On the θ -g- Continuity* in topological spaces.

Mohammed Yahya Abid
Department of Mathematics
College of Education for pure science
Karbala University

Abstract

In this paper, we study certain types of continuous functions in topological spaces, where we defined it by using θ -g- neighbourhood and some properties of these concepts are proved.

المستخلص

في هذا البحث درسنا بعض انواع الدوال المستمره في الفضاءات التوبولوجيه وهي الدوال (ثيتا – جي – جوار)وقمنا باثبات بعض الخصائص لهذه الدوال .

1-Introduction and preliminaries

Before we present the θ -g- continuous* mapping we give a historical notations about it ,The subject of θ -closed sets was first studied in 1966 by Velicko [8] ,In 1970, Levine [5] introduced the notion of generalized closed sets in topological spaces as a generalization of closed sets. Since then, many concepts related to generalized closed sets were defined and investigated . The generalizations of generalized closed and generalized Continuity were intensively studied in recent years by Balachandran, Devi ,Maki and Sundaram [4] ,The aim of this paper is to introduce the notions of θ -generalized-continuous* (briefly , θ -g-cont.*) function , θ -generalized-

homeomorphisms * and study some of their simple properties.

<u>Definition(1-1) [3]:</u> let (x,t) be a topological space and let Y be a subset of X. The t-relative topology for Y is the collection t_y given by $t_y = \{G \cap Y : G \in t\}$.

<u>Definition(1-2)[3]</u>: if $f:X \to Y$ and $A \subset X$, then the mapping $g: A \to Y$ Defined by g(x)=f(x) $x \in X$ is called restriction of f to A and is denoted by $f \mid A$ or f_A it is evident that $f \mid A=f \cap (A \times Y)$.

Definition (1-3)[1]: Apoint $x \in X$ is said to be θ -adherent point of $A \subseteq X$, if $cl(U) \cap A \neq \emptyset$ for every open U of $x \in X$ (such that cl(u) represent the closure of U. The set of all θ -adherent point of A is Denoted by $cl\theta(A)$ or θ -cl(A).

<u>**Definition(1-4)**</u> [1] : A set A is said to be *θ-closed* if $A = cl\theta(A)$ or $A = \theta - cl A$. The complement of a θ -closed set is called *θ-open* set.

<u>Definition(1-5)</u>: The set N is θ -nhd of x if there exist an θ -open G \ni x \in G \subseteq N.

Example(1-6): let $X = \{a,b,c\}$ and $\tau = \{\phi, \{a\}, \{b,c\},X\}$, consider the subset $A = \{a\}$ of X clearly $\{a\}$ is the only θ -adherent point of A Hence A is θ -

Journal of Kerbala University, Vol. 10 No.1 Scientific . 2012

closed. The complete of A is $\{b,c\}$ is θ -open.

Example(1-7): Let X={a,b,c,d,e} and let $\tau = {\phi, \{b\}, \{d,e\}, \{b,d,e\}, \{a,c,d,e\}, X}$ Be a topology on X, consider the subset A={b,c,d} then a, b, c, d and e are θ -adherent points of A, Then the set of all θ -adherent of A is {a, b, c, d, e} = cl θ (A) Then A \neq cl θ (A), hence A is not θ -closed set.

<u>Remark(1-8)</u>: every θ -closed sets are closed but the converse is not true as the following example.

Example (1-9): Let $X = \{d,e,f\}$ and let $\tau = \{\emptyset,\{d\},\{d,e\},\{d,f\},X\}$ consider the subset $B = \{f\}$, since the complement of τ are X, $\emptyset,\{e,f\},\{f\}$ and $\{e\}$ then $\textbf{\textit{B}}$ is closed but not θ -closed since the set of all θ -adherent points are $\{d,e,f\}=cl\ \theta(B)\neq B$.

<u>Definition (1-10)</u> [2]: A subset A of a space (X,T) is called θ -*g*-closed if $cl\theta(A) \subset U$ whenever $A \subset U$ and U is open in X. the Complement of θ -*g*-closed is θ -*g*-open.

