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Abstract

This paper deals with the nonlinear large-angle bending dynamic analysis of curved beams which investigated by
modeling wave’s transmission along curved members. The approach depends on the wave propagation in one-
dimensional structural element using the method of characteristics. The method of characteristics (MOC) is found to be
a suitable method for idealizing the wave propagation inside structural systems. Timoshenko’s beam theory, which
includes transverse shear deformation and rotary inertia effects, is adopted in the analysis. Only geometrical non-
linearity is considered in this study and the material is assumed to be linearly elastic. Different boundary conditions and
loading cases are examined.

From the results obtained, it is found that the geometrical shape, boundary conditions, material properties of the

members as well as the load type and direction have considerable effects on the response of the member.
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1. Introduction:

Recently, there has been a marked interest in
the information of dynamic characteristics of
many engineering applications such as high-speed
machinery, airplane structure, tall building...etc.
The rapid expansion in the study of wave
propagation was prompted, in part, by the
necessity to understand the transient history of
such structures that are subjected to rapidly
applied loads. The behavior of structural elements
under impact or impulsive loads is a subject of a
great interest in the structural dynamic analysis.
When forces are applied to an elastic body over a
very short period, the response should be
considered in terms of the wave propagation
theory.

The study of transient wave has an important
implication and applications for structures
subjected to such loads. With the rapid
development of computational capabilities,
nonlinear analysis in the structural engineering
has become an important field of research. The
objective is the realistic assessment of the actual
behavior of structures. For this reason a great deal

of attention has been given for studying the non-
linearity effects. The vibration of planer curved
beams, arches and rings have been the subject of
numerous studies due to their wide variety of
potential applications, such as bridges, aircraft
structures, and turbo machinery blades. Therefore,
studying the dynamic response, in the elastic
region, of this simple structural component under
various loading conditions would help in
understanding and explaining the behavior of
more complex structures under similar loading.
filters to be implemented at baseband and thus be
integrated.

2. Formulation:

In the present case, the propagation of elastic
waves along curved members is considered.
Waves in such members behave in more complex
manner, because they are composed of a
combination of waves causing the overall effect to
be dissipative. The propagation of waves along
one-dimensional members has been described by
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In order to
the

Timoshenko, et al. (1974) [11].
formulate and simplifying the problem,
following assumptions are considered:
1.The material is linearly elastic.
2.Timoshenko’s beam theory is used.
3.The effects associated with the change of
cross section properties in the neighborhood
of the wave front are negligible.
4.The element has a constant cross section area
A, constant second moment of area.
5.The material is of constant density p.

Fig. 1. Curved Beam Element.

In the following formulation, an equation of
motion in polar coordinates is obtained for each
type of waves and material property [Al-Da’ami
(1992) [4]]. This leads to pairs of partial
differential equations relating a force and a
velocity or a moment and an angular velocity.
Consider a curved element, of length ds, with a
radius of curvature R, and the central angel dO, as
shown in figure (1). The element has a constant
cross section area (A), constant second moment of
area (I) and material density (p). By the
characteristic method and material's properties,
the following equations are obtained:

i-Tangential, along % =1C

Facd _eaY %0
dt dt R R
. ) ds
ii-Radial, along — ==Cs
dt
Q1 s~ _kacYL
dt dt R
i%CS—KlAG://iqus ..(2)
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iii-Bending, along E =xC
dt
acd _ioc .0

The above characteristic equations can be
integrated along the lines L'P& R'P in case of
shear wave and LP & RP in case of tangential

wave and bending wave as illustrated in
figure (2-a).
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Fig. 2-a. Numerical Characteristic Scheme in s-t
Plane of Flexural Waves in Curved Member.
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Fig. 2-b. Boundary Characteristics with Forces
and Velocities.

The method of boundary characteristics can
be used to model the dynamic behavior of curved
members. For this purpose the following notes are
adopted [Chan (1983), Alsarraj (1989)]:

1. The beam is regarded as a prismatic member.
2. The beam capable to transmit axial, shear and
moment waves.
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assumed  small
dimensions of

3. All displacements are
compared to the overall
structure.

4. Any node on the beam have two faces, the
first face located on the end of element (i) and
the second face located on the start of the
element (i+1), where the node located
between element (i) and element (i+1), as
shown in figure (2-b).

