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    Road traffic and deaths accidents are the most complex and dangerous system of all 

road systems that people deal with on a daily basis. In addition to the loss of life, there is 

also a lot of material damage to the society. Therefore, we aim to study this effective topic 

through the Box-Jenkins model and the Elman Neural Network which are very 

appropriate to choose the best and most appropriate model for the number of accidents 

and the number of deaths from traffic accidents in the Iraqi Kurdistan Region according to 

monthly during the years (2014-2021).  

Finally, we compared the results between both models. It was concluded that the results of 

the Elman model (1:2,5) are better than the SARIMA (1,1,1)(0,1,1)12 model for the 

number of traffic accidents, and the results of the Elman(1:2,3) model are better than the 

SARIMA (0,1,1)(1,1,2)12 model for the number of deaths from traffic accidents based on 

statistical measures (RMSE, MAE, MAPE), which we used it for comparison. Statistical 

analysis is performed using the software (Statgraphics V.19) and the program (Matlab 

V.18a)        
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Introduction 

 

   A time series data is a collection of observations made sequentially in time, or ‘‘A sequence of observations ordered by 

a time parameter”. When studying a phenomenon, we often encounter a dataset where observations are taken according 

to the order of time.  These observations are called time series. [1][2][3]. 

The Box-Jenkins model is a technique designed based on input from a specific time series data to analyze and forecast 

data. It forecasts data using three principles, autoregressive, differencing, and moving averages.  Each principle is used in 

the Box-Jenkins analysis and together they are collectively shown as an autoregressive integrated moving average, or 

ARIMA (p, d, q) respectively. In the time domain approach, we use time functions like the autocorrelation function 

(ACF) and the partial autocorrelation function (PACF) to describe the characteristics of a time series process whose 

evolution is represented through various time-lag relationships. A seasonal phenomenon that recurs in many time series 

after a regular period of time is called the seasonal period [4]. 

In recent years, interest in studying time series using Artificial Neural Networks (ANN) has emerged and has been 

successfully applied in forecasting in different knowledge fields such as biology, finance and economics, energy 

consumption, medicine, etc. This offers several potential advantages with respect to alternative methods mainly ARIMA 

models-when it comes to dealing with problems concerning nonlinear data which normal distribution is not required. The 

first advantage of ANN is that it is highly diverse and does not require formal specification of the model or the 

fulfillment of a certain probability distribution for the data [5]. 

http://www.stats.mosuljournals.com/
https://su.edu.krd/
https://stats.mosuljournals.com/article_181152.html
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0009-1485-6604
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The Elman Neural Network (ENN) was originally developed by Elman (1990) based on the Jordan network. The 

structure of ENN, it was a modified ANN based on the Back propagation neural network. However, unlike the BP neural 

network, the context layer is used to store the previous information of the hidden layer and feedback it to the next 

moment of the hidden layer. In this way, the context layer improves the sensitivity to historical data and makes ENN 

have a dynamic memory function [6]. 

 

Material and methods  

Time Series: 

Time series is a time-ordered sequence of observation values of a physical or financial variable made at equally spaced 

time. Being based on measured values and usually corrupted by noise, time series values generally contain a 

deterministic signal component and a stochastic component representing the noise interference that causes statistical 

fluctuations around the deterministic values. 

The aims of time series are to analyze, describe and summarize time series data, and make forecasts. One simple method 

of describing a series is that of classical decomposition. The time series can be decomposed into[7]:-  

• Secular trend (T): long-term movements of a time series (stable, increasing, or decreasing). 

• Seasonal Variations (S): Seasonal fluctuations related to the calendar; 

• Cyclical Variations (C): other cyclical fluctuations (such as an economic cycle or business cycle). 

• Irregular or Random Variations (I): other random fluctuations         

 

Types of Time Series: 

Stationary Time Series: 

A process is said to be stationary if the basic behavior of does not change over time. For such a process, μ(t) would not 

depend on time and thus could be denoted μ for all t , It is of two types [8]. 

 

A. Strictly Stationary Time Series: 

Strict stationary involves that the mean and variance are constant in time and that the auto-covariance Cov (Zt, Zs) only 

depends on lag k = |t − s| and can be written γ_((k)) [9] . 

 

B.  Weakly Stationary Time Series: 

A time series {Zt} is weakly stationary if both the mean of {Zt} and the covariance between {Zt } and {Zt−k} are time-

invariant, where (k) is an arbitrary integer. More specifically, {Zt} is weakly stationary if: E(Zt) = μ, which is a constant, 

and Cov(Zt, Zt−k) = γk which only depends on k. 

