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Abstract
In this paper, we study certain types of continuous functions in topological spaces, where
we defined it by using 6-g- neighbourhood .and some properties of these concepts are proved.
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1-Introduction and preliminaries

Before we present the 6-g- continuous* mapping we give a historical notations about it
,The subject of 0-closed sets was first studied in 1966 by Velicko [8] ,In 1970, Levine [5]
introduced the notion of generalized closed sets in topological spaces as a generalization of
closed sets. Since then, many concepts related to generalized closed sets were defined and
investigated . The generalizations of generalized closed and generalized Continuity were
intensively studied in recent years by Balachandran, Devi ,Maki and Sundaram [4] ,The aim of this
paper is to introduce the notions of 6-generalized-continuous* ( briefly ,0-g-cont.”) function, 6-
generalized-
homeomorphisms ~ and study some of their simple properties.

Definition(1-1) [3]: let (x,t) be a topological space and let Y be a subset
of X. The t-relative topology for Y isthe collection t, given by

t={GNY:G € 1} .

Definition(1-2)[3] : if f:X—Y and AcX , thenthe mapping g A—Y

Defined by g(x)=f(x) x €X is called restriction of fto A and is denoted
by f| A or fa it is evident that f|A=fN(A XY).

Definition (1-3)[1]: Apoint x € X is said to be #-adherent point of AcX, if
cl(U) N A#@ for every open U of x e X(such that cl(u) represent the
closure of U.The set of all 6-adherent point of A is Denoted by cl6(A) or
0-cl(A).

Definition(1-4) [1] : A set Ais said to be #-closed if A =cl0(A) or A= 6-cl A.
The complement of a 6-closed set is called #-open set.

Definition(1-5) :The set N is #-nhd of x if there exist an 8-open G D x e GEN .

Example(1-6): let X={a,b,c} and = ={o, {a}, {b,c}, X}, consider the subset
A={a} of X clearly {a} is the only 6-adherent point of A Hence A4 is -
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closed.The complete of A is {b,c} is 6-open.

Example(1- 7): Let X={a,b,c,d,e} and let = ={o,{ b},{d,e}{b,d,e}{ac,de} X}
Be a topology on X ,consider the subset A={b,c,d} then a,b,c,dande
are 0-adherent points of A ,Then the set of all 0-adherent of Ais

{a,b,c,d,e} = cl(A) Then A = cl6(A) , hence A is not O-closed set .

Remark(1-8) : every #-closed sets are closed but the converse is
not true as the following example.

Example (1-9): Let X ={d,e,f} and let t={0,{d}{d,e},{d,f}, X} consider the
subset B ={f},since the complement oft are X, 0,{e,f},{f} and {e} then B
is closed but not 0-closed since the setof all 6-adherent points are
{d,e,f}=cl 6(B)#B .

Definition (1-10) [2]: A subset A of aspace (X,T) is called #-g-closed

if cl6(A) €U whenever AcU and U isopen in X .the Complement of
0-g-closed is @-g-open.

Example(1-11): As example(1-6)Let X ={d,e,f} and letT={®,{d},{d,e} {d,f}X}.
Consider the subset B ={f} ,Bisclosed but not#-g-closed since if
consider U ={d,f}. Note that X =CI6(B) ¢U € 1.

Remark(1-12) : every #-closed sets are #-g-closed but the converse is

not true as the following example.

Example (1-13): Let X ={d,e.f} and let T ={@,{d,e},X}. Consider the subset
D ={d,f}. Since the only open subset of D is X, D is clearly 0-generalized
closed. But it is easy to see that D is not 6-closed.

Proposition(1-14)[2] : A finite union of 6-g-closed sets is always a 0-g-
closed set.

Theorem (1-15)[2] : If A is 0-g-open in (X,tr) and B is 0-g-open in (Y,0),
then AxB is 8-g-open in the product space (X*xY,t%0).

Remark (1-16): Every 0-g-open sets are open but the converse is not true
as the following example.

Example (1-17): take the complement to the subset B in Example(1-11) it is
easily to see that B is open but not 6-g-open.

Definition (1-18): Let x be a point of a topological space X. A subset N of
X is said to be #-g- neighbourhood of x in X if there exists a 6-g-open Set
UcX 3 xeUCS N.

Theorem(1-19): A subset of topological spaceis 6-g-open iff it is a
0-g- neighbourhood of each of its point .

proof :let a subset G of a topological space be 6-g-open then for every
xe€G,xeG c Gand therefore G is 6-g- neighbourhood of each of its
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point conversely ,let G be 6-g- neighbourhood of each of its point, then
to each x e G there exist an #-g-open set Gy such that x € Gx € G it follows
that G=U{ Gx:x € G}(by take the complement Proposition(1-14) hence G is
6-g- open being a union of &-g-open sets m

Definition(1-20) : Let (X, 7) be a topological space & AcX the
B — g —closure of Als 8 —g—cl(4) =N {fifis 0-g-closed set, f> A}.