Example(1-11): As example(1-6)Let $X = \{d,e,f\}$ and let $T = \{\emptyset,\{d\},\{d,e\},\{d,f\},X\}$. Consider the subset $B = \{f\}$, *B* is closed but not θ -g-closed since if consider $U = \{d,f\}$. Note that $X = Cl\theta(B) \not\subset U \in \tau$.

<u>Remark(1-12)</u>: every θ -closed sets are θ -g-closed but the converse is not true as the following example.

Example (1-13): Let $X = \{d,e,f\}$ and let $\tau = \{\emptyset,\{d,e\},X\}$. Consider the subset $D = \{d,f\}$. Since the only open subset of D is X, D is clearly θ -generalized closed. But it is easy to see that D is not θ -closed.

Proposition(1-14)[2]: A finite union of θ -g-closed sets is always a θ -g-closed set.

Theorem (1-15)[2]: If A is θ-g-open in (X,τ) and B is θ-g-open in (Y,σ) , then A×B is θ-g-open in the product space $(X\times Y,\tau\times\sigma)$.

Remark (1-16): Every θ -g-open sets are open but the converse is not true as the following example.

Example (1-17): take the complement to the subset B in Example(1-11) it is easily to see that **B** is open but not θ -g-open.

<u>Definition (1-18)</u>: Let x be a point of a topological space X. A subset N of X is said to be θ -g-neighbourhood of x in X if there exists a θ -g-open Set U \subseteq X \ni x \in U \subseteq N.

Theorem(1-19): A subset of topological space is θ -g-open iff it is a θ -g-neighbourhood of each of its point.

<u>proof</u> :let a subset G of a topological space be θ -g-open then for every $x \in G$, $x \in G \subseteq G$ and therefore G is θ -g-neighbourhood of each of its

Journal of Kerbala University, Vol. 10 No.1 Scientific. 2012

point conversely ,let G be θ -g-neighbourhood of each of its point , then to each $x \in G$ there exist an θ -g-open set G_x such that $x \in G_x \subseteq G$ it follows that $G=U\{G_x:x \in G\}$ (by take the complement Proposition(1-14) hence G is θ -g-open being a union of θ -g-open sets \blacksquare

<u>Definition(1-20)</u>: Let (X, τ) be a topological space & $A \subseteq X$, the $\theta - g$ -closure of A is $\theta - g - cl(A) = \bigcap \{ \text{ f:f is } \theta \text{-g-closed set }, f \supset A \}$.

2- θ-g-continuous* mapping

Definition (2-1): let (X, τ_1) and (Y, τ_2) be topological spaces. A mapping $f: X \rightarrow Y$ is said to be θ-g-continuous at $x_0 \in X$ iff to every θ-g-nhd M of f(x) there exists a θ-g-nhd N of x such that $f[N] \subset M$ so f is said to be $(\tau_1 - \tau_2)\theta$ -g-cont.*(or simply θ-g-cont.*) iff it is θ-g-cont. to every points of X it follows from this definition that f is θ-g-continuous at $x_0 \in X$ iff to every τ_2 - θ-g-open H containing $f(x_0)$ there exist τ_1 - θ-g-open G containing x_0 such that $f(G) \subset H$.

<u>Definition (2-2)</u>: let (X,t_1) and (Y,t_2) be topological spaces and f be a mapping of X into Y then

- 1) f is said to be an θ -g- open mapping iff f(G) is t_2 - θ -g-open whenever G is t_1 - θ -g-open
- 2) f is said to be a θ -g-homeomorphism* iff
 - i) f is bijective
 - ii) f is t_1 - t_2 θ -g-continuous*
 - iii) f^{-1} is t_2 - t_1 θ -g-continuous *

Theorem(2-3): Let X and Y be topological spaces. A mapping $f: X \rightarrow Y$ is θ -g-continuous* if and only if the inverse image under f of Every θ -g-open set in Y is θ -g-open in X.

Proof: Assume that f is θ -g-Continuity* and let H be any θ -g-open set in Y.