 

Non-Stationary Time Series: 

Some time series exhibit non-stationary, which occurs in linear or nonlinear systems, as fluctuations in the system's 

representation across time. When there is a smoothly shifting trend component with shifts in the mean as well as 

fluctuations in the variance of the process, non-stationaries occur, there are two types of non-stationary [10]: 

A. Non -Stationary around mean: when the mean of a series is not constant 

B. Non Stationary around Variance: Many time series non-stationary because of their time-dependent variances and 

autocovariance, variance that changes through time. 

 

Stationary Time Series Models: 

Autoregressive Model (AR): 

Suppose that {at} is a purely random process with mean zero and variance σa
2 . Then a process {Zt} is said to be an 

autoregressive process of order p (abbreviated to an AR(p) process) if;[11]  

Zt = ∅1Zt−1 + ∅2Zt−2 + ⋯ + ∅pZt−p  + at                                                                                                           (1) 

This is rather like a multiple regression model, but (Zt)is regressed on past values of (Zt) rather than on separate 

predictor variables. This explains the prefix `auto'..First-order process, where p = 1. Then;  

                              Zt = ∅1Zt−1 + at                                                                                                                      (2) 

Moving Average Model (MA): 

A moving average (MA) process of order q is a linear combination of the current white noise term and the q most recent 

past white noise terms and is defined by: 

           Zt = at − θ1at−1 − θ2at−2 − ⋯ − θqat−q                                                                                                       (3) 

Where {at} is white noise with zero mean and variance σa
2 .  
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Where 𝜃𝑞 is a polynomial of order q. Because MA processes consist of a finite sum of stationary white noise terms, they 

are stationary and hence have a time-invariant mean and auto covariance [9]. 

 

Autoregressive Moving Average (ARMA) Models: 

The ARMA models is produced when MA and AR procedures are combined, order is a mixed autoregressive/moving-

average process (p, q) (Chatfield, 2003). It is supplied by 

Zt = ∅1Zt−1 + ∅2Zt−2 + ⋯ ∅pZt−p + at − θ1at−1 − θ2at−2 − ⋯ − − θqat−q                                        (4)                                                                                         

Real time series data often exhibit time trend (such as slowly increasing) features that are beyond the capacity of 

stationary ARMA models.to remove those unstable components. Taking the difference (more than once if necessary) is a 

convenient and effective way to detrend and deseasonalize. We call it an autoregressive integrated moving average 

(ARIMA) models [12]. 

 

Seasonal Autoregressive Integrated Moving Average (SARIMA) Model: 

SARIMA model is the product of seasonal and non-seasonal polynomials and is designated by SARIMA (p, d, q) 

x(𝑃, 𝐷, 𝑄)𝑠, where (p, d, q) and (P, D, Q) are non-seasonal and seasonal components, respectively with a seasonality‘s’. 

SARIMA model was defined at Equation: - 

      𝛷𝑃(𝐵𝑠) ∅𝑝  (𝐵)(1-𝐵𝑠)𝐷 (1- 𝐵)𝑑 𝑍𝑡 = 𝛩𝑄(𝐵𝑠) 𝜃𝑞(𝐵)𝑎𝑡                                                                                 (5) 

Where: (Ф and ∅) are autoregressive (AR) parameters of seasonal and non-seasonal components, correspondingly; (Θ 

and  ) are moving average (MA) parameters of seasonal and non-seasonal components, respectively; B = backward 

operator, B (𝑍𝑡) = 𝑍𝑡−1; (1-𝐵𝑠)𝐷 = 𝐷𝑡ℎ seasonal modification of season (s); (1-B)𝑑 = 𝑑𝑡ℎ  non-seasonal difference; 𝑎𝑡 = 

an individually distributed random variable; (P and p) are the orders of the AR components; (Q and q ) are the orders of 

MA components; (D and d) are difference terms[13] . 

 

The Stages of ARIMA Modeling: 

The four following are the main steps Box–Jenkins forecasting model[11]: 

1. Model Identification: Examine the data to select the most suitable model. 

2. Estimation: Estimate the unknown coefficients of the model you've chosen. 

3. Diagnostic Checking: Check the residuals from the fitted model to verify if they are sufficient. 

4. Consideration of Alternative Models if Necessary: Alternative models may be explored until a good model is 

identified if the initial model appears to be unsatisfactory for some reason.  