2- 0-g-continuous* mapping

Definition (2-1): let (X, t1) and (Y, rg) be topological spaces. A mapping
f: X—Y is said to be 6-g-continuous at X, € X iff to every 0-g-nhd M of f(x)
there exists a 6-g-nhd N of x suchthat f[N] <M .so f issaid to be
(71- T2 )0-g-cont.*(or simply 6-g-cont. *) iff it is 0-g-cont. * to every points
of X it follows from this definition that f is 6-g- continuous* at xg € X iff to
every 1,- 6-g-open H containing f(X,) there exist 13- 6-g-open G containing
Xo such that f(G) cH .

Definition (2-2) : let (X,t;) and (Y,t,) be topological spaces and f bea
mapping of X into Y then

1)fissaid to be an0-g-open mapping iff f(G) is t,-0-g-open whenever G is t;-6-g-
open
2) fis said to be a 6-g- homeomorphism* iff
i) fis bijective
i) fis t;-t, 6-g-continuous™
iii) f1 is to-t; H-g-continuous *

Theorem(2-3): Let X and Y be topological spaces. A mapping f: X—Y is

8-g-continuous™ if and only if the inverse image under f of Every 6-g-open

setin Y is 6-g-open in X.

Proof : Assume that f i |s 0-g- Continuity* and let H be any 6-g-open setin Y.

We want to show that f[H] is 6-g-open in X. If f[H] = ¢, There is nothing to prove. So let f![H]
+ ¢ and let x € f*[H] So that f(x)e H. By 0-g-ontinuity”

of f, there exists a 0-g-open set G, in X such that x € G, and f [G,] €H, that is, x € G, c f*[H].This

shows that f*[H] is a 6-g-nhd of each of its points and so by Theorem(1-19) it is 6-g-open in X .
Conversely, let f[H] be 0-g-open in X for every 0-g-open set H in Y .We shall show that f is 6-g-
cont.” at x e X. let H be any 6-g-open Set in Y such that f(x)e H so that x e f'[H] . By hypothesis
f1[H] s 6-g-open in X . If

f1[H]=G ,then G is an 6-g-open set in X Containingx such that

f[G]= f[ £'[H]] cH, Hence f is a 6-g-continuous* function m

Corollary (2-4): :let X and Y be topological spaces, A mapping f: X — ¥ is

0-g-continuous* if and only if the inverse image under f of every 06-g-closed
setinY is 0-g-closed in X.
Proof : Assume that f is 8-g-continuous* and let F be any 6-g-closed set in
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Y. To show that f*[F] is 6-g-closed in X. since f is 6-g-continuous* and Y-F
is 6-g-open in Y, it follows from theorem(2-3) that f'[Y-F] = X-f'[F] is
0-g-open in X, that is , f*[F] is 6-g-closed in X.

Conversely, let f[F] be 6-g-closed in X for every 6-g-closed set F in Y.

We want to show that f is a 8-g-continuous™ function. Let G be any
0-g-open set in Y. then Y-G is 8-g-closed in Y and so by hypothesis,
f1Y-G]=X-F[G] is 0-g-closed in X, that is , f'[G] is 6-g-open in X,

Hence f is 6-g-continuous™ by theorem (2-3) m

Theorem(2-5): A mapping f from a space X into another space Y is 6-g-

Continuous* ifand only if f[8 —g—cl(A)] c B — g —cl[f(A)] forevery
AcX. Or  fis 0-g-continuous™* iff for every x e X arbitrarily 6-g-close
to A, f(x) is arbitrarily 6-g-close to f[A] .

Proof : let f be 6-g-continuous*. Since 8 — g — cI[f(A4)]is 6-g-closed in Y,
f1[8— g — cl[f(A4)] is 6-g-closed in X [Corollary (2-4)] and  therefore

0—g—cllf ™ [0—g— cl[f(A)]]]= f[0— g—cllf(A]] (1)

Now f[A] €8—g—cllf(4)] =Acf[flAll < f[0—g—cllf(4)]]
0—g—Aco—g—clf 1 [8—g— cllf(DI]] = F[8—g—cl[f(D]] by Q)
=f[0—g—cl(4)] ©8—g—cl[f(4)]

Conversely, let f[8 —g—cl(A)] © 8 —g —cl[f(A)] forevery AcX.

Let F be any 6-g-closed setinY sothat 8 — g — cI(F) = F. Now f ~*[F]is
a subset of X so that by hypothesis

fl8—g—cllf *[Fl] c @—g—clf[f*[Fl]lc8—g—cl(F) =F.
Therefore @ — g —cl[f " [F]]= f~*[F]l.But f 1[F] €8 —g— cl[f *[F]]
Always. Hence 8 — g —cl[f "*[F]] = f~*[F]and so f ~*[F] is 6-g-closed

in X. Hence f is 6-g-continuous* by Corollary (2-4) m

U

Theorem(2-6): A mapping f of a space X into another space Y is 6-g-
Continuous* ifand only if 8 — g —cI[f "*[Bll < f*[8 — g — cl(B)] for
every BcY.