We want to show that $f^1[H]$ is θ -g-open in X. If $f^1[H] = \varphi$, There is nothing to prove. So let $f^1[H] \neq \varphi$ and let $x \in f^1[H]$ So that $f(x) \in H$. By θ -g-ontinuity

of f, there exists a θ -g-open set G_x in X such that $x \in G_x$ and $f[G_x] \subset H$, that is, $x \in G_x \subset f^1[H]$. This shows that $f^1[H]$ is a θ -g-nhd of each of its points and so by Theorem(1-19) it is θ -g-open in X. Conversely, let $f^1[H]$ be θ -g-open in X for every θ -g-open set H in Y. We shall show that f is θ -g-cont.* at $x \in X$. let H be any θ -g-open Set in Y such that $f(x) \in H$ so that $x \in f^1[H]$. By hypothesis $f^1[H]$ Is θ -g-open in X. If

 $f^{1}[H]=G$, then G is an θ -g-open set in X Containing x such that $f[G]=f[f^{1}[H]] \subset H$, Hence f is a θ -g-continuous* function

<u>Corollary (2-4):</u> : let X and Y be topological spaces, A mapping $f: X \to Y$ is θ -g-continuous* if and only if the inverse image under f of every θ -g-closed set in Y is θ -g-closed in X.

Proof: Assume that f is θ -g-continuous* and let F be any θ -g-closed set in

Journal of Kerbala University, Vol. 10 No.1 Scientific. 2012

Y. To show that $f^{-1}[F]$ is θ -g-closed in X. since f is θ -g-continuous* and Y-F is θ -g-open in Y, it follows from theorem(2-3) that $f^{-1}[Y-F] = X-f^{-1}[F]$ θ -g-open in X, that is, $f^{-1}[F]$ is θ -g-closed in X. Conversely, let $f^{-1}[F]$ be θ -g-closed in X for every θ -g-closed set F in Y. We want to show that f is a θ -g-continuous* function. Let G be any θ -g-open set in Y. then Y-G is θ -g-closed in Y and so by hypothesis, $f^{-1}[Y-G]=X-f^{-1}[G]$ is θ -g-closed in X, that is , $f^{-1}[G]$ is θ -g-open in X, Hence f is θ -g-continuous* by theorem (2-3) **Theorem(2-5):** A mapping f from a space X into another space Y is θ -g-Continuous* if and only if $f[\theta - g - cl(A)] \subset \theta - g - cl[f(A)]$ f is θ -g-continuous* iff for every x ε X arbitrarily θ -g-close $A \subset X$. Or to A, f(x) is arbitrarily θ -g-close to f[A]. <u>Proof</u>: let f be θ -g-continuous*. Since $\theta - g - cl[f(A)]$ is θ -g-closed in Y, $f^{-1}[\theta - g - cl[f(A)]]$ is θ -g-closed in X [Corollary (2-4)] and therefore $\theta - g - cl[f^{-1}[\theta - g - cl[f(A)]]] = f^{-1}[\theta - g - cl[f(A)]]$ -----(1) Now $f[A] \subset \theta - g - cl[f(A)] \Rightarrow A \subset f^{-1}[f[A]] \subset f^{-1}[\theta - g - cl[f(A)]] \Rightarrow$ $\theta - g - \bar{A} \subset \theta - g - cl[f^{-1}[\theta - g - cl[f(A)]]] = f^{-1}[\theta - g - cl[f(A)]]$ by (1) $\Rightarrow f[\theta - g - cl(A)] \subset \theta - g - cl[f(A)]$ Conversely, let $f[\theta - g - cl(A)] \subset \theta - g - cl[f(A)]$ for every $A \subset X$. Let F be any θ -g-closed set in Y so that $\theta - g - cl(F) = F$. Now $f^{-1}[F]$ is a subset of X so that by hypothesis $f[\theta-\mathsf{g}-cl[f^{-1}[F]] \subset \theta-\mathsf{g}-cl[f[f^{-1}[F]]] \subset \theta-\mathsf{g}-cl(F)=F.$ Therefore $\theta - g - cl[f^{-1}[F]] \subset f^{-1}[F]$. But $f^{-1}[F] \subset \theta - g - cl[f^{-1}[F]]$ Always. Hence $\theta - g - cl[f^{-1}[F]] = f^{-1}[F]$ and so $f^{-1}[F]$ is θ -g-closed in X. Hence f is θ -g-continuous* by Corollary (2-4) **Theorem(2-6):** A mapping f of a space X into another space Y is θ -g-Continuous* if and only if $\theta - g - cl[f^{-1}[B]] \subset f^{-1}[\theta - g - cl(B)]$ for every B⊂Y. **Proof**: let f be θ -g-continuous*, since $\theta - g - cl(B)$ is θ -g-closed in Y, $f^{-1}[\theta - g - cl(B)]$ is θ -g-closed in X [Theorem(2-5)] and Therefore $\theta - g - cl[f^{-1}[\theta - g - cl(B)]] = f^{-1}[\theta - g - cl(B)]$ -----(1) $B \subset \theta - g - cl(B) \Rightarrow f^{-1}[B] \subset f^{-1}[\theta - g - cl(B)]$ $\Rightarrow \theta - g - cl[f^{-1}[B]] \subset \theta - g - cl[f^{-1}[\theta - g - cl(B)]] = f^{-1}[\theta - g - cl(B)]$ by (1). Conversely, let the condition hold and let F be any θ -g-closed set in Y so that $\theta - g - cl(F) = F$. By hypothesis. $\theta - g - cl[f^{-1}[F]] \subset f^{-1}[\theta - g - cl(F)] = f^{-1}[F]$. But $f^{-1}[F] \subset \theta - g - \operatorname{cl}[f^{-1}[F]]$ always. Hence $\theta - g - cl[f^{-1}[F]] = f^{-1}[F]$ and so $f^{-1}[F]$ is θ -g-closed in X.