5. Forecasting: When such a model is discovered, calculating forecasts as conditional expectancies is usually quite 

simple  

 

Artificial Neural Network (ANN): 

Artificial neural networks are processing devices (algorithms) that are loosely modeled after the neuronal structure of the 

mammalian cerebral cortex but on much smaller scales. Computer scientists have always been inspired by the human 

brain. In 1943, Warren S. McCulloch, a neuroscientist, and Walter Pitts, a logician, developed the first conceptual model 

of an ANN. They describe the concept of a neuron, a single cell living in a network of cells that receives inputs, 

processes those inputs, and generates an output.[14] 

ANN is a data modeling tool that depends upon various parameters and learning methods. Neural networks are typically 

organized in layers. Layers are made up of a number of interconnected “neurons/nodes,” which contain “activation 

functions.” ANN processes information through neurons/nodes in a parallel manner to solve specific problems. ANN 

acquires knowledge through learning, and this knowledge is stored within interneuron connections’ strength, which is 

expressed by numerical values called “weights.” These weights are used to compute output signal values for a new 

testing input signal value. Patterns are presented to the network via the “input layer,” which communicates to one or 

more “hidden layers,” where the actual processing is done via a system of weighted “connections.” The hidden layers 

then link to an “output layer,” where the answer is output, as shown in Figure (1). [15]. 



 Iraqi Journal of Statistical Sciences, Vol.20 , No. 2, 2023 (43-56) 

46 

 

 
Figure 1 Structure of Artificial Neural Network 

Time Series with Artificial Neural Networks [16]:- 

Recently, artificial neural networks have been used in most time series forecasting applications. The following factors 

lead the widespread usage of artificial neural networks method in time series: 

1. Analysis can be done without testing whether time series have curvilinear or linear structure. 

2. When compared with conventional time series method, artificial neural network method provides much better 

forecasting results. 

3. As conventional time series models can only be used for particular curvilinear structures, they are not flexible in 

general. But in the analysis using artificial neural network, no matter what the curvilinear structure of time series is. 

4. Artificial neural network theory is not complex as in the conventional time series forecasting methods and it is easy to 

understand  

 

Types of Neural Network Architecture: 

Feed-Forward Neural Network (FFNN): 

In a Feed-Forward Neural Network, neurons are organized in the form of layers. Neurons in a layer receive input from 

the previous layer and feed their output to the next layer. The data go from the input node to the output node in a strictly 

feed-forward way. There is no feedback (back loops); that is, the output of any layer does not affect the same layer [15]. 

Feedback Neural Network (FBN): 

In a feedback neural network, the output of one layer routes back to the previous layer. This network can have signals 

traveling in both directions by the introduction of loops in the network. This network is very powerful and, at times, gets 

extremely complicated. All possible connections between neurons are allowed. Feedback neural networks are used in 

optimization problems, where the network looks for the best arrangement of interconnected factors. They are dynamic 

and their state changes continuously until they reach an equilibrium point [15]. 

 

Elman Neural Network (ENN): 

Elman neural network (ENN) is a subclass of neural networks (NNs), which are constituted by a large number of neuron 

cell models according by a certain rules. Which feeds the output at previous moment back to the hidden–layer current 

input with the input data, and a network with internal delay feedback proposed by Elman in 1990, is a dynamic recurrent 

NNs with feedforward connections. The ENN is trained a supervised manner using a popular back-propagation 

algorithm, based on the inputs and targets given to the network. Meanwhile, ENN can model nonlinear dynamical 

systems and learn time-varying patterns, thus it has excellent ability to solve discrete time series problems. The context 

layer in an ENN as a self-referencing layer makes it a type of recurrent network [17]. 

 

The Structure of Elman Neural Network: 

As shown in Figure (2), Elman NN consists of layers of cells (input layer, hidden layer and output layer), where each 

layer in the network is associated with the next layers by similar to the traditional multi-layer neural network as a feed-

forward network.  

There are another layer in ENN named the context layer, the inputs of this layer come from outputs of the hidden layer, 

the context layer is used to store the hidden layer’ s output values of the previous time, which can be used in the current 

time step. 
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Figure 2 Elman neural networks  

 

Because the network can store information for future reference, it is able to learn temporal patterns as well as spatial 

patterns. The Elman network can be trained to respond to, and to generate, both kinds of patterns [17]. 