Any node on the curved beam has three
characteristic equations (three forces and three
velocities per node).

The internal forces at either end of any
element can be written in matrix form as;
from equations (1), (2) &(3) the following relation
can be obtained:-

{Fl}z{f}n +[Ce]n{\/}n (4)
where, the matrices {f}, , [Ce]n , {V }n and

{F.}, are as defined in Appendix A.

Here, (S = -1) for forward characteristic lines
[C+ equation] and (S= +1) for backward
characteristic lines [C-equation]. The subscript (n)
denotes the node on the member in which the
values of {F} and {V} are the unknown end
forces and velocities can be found for every step.

The force on the start of the next element is
found as:

{Fz}n :{F}n _{Fl}n (5)

where, {F}, are the external load on the node

which given, and the velocities are the same in the
first face. By this procedure the forces and
velocities on each node along the curved member
can be obtained. Also this method can be applied
to the forces and moments at any location on the
beam.

In the present study, large rotation due to the
bending moment happens in the curved beam
causes a change in the shape of the beam. In
geometrical non-linearity the length and cross-
section of the member are changed after applying
the load. But in this study it is assumed that the
length and cross-section remain constant, the
change of the angle and radius of the beam accrue
only, this called (large angle bending behavior).
For geometrical non-linearity curved beam
problem, the effect of large rotation due to
bending can become important. In the present
development of the analysis a new value for the
angle and radius of the structure is calculated at
every time step. The equations of the new angle
and radius for each step can be written as:

93

Orew = Ooia + At(\Pi - \Pi+1) ...(6)
R, =28 (7
o

new

where, ¥ is the angular velocity for the node and
AS is the length of the element.

This could lead to change in the natural period
and in the amplitude of vibration, thus producing
nonlinear behavior of the member.

3. Risultant and Discussion:

Figure (3-a) shows a comparison between the
present work and that given by Ahmed [2] for the
bending moment along the beam, while figure (3-
b) shows a comparison with Ali [5] for vertical
deflection at mid span of the beam. Figures (3-a)
and (3-b) show a good agreement between the
present work and the given references.

In small angle dynamic analysis, the change
in beam angle and radius is regarded small during
the analysis. Figure (4) shows a comparison
between the large angle bending and small angle
bending mode shapes for the first three modes at
time of loading (0.08) sec. This could lead to a
change in natural period and in amplitude of
vibration which producing nonlinear behavior of
the member. Also, it can be noticed that the large
angle bending analysis lead to larger amplitudes
of vibration and larger time periods than small
angle bending.

Figure (5) show the small angle behavior and
large angle bending dynamic responses of a fixed-
fixed curved beam. It is clear that the behavior of
the nonlinear wave propagation is seemed to be
similar to the linear wave propagation. Moreover,
it can be noticed that the large angle bending
analysis gives more depressive effects than the
large angle bending analysis, due to the change in
the internal angle and change in curvature of the
member, hence the geometrical shape of the
member. Figures (6) & (7) represent for waves
propagation of periodic and pulse loadings
respectively, from these figures, it is noted that
there are differences in the wave amplitude due to
differences in load functions. In addition, it is
noted that the values of the stresses in the second
load function (pulse load) are greater than the first
load function (periodic load) in spite of that the
two load functions have the same amplitude (4000
N), but the first load function is more dangerous
than the second because the load is repeated with
the time.
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Fig. 3-a. Moment Wave Propagation in Hinged-Fixed Beam.
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Fig. 3-b. Vertical Displacement History in a Curved Beam.
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Fig. 4. Comparison of Mode Shape Between Small-Angle and Large-Angle Analysis of Curved Beam.
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Fig. 6. Wave Propagation in Curved Beam in Different Times.
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Fig. 7. Wave Propagation in Curved Beam in Different Times.
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Figure (8) shows the linear vibration of
curved beam under different loading direction. It
is shown that the value of (D.M.F) dose not
exceed (2.0) and the opposite direction of load has
(no effect) on the value of dynamic response,
which is well known for small deformation.
Figure (9) shows the Dynamic Magnification
Factor (D.M.F) for large angle bending (the
nonlinear behavior) and it is show that the
direction of loading has greater effect on the
dynamic response because the value of bending
angle is changed with the time for each direction
cause the deformation shape of the beam changed
with different value for each direction. In
addition, it is noted that the positive direction has
greater effect than the negative direction on the
dynamic response because that the positive
direction leads to increase the tensile stress while
the negative direction lead to increase the
compressive stress, which causes to change the
stiffness, and in compression stress the curved
beam will be more stiffer while the tension stress
will made the curved beam more flexible.

