal cross-sectional area A 

m/s Axial and moment wave speeds C 

m/s Shear wave speed Cs 

N/m2 Modulus of elasticity E 

N Axial force F 

N/m2 Elastic modulus of rigidity G 

M Thickness of the element H 

m
4
 Moment of inertia at node I 

 Shear correction factor K1 

m-1 Bending curvature k 

m Length of the member L 

N.m Bending moment M 

N Shear force Q 

sec Time t 

m/s Axial velocity U 

m/s Lateral Velosity V 

m Axial velocity W 

rad/sec Angular velocity Ψ 

kg/m3 Mass density ρ 

 Poisson’s ratio υ 

 

 

6. Subscripts: 
  

i, i-1, i-2, i-3 Refer to time steps. 

L Refer to left of the specified points 

that are related to the position and 

time. 

P Referring to specified points that are 

related to the position and time 

R Refer to right of the specified points 

that are related to the position and 

time. 

S Refer to the wave of shear stress. 

u Refer to the applied load in direction 
parallel to axes of the section. 

v Refer to the applied load in direction 

perpendicular to axes of the section. 

 .     Refer to the first derivative with 

respect to time. 
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7.  Appendix   A 
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السلىك الانحنائي رو الساويت الكبيرة للعتباث الوقىست بطريقت الخىاص 
 

***   عصام زهير  **    أحوذ الراجحي   *  هيثن الذعوي
جاٍعح تاتو / مييح اىهْذسح/ قسٌ اىهْذسح اىَذّيح *   

جاٍعح مشتلاء / مييح اىهْذسح/ قسٌ اىهْذسح اىَيناّينيح **          

جاٍعح تاتو  / مييح اىهْذسح/ قسٌ اىهْذسح اىَيناّينيح ***    

 

 

 

الخلاصت 

وقذ اعرَذ أسيىب ذقذً اىَىجاخ خلاه عْاصش . في هزا اىثحث ذٌ ذحييو اىسيىك اىذيْاٍيني الاّحْائي رو اىزاويح اىنثيشج ىيعرثاخ اىَقىسح

إُ طشيقح اىخىاص وجذخ ٍْاسثح جذا ىرَثيو ذقذً اىَىجح خلاه .  اىهيامو تاسرخذاً طشيقح اىخىاص ٍعرَذيِ عيً ّظشيح ذيَىشيْنى ىيعرثاخ

وقذ تحثد عذج أٍثيح وقىسّد اىْرائج اىَسرحصيح ٍع طشق أخشي مطشيقح اىعْاصش اىَحذدج واىَسرخذٍح ٍِ قثو تاحثيِ آخشيِ ٍِ . الأّظَح

. وقذ دسسد ذأثيشاخ اىعىاٍو اىَخريفح عيً اىسيىك اىذيْاٍيني ىيعْاصش اىَيناّينيح في اىثحث. اجو دعٌ اىْرائج اىحاىيح

أُ . ىقذ أظهشخ اىْرائج إُ شنو اىعْصش اىَيناّيني واىششوط اىحذيح ومزىل خىاص اىَادج ىها ذأثيش ٍيحىظ عيً الأسرجاتح اىَيناّينيح

وٍِ ّاحيح أخشي فاُ اىرحييو . اىرذاخو تيِ اىَىجاخ اىقصيح والاّحْائيح يرسثة تاُ اىَىجاخ اىعشضيح ذرقذً خلاه اىعْصش تشنو ٍشرد

 .اىخطي ىٌ يعطي ّرائج ٍشضيح تسثة إهَاه اىرأثيشاخ اىلاخطيح في شنو اىعْصش

 

 

 

 