 

2.8.2 Training an Elman NN: 

Elman networks can be train following occurs at each epoch [18]: 

The external input, context and output weight matrix are represented as 𝑊ℎ,𝑖(𝑡), 𝑊ℎ,𝑐(𝑡), 𝑊𝑜,ℎ(𝑡) respectively. Consider 

the ENN structure as Figure (3), it contains a 𝑛-dimensional external input vector 𝑥1(𝑡) = [𝑥1
1(𝑡), 𝑥2

1(𝑡), … , 𝑥𝑛
1(𝑡)]𝑇 and 

a 𝑛-dimensional output vector y(t) = [𝑦1(𝑡), 𝑦2(𝑡) … 𝑦𝑛(𝑡)]𝑇 ,  

The number of hidden neurons is 𝑚, and therefore 𝑊ℎ,𝑖(𝑡) ∈  𝑅𝑚×𝑛,  𝑊ℎ,𝑐(𝑡) ∈  𝑅𝑚×𝑚 , and 𝑊𝑜,ℎ(𝑡) ∈  𝑅𝑛×𝑚 .  The 

output vector of the hidden layer, 𝑐(𝑡 −  1) = [𝑐1 (𝑡 − 1), 𝑐2 (𝑡 − 1), … , 𝑐𝑚 (𝑡 − 1)]𝑇, is connected back to the hidden 

layer as another input vector, so 𝑥2(𝑡) = [𝑥1
2(𝑡), 𝑥2

2(𝑡), … , 𝑥𝑚
2 (𝑡)]𝑇 = 𝑐(𝑡 −  1) and the complete input vector is defined 

as:  

𝑥(𝑡) = [𝑥1
1(𝑡), 𝑥2

1(𝑡), … , 𝑥𝑛
1(𝑡), 𝑥𝑛+1

2 (𝑡), … , 𝑥𝑘
2(𝑡)]𝑇       = [[𝑥2(𝑡)]𝑇[𝑥1(𝑡)]𝑇 ]𝑇                                             (6) 

        = [𝑥1
1(𝑡), 𝑥2

1(𝑡), … , 𝑥𝑛
1(𝑡), 𝑐1

2(𝑡 –  1), …, 𝑐𝑚
2 (𝑡 –  1)]𝑇 

where, 𝑘 =  𝑚 + 𝑛. 
 The activation function of the output layer takes the sigmoid function The output vector can be computed by equations: 

      𝑦𝑖(𝑡) = 𝑓(𝑎𝑖
𝑜(𝑡)) = 

1

1+exp (−𝑎𝑖
𝑜(𝑡))

, 𝑖 =  1, 2, … , 𝑛                                                                                (7) 

        𝑎𝑖
𝑜(𝑡) = ∑ 𝑊𝑗𝑖

𝑜,ℎ𝑚
𝑗=1 (𝑡) ∗ ℎ𝑗(𝑡), 𝑖 = 1, 2, … , 𝑛                                                                                  (8) 

 For relationships among the input layer, the context layer and the hidden layer, define complete input weight matrix as: 

      𝑊ℎ(𝑡) = [𝑊ℎ,𝑖(𝑡), 𝑊ℎ,𝑐(𝑡)] ∈ 𝑅𝑚×𝑘                                                                                              (9) 

So the output of the complete input vector 𝑥(𝑡), the activation function of the hidden layer takes the sigmoid function. 

ℎ𝑗(𝑡) = 𝑓(𝑎𝑗
ℎ(𝑡)) = 

1

1+exp (−𝑎𝑗
𝑜,ℎ(𝑡))

, 𝑗 =  1, 2, … , 𝑚                                                                                 (10) 

𝑎𝑗
𝑜,ℎ(𝑡) = ∑ 𝑊𝑗𝑙

ℎ𝑘
𝑖=1 (𝑡) ∗ 𝑥𝑙(𝑡), 𝑗 = 1, 2, … , 𝑚                                                                                        (11) 

The target of ENN training algorithm is to minimize the mean-square error: 

                                 𝑀𝑆𝐸(𝑡) = 
|| 𝑒(𝑡) ||2

2
                                                                                                    (12) 

                                 𝑒(𝑡) = 𝑑(𝑡) − 𝑦(𝑡)                                                                                                  (13) 

Here, 𝑑(𝑡) is the desired outputs. 