Figure (10) shows the waves propagation with
two different values for the radius of gyration for
the curved beam. For the same material, sectional
and geometrical properties, it can be seen that the
larger the radius of gyration, the faster the
propagation of the flexural waves with greater
amplitude, this is because that when the thickness
is increase (with constant cross section) the
second moment of area is increase also which lead
to increasing the stiffness of the member because
the bending moment proportional directly with the
second moment of area.

4. Conclution:

From the above results,
conclusions can be drawn:

1. The method of characteristics can be used to
simulate the transient response of systems
with straight or curved prismatic members
subjected to any type of loading.

2. In curved beam, the propagation of tangential
waves is related to the degree of the curvature
(beam subtended angle). The more curvature
is the greater the dispersion of waves and the
stronger interaction between the tangential
and the flexural waves.

3. In the large angle analysis, the curvature of
the curved member will change with the type

the following
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and amount of the load, and hence the
geometrical shape will change.

4. The main advantage of the method of
characteristics that the non-linear equations
are solved directly without need for any
iterative or incremental procedures.

5. Nomenclature:

Symbol Definition Units
A Nodal cross-sectional area m?
C Axial and moment wave speeds  m/s
Cs Shear wave speed m/s
E Modulus of elasticity N/m?
F Axial force N
G Elastic modulus of rigidity N/m?
H Thickness of the element M
I Moment of inertia at node m*
K1 Shear correction factor
K Bending curvature m*
L Length of the member m
M Bending moment N.m
Q Shear force N
t Time sec
U Axial velocity m/s
A% Lateral Velosity m/s
W Axial velocity m
v Angular velocity rad/sec
p Mass density kg/m?®
v Poisson’s ratio

6. Subscripts:

i,i-1,i-2,i-3 Refer to time steps.

L Refer to left of the specified points
that are related to the position and
time.

P Referring to specified points that are
related to the position and time

R Refer to right of the specified points

that are related to the position and
time.

S Refer to the wave of shear stress.

u Refer to the applied load in direction
parallel to axes of the section.

% Refer to the applied load in direction

perpendicular to axes of the section.

Refer to the first derivative with
respect to time.



Haitham H. Al-Da‘'ami

Al-Khwarizmi Engineering Journal, Vol.4, No.4, PP 91-105 (2008)

7. Appendix A

N *(F +spACU + pAZCRASv + SZARS Q + s, + SquAS)
(F} =IN*(Q'+spACsy/ — LACSAS 1 PACSAS i SAS 1) ¢ squas)
2 2R 2R
M +splCy — 28 (88 Ny
2 2
I SCsAs? PAAS SPACSAS?
— pA(sC + N C-Cs)N —— N
PALSC + =) R )2 4R?
Clo=| 225 (cs—C)N  —spACs— A5 yN  _PACSAS
2R 4 2
SPAAS? PAAS CAs? SPACSAS?
Cs—-C)N Cs-— N (————N-=splIC
1R’ ( ) > ( TE IN ( 0 |
{Vh=[lu v T
{Fl}n =[F1 Q1 Ml]l
Where:
N=
1+(—)°
[ (ZR) ]
As PACSAS PACSAS SAS
f,=—[Q +spACsV'— — Uu'- F’'—squAs
1 2R[Q O V- s quAs]
As PACAS SAS
f, =—[F +spACU + V + + SQUAS
2 ZR[ 12 oR Q +squAs]
f, =Q +spACsV' — pACsy/' — pAZCI_jAS U'— SZARS F'—sf, —squAs
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