Proof : let f be 6-g-continuous*, since 8 — g — cl(B) is 6-g-closed in Y,

f~1[8 — g — cl(B)] is 6-g-closed in X [Theorem(2-5)] and Therefore
8—g— cllf ' [0—g—clB)]]= [0~ g~ cl(B)](1)
Now BcO—g—cl(B)=f*[Bl]cf 10— g—cl(B)]
=0 —g—cl[f *[B]lcO—g—cl[f *[6—g—cl(B)] = f[0—g— cl(B)]
by (1). Conversely, let the condition hold and let F be any 6-g-closed set in
Ysothat8 —g —cl(F) = F. By
hypothesis.8 — g — cI[f~*[F]] < f~*[8 — g — cl(F)] = f~*[F]. But
f71[F] €6 —g—cl[f *[F]] always.
Hence @ — g —cl[f "*[F]1= f *[F]andso f ~*[F] is 6-g-closed in X.
It follows from Corollary (2-4) that f is 6-g-continuous* m

Theorem(2-7): let X,Y and Z, be topological spaces and the mappings
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f:X—=Yand g:¥Y — £ be 0-g-continuous*. Then the composition
map gof: X — Z is 0-g-continuous*.

Proof : let G be any 6-g-open set in Z . since g is 6-g-continuous* , g_l [G]

is 6-g-open in Y by theorem(2-3). Again since f is 6-g-continuous*,

ft [g_l [G]] is 0-g-open in X [theorem(2-3)]. But f —* [g_l [G]] =

(f o g *)[G]= (gof) 1[G]. Thus the inverse image under gof of very
0-g-open set in Z is 6-g- open in X and therefore gof is 6-g-continuous™ by
theorem(2-3) m

Theorem (2- 8): Let X and Y be topological spaces and A anon empty

subset of X if f:X—Y is 06-g- continuous* then the restriction
fa:A—Y fa of f to Ais 0-g- continuous* where A has relative
topology .

Proof : by definition (1-2) let G be any be any open subset of Y then
by definition of fa it is evident that fa™(G) = AN f*(G). Since fis 0-g-
continuous*, f1(G) is 6-g- open is 0-g- open in X theorem (2-3) hence
by definition (1-1) A N f*(G) is open in A . It follows by theorem (2-3)
that fa is 8-g- continuous™ function m

Theorem (2-9): The projection h: (X xY,1x0) — (X,1)isa 0-g-cont.*
map.

Proof: By definition(1-10) and Theorem (1-15), for a 6- generalized closed
setd of (X,r), h*(x\d) = (X\d)xYis  6-g-openin (XxY,txo). Therefore,
h™(d) = FxY =XxY\(h}(X\d)) is 0-generalized closed m

Theorem(2 -10): let (X,t;) and (Y,t;) be topological spaces and let f
be A bijective mapping of X to Y. then the following statements are
equivalent:

1) fis a 0-g- homeomorphism*

2) fis 8-g-continuous* and 6-g- open

3) fis 6-g-continuous* and closed

Proof : 12 : asumme( 1) let g be the inverse mapping of f so that f=g
and g™'= f since fisonetoone onto,g isonetoone onto. let G be
t,-0-g- open set .since g is 0-g-continuous* g*(H) is t;-6-g- Open but
g'=f sothatg™ (G) = f(G) is t1-6-g- open It follows thatf is an 6-g-
open mapping . also fis 0-g-continuous* by hypothesis .Hence (1)—(2)
Conversely, assume (2) that is let f be a bijective ,0-g-continuous™ and
0-g- open . To prove that g=f" is 6-g-continuous* . Let G be

any t;-6-g- open set, then f(G) is t,-6-g- open by hypothsis, that is,
9(G) is t,-0-g- open and so g=f" is 0-g-continuous* hence (2)—(1)
(1)—>(3) assume (1) let h be any closed set then X-H is 6-g- open since
g=f" is 0-g-continuous* it follows that g*(X-H) is t,-0-g- open but
g (X-H) =Y- g*(H) hence Y- g*(H) is t,-0-g- openthat is g™ (H)=f(H)
is to-closed thus it is shown that H is t;-closed implies f(H) is to-closed
hence fis closed mapping thus (1)—(3) now assume ( 3) to prove that
g=f'is 0-g-continuous* let G be any t;-6-g- open then X-G is t-closed
since f is closed mapping f(X-G) = g (X-G)=Y- g*(G) is y-closed , that is
,g(G) is t—0-g- open thus inverse image g of every t;-6-g- open set is 6-
g-open hence g=f" is 6-g-continuous* and so (1)—(3) m
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Remark(2-11): for more details about the relations between 0-continuous
and ,g-continuous you can see [2],[4],[5],[6] and [7] .
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