A standard EBP training algorithm can reduce E(t) by estimating the weight as follows: 

        𝑊𝑜,ℎ(𝑡 + 1) =  𝑊𝑜,ℎ(𝑡) −  𝜇
𝜕𝐸(𝑡)

𝜕𝑊𝑜,ℎ(𝑡)
      = 𝑊𝑜,ℎ(𝑡) +  𝜇𝑦′(𝑡)𝑒(𝑡)ℎ𝑇(𝑡)                                                   (14) 

      𝑊ℎ(𝑡 + 1) =  𝑊ℎ(𝑡) −  𝜇
𝜕𝐸(𝑡)

𝜕𝑊ℎ(𝑡)
   = 𝑊ℎ(𝑡) +  𝜇ℎ′(𝑡)[𝑊𝑜,ℎ(𝑡)]𝑇 𝑦′(𝑡)𝑒(𝑡)𝑥𝑇(𝑡)                                     (15) 

Here, 𝜇 is the learning rate of the EBP, and 

𝑦′(𝑡) = 𝑑𝑖𝑎𝑔[ 𝑓′ (𝑎1
𝑜(𝑡)) 𝑓′ (𝑎2

𝑜(𝑡) … 𝑓′ (𝑎𝑛
𝑜(𝑡))]  ∈  𝑅𝑛×𝑛                                                             (16) 

ℎ′(𝑡) = 𝑑𝑖𝑎𝑔[ 𝑓′  (𝑎1
ℎ(𝑡)) 𝑓′ (𝑎2

ℎ(𝑡) … 𝑓′ (𝑎𝑚
ℎ (𝑡))]  ∈  𝑅𝑚×𝑚                                                           (17) 
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Figure 3 Training an Elman neural network with a single hidden layer 

 

Results  

We will practically apply both time series models and Elman neural networks models on road accidents data (number of 

accidents and the number of deaths from traffic accidents).The data starting from January 2014 to December 2021 and 96 

months. The data were obtained from the General Directorate of Traffic in Erbil.  

The First Series (The Number of Traffic Accidents): 

The Box Jenkins methodology was applied to analyze the data. First, we analyzed the data by drawing the general trend 

of two series (Figure 4), and it is clear that there are oscillations, fluctuations and it is observed that these variations 

occur at a different rate, but on a regular basis. This pattern of variation indicating a seasonal component repeats itself 

every 12 months. 

 

Figure 4: Time Series Plot of the Original Data for the Traffic Accidents in Iraqi Kurdistan 

 
Figure (5), ACF and partial ACF prove that the data is non-stationary, and it can be seen that the data contains seasonal 

behavior, can be confirmed through the test (Box-Pierce) value is equal (133.5) and (P-value = 0.0) which rejects the null 

hypothesis for first series. The Box-Pierce test for (number of accident deaths) rejects the null hypothesis, according to 

(P-value = 0.0) for the test Box-Pierce (Q statistic = 230.054). 

 

                    H0: The series is stationary.    H1: The series is not stationary. 
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Figure 5: ACF and partial ACF of the Original Data for the traffic Accidents Series 

 

Figure 6: ACF and partial ACF of the Original Data for the accident deaths Series 

 
Figure 7, ACF and PACF for the traffic accident series Figure 7, ACF and PACF for the traffic accident series, after 

natural log transformation, with first difference for non-seasonal and seasonal of degree (12) for series which 

transformed into stationary series. The value of the Box-Pierce statistic was( Q=32.3182 , p-value = 0.119295) 

confirming the stationary and the randomness of the series 

 
Figure 7: ACF and PACF for the traffic accident series adjusted 

 
Figure 8, ACF and PACF for accident deaths series, the ideal method is to remove a non-stationary about mean (trend) 

taking the first difference for non-seasonal, also for the purpose of eliminating the effect of seasonality, the differences of 

degree (12) were taken. As presented in the value of the Box-Pierce statistic was (Q=34.3257, p-value = 0.0790443) 

confirming the stationary of the series. 
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Figure 8: ACF and PACF for the accident deaths series adjusted 

Choosing Fitting Model: 

Constructing an appropriate model for the modified series, depending on the ACF, PACF, and the significance of the 

regression coefficients. We apply the three statistical measurements (RMSE, MAE and MAPE) with AIC (Akaike 

Information Criteria) and SBIC(Schwarz Bayesian Information Criterion) to choose the best model, 

Table (1) shows different models of SARIMA for the traffic accident series, the best and adequate model is 

SARIMA(1,1,1)(0,1,1)12 having the smallest values of  measurements and (AIC , SBIC) compared with the others. 

Random residuals for this model were confirmed by ACF and PACF with Box-Pierce (P-value = 0.772). The estimated 

parameters of the specified model is presented in table (2) which shows that all estimated parameters are statistically 

significant 

 

Table (1) Comparison of the proposed models for the number of monthly traffic accidents  

 
 

 

 

 

 

 

 
Table 2 Estimated Parameters Values of the SARIMA (𝟏, 𝟏, 𝟏)(𝟎, 𝟏, 𝟏)𝟏𝟐 Model 

Parameter Estimate Standard Error T P-value 

AR(1) 0.708 0.111 6.359 0.000 

MA(1) 0.924 0.051 18.099 0.000 

SMA(1) 0.853 0.048 17.647 0.000 

 
Table (3) shows different models of SARIMA for the number of accidents death series which is 

SARIMA(0,1,1)(1,1,2)12 having the smallest values of measurements and (AIC , SBIC)  compared with the others. 

Random residuals for this model were confirmed by ACF and PACF with Box-Pierce (P-value = 0.396). Table (4) shows 

the parameters estimation of the specified model and all the parameters for the non-seasonal and seasonal are statistically 

significant. 

 

 

Table 3 Comparison of the proposed models for the road accident deaths 

Model 
RMS

E 

MA

E 

MAP

E 

AI

C 

SBI

C 

Sig. 

Coefficients 

SARIMA

(1,1,0)(1,1,2)12 
11.31 9.02 17.70 

4.9

4 
5.04 

Yes 

SARIMA

(1,1,1)(0,1,2)12 
11.33 8.89 18.09 

4.9

4 
5.05 

No 

SARIMA 11.54 9.19 19.11 4.9 5.08 No 

Model RMSE MAE MAPE AIC SBIC Sig.Coefficients 

SARIMA(1,1,0)(1,1,2)12 48.30 33.40 11.22 7.84 7.95 No 

SARIMA(1,1,1)(0,1,1)12 46.45 32.78 11.17 7.73 7.77 Yes 

SARIMA(1,1,1)(1,1,1)12 46.86 33.04 11.28 7.78 7.88 No 

SARIMA(1,1,1)(2,1,1)12 47.06 33.02 11.30 7.81 7.94 No 

SARIMA(1,1,2)(1,1,1)12 47.47 33.49 11.23 7.82 7.96 No 

SARIMA(0,1,1)(1,1,2)12 47.73 32.94 11.16 7.81 7.92 No 
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(1,1,1)(1,1,1)12 6 

SARIMA

(1,1,1)(2,1,2)12 
10.61 8.50 17.28 

4.8

5 
5.01 

Yes 

SARIMA

(1,1,2)(1,1,1)12 
11.40 8.91 18.06 

4.9

7 
5.11 

No 

SARIMA

(0,1,1)(1,1,2)12 
10.53 8.42 16.45 

4.7

9 
4.89 

Yes 

Table 4 Estimated Parameters Values of the SARIMA (𝟎, 𝟏, 𝟏)(𝟏, 𝟏, 𝟐)𝟏𝟐 Model 

Parameter Estimate Standard Error T P-value 

MA(1) 0.618 0.087 7.087 0.000 

SAR(1) -0.841 0.129 -6.508 0.000 

SMA(1) -0.185 0.078 -2.382 0.020 

SMA(2) 0.869 0.053 16.518 0.000 

 
Elman Neural Network Application: 

Applying Elman NNs model to study and analyze road accidents. The data used in this study is (96) observations and 

divided as follows (70%), which equals (68 observations) as the training set and (15%), which equals (14 observations) 

as the validation set, while (15%) from observations (14 observations) as a test set. 

The entire input sequence is presented to the network, and its outputs are calculated and compared with the target 

sequence to generate an error sequence, as mentioned previously in (training an Elman NN) 

The First Series (Traffic Accidents Data): 

In the process of identifying the optimal ELMAN NN, we repeated the experiment several times for the number of traffic 

accidents, by changing the neurons number in the hidden layer from (1 to 15) in the trial, the importance of changing the 

number of neurons in the hidden layer is also related to the context layer because they are equal within the network. It 

was found that the ELMAN NN (1:2,5) model is better, The results in the table (5). 

 
Table 5 A Comparisons of the Evaluation Indicators ENN for Traffic Accidents  

Elman net MAE RMSE MAPE R2 

(1:2,1) 9.47 12.81 3.13 96.79 

(1:2,2) 91.51 124.23 28.65 14.15 

(1:2,3) 11.69 14.81 3.77 95.75 

(1:2,4) 53.01 66.92 17.89 61.86 

(1:2,5) 9.79 12.20 3.09 97.30 

(1:2,6) 15.07 19.06 4.56 95.67 

(1:2,7) 52.23 67.49 18.15 10.96 

(1:2,8) 53.94 68.82 18.67 6.43 

(1:2,9) 50.79 65.19 17.33 28.73 

(1:2,10) 72.64 91.05 23.39 2.58 

(1:2,11) 25.20 34.67 8.01 76.48 

(1:2,12) 17.66 24.40 5.69 89.04 

(1:2,13) 11.45 17.09 3.40 94.15 

(1:2,14) 67.41 86.56 22.46 4.62 

(1:2,15) 63.09 88.24 21.57 2.36 
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Figure 9 The Configuration of the ELMAN NN (1:2,5) for the Number of Traffic Accidents 

 
Elman NN Training Regression: 

Figure (10) the regression plot is used between the targets (actual) data and the outputs (predict) data. The regression plot 

generally has four graphs showing for training, validation, test and combining all. It indicated our neural network 

structure is correct. 

 

 

Figure 10 Regression Plots Displaying the Elman NN (1:2,5) for Traffic Accident data 

Elman NN Training Time-Series Response: 

Figure (11) shows the time-series response plot for confirmed cases using Elman NN. It also shows which time points are 

selected for training, testing and validation phases. The test result shows that Elman NN (1:2,5). It shows that the outputs 

were distributed evenly of the response curve and the errors were small in the training, testing, and validation subsets, 

indicating that the model reliably reflected the data. 
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Figure 11 The Time-Series Response for the ELMAN NN (1:2,5) Model of Traffic Accident 

The Second Series (Number of the traffic accident deaths): 

Find the appropriate Elman model for the number of deaths by road accident, by changing the number of neurons in the 

hidden layer, the results in the table (6). We conclusion that the best model is Elman NN (1:2, 3). 

 

Table 6 A Comparison of the Evaluation Indicators for Accident Deaths Occurring Monthly. 

Elman net MAE RMSE MAPE R2 

(1:2,1) 14.928 18.308 30.66% 8.24 

(1:2,2) 1.8255 3.714 3.94% 95.98 

(1:2,3) 1.161 1.588 2.48% 99.24 

(1:2,4) 5.3493 6.947 10.19% 86.25 

(1:2,5) 12.016 15.205 24.10% 41.86 

(1:2,6) 3.3189 5.211 6.34% 91.95 

(1:2,7) 3.1207 4.915 6.18% 92.89 

(1:2,8) 10.201 12.46 20.81% 76.21 

(1:2,9) 1.3129 1.6 2.76% 99.26 

(1:2,10) 3.1121 4.842 6.24% 93.33 

(1:2,11) 3.1958 4.516 6.08% 94.03 

(1:2,12) 23.889 30.143 46.44% 58.91 

(1:2,13) 13.281 17.225 24.91% 13.33 

(1:2,14) 201.79 203.9 379.03% 38.40 

(1:2,15) 2.3742 7.855 3.93% 83.81 

 

Figure 12 The Configuration of the ELMAN NN (1:2,3) Model 

Elman NN Training Regression: 

Figure(13) Regressions plots tell us about assess the quality of the Elman NN (1:2,3) model,  displayed the plots that 

network outputs with respect to targets for training, validation and test sets. The quality of fit is reasonably good for data 

set, with R (correlation) values equal to 0.99618, 0.99567, and 0.99721 and 0. 99817. 
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Figure 13 Regression Plots Displaying the Elman NN (1:2,3) Model for Accident Deaths  

Elman NN Training Time-Series Response: 

The time series response  in figure (14), displayed input data with predict data showing that the outputs were distributed 

evenly of the response curve and the errors were small in the training, testing, and validation subsets, indicating that the 

model reliably reflected the data. 

 

Figure 14  Time-Series Response Plot of the ELMAN NN (1:2,3) Model for Accident Deaths 

Discussion  

Models Comparison for the Traffic Accidents and the Number of Accident Deaths:- 

Table (7) shows a comparison of the performance of two different traffic accident data models (SARIMA, Elman NN). 

The statistical indices (MAE, RMSE, and MAPE) used to calculate the prediction error have the lowest Elman NN value 

from the SARIMA model. Thus, it can be said that the Elman NN (1:2, 5) model is the best. 

Table 7 Performance Comparison between Two Models (SARIMA and Elman NN) for the Number of Traffic Accidents 

Models MAE RMSE MAPE 

SARIMA(1,1,1)(0,1,1)12 32.7771 46.4507 11.1746 

Elman NN (1:2,5) 9.7935 12.20 3.09 

 
Table (8) shows that the superiority of Elman neural networks over the SARIMA model, as results were obtained with 

lower values of the statistical indicators (MAE, RMSE and MAPE) used to calculate the prediction error for accident 

deaths data. Thus, it can be said that the Elman NN (1:2,3) model is the best.  
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Table 8 Performance Comparison between Two Models (SARIMA and Elman NN) for Accident Deaths  

Models MAE RMSE MAPE 

SARIMA(0,1,1)x(1,1,2)12 8.41637 10.5262 16.4533 

Elman NN (1:2,3) 1.1612 1.588 2.48 

.  

Conclusion 

 Based on the results obtained in this study, we concluded that there are seasonal patterns in the data.  

1. After testing several models for time series we selected the two best models, SARIMA(1,1,1)(0,1,1)12 for traffic 

accidents data and SARIMA(0,1,1)(1,1,2)12  for the number of accident deaths, have the smallest value of (RMSE, 

MAE, MAPE) among all the other models.  

2. In the process of selecting the best ELMAN NN It was found that the ELMAN NN (1:2,5) model is good for traffic 

accidents has small values for the statistical indictors, and the best model for the number of accident deaths is Elman NN 

(1:2, 3) has small values for the statistical indictors. 

3. Comparing both models to obtain the best model, it was found that (Elman NN) is a more accurate model than the 

(SARIMA) model for the traffic accidents and has small values for the statistical indictors (MAE, RMSE, and MAPE). 
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 لعراقالنمذجة حوادث الطرق في إقليم كردستان  SARIMAالعصبية ونموذج  أيلمانتطبيق شبكة 

 سامان حسين محمود و مريم محمد احمد

 اربيل، العراق-الاحصاء والمعلوماتية، كلية الادارة والاقتصاد، جامعة صلاح الدين قسم 
 

يومي :  الخلاصة  بشكل  الناس  معها  يتعامل  التي  تعقيدًا وخطورة  الطرق  أنظمة  أكثر  الوفيات من  الطرق وحوادث  إلى   .تعد حوادث  بالإضافة 
-Box الخسائر في الأرواح ، هناك أيضًا الكثير من الأضرار المادية للمجتمع. لذلك ، نهدف إلى دراسة هذا الموضوع الفعال من خلال نموذج

Jenkins  الحوادث    العصبيةأيلمان    شبكة لعدد  والأنسب  الأفضل  النموذج  للغاية لاختيار  مناسبة  تعتبر  الوفيات من حوادث  و والتي  عدد 
 (. 2021-2014خلال السنوات )  في إقليم كوردستان العراقالشهرية المرور 

 أفضرررررررل مرررررررن نمررررررروذج  Elman(1:2,5)أخيرررررررراً، قمنرررررررا بمقارنرررررررة النترررررررائت جرررررررين كرررررررلا النمررررررروذجين. ترررررررم الاسرررررررتنتاج ان نترررررررائت النمررررررروذج 
12SARIMA(1,1,1)(0,1,1)   لعرردد حرروادث المرررور و نتررائت النمرروذجElman(1:2,3)  12نمرروذجأفضررل مررنSARIMA(0,1,1)(1,1,2) عرردد ل

للمقارنررة. يررتم إجررراء التحليررل  تررم إسررتخدامها، والترري  (RMSE, MAE, MAPE)اسررتنادًا إلررى المقرراييا الإحصررائيةالوفيررات مررن حرروادث المرررور 
 (Matlab V.18a) والبرنامت (Statgraphics V.19) الإحصائي باستخدام البرنامت

 ، الحوادث المرورية  SARIMAنماذج  ،السلاسل الزمنية العصبية، أيلمان : الشبكة العصبية الاصطناعية ، شبكة المفتاحية  الكلمات
 