Theorem(2-7): let X,Y and Z, be topological spaces and the mappings

It follows from Corollary (2-4) that f is θ -g-continuous*

Journal of Kerbala University, Vol. 10 No.1 Scientific . 2012

 $f: X \to Y$ and $g: Y \to Z$ be θ -g-continuous*. Then the composition map $g \circ f: X \to Z$ is θ -g-continuous*.

Proof : let G be any θ -g-open set in Z . since g is θ -g-continuous* , $g^{-1}[G]$ is θ -g-open in Y by theorem(2-3). Again since f is θ -g-continuous*, $f^{-1}[g^{-1}[G]]$ is θ -g-open in X [theorem(2-3)]. But $f^{-1}[g^{-1}[G]] = (f^{-1} \circ g^{-1})[G] = (g \circ f)^{-1}[G]$. Thus the inverse image under $g \circ f$ of very θ -g-open set in Z is θ -g- open in X and therefore $g \circ f$ is θ -g-continuous* by theorem(2-3) \blacksquare

Theorem (2-8): Let X and Y be topological spaces and A a non empty subset of X if $f:X\to Y$ is θ -g- continuous* then the restriction $f_A:A\to Y$ f_A of f to A is θ -g- continuous* where A has relative topology.

<u>**Proof**:</u> by definition (1-2) let G be any be any open subset of Y then by definition of f_A it is evident that $f_A^{-1}(G) = A \cap f^1(G)$. Since f is θ -g-continuous*, $f^1(G)$ is θ -g- open is θ -g- open in X theorem (2-3) hence by definition (1-1) $A \cap f^1(G)$ is open in A . It follows by theorem (2-3) that f_A is θ -g-continuous* function ■

Theorem (2-9): The projection $h: (X \times Y, \tau \times \sigma) \to (X, \tau)$ is a θ -g-cont.* map.

Proof: By definition(1-10) and Theorem (1-15), for a θ - generalized closed set d of (X,τ) , $h^{-1}(x\backslash d) = (X\backslash d)\times Y$ is θ -g-open in $(X\times Y,\tau\times\sigma)$. Therefore, $h^{-1}(d) = F\times Y = X\times Y\backslash (h^{-1}(X\backslash d))$ is θ -generalized closed

Theorem(2-10): let (X,t_1) and (Y,t_2) be topological spaces and let f be A bijective mapping of X to Y. then the following statements are equivalent:

- 1) f is a θ -g-homeomorphism*
- 2) f is θ -g-continuous* and θ -g- open
- 3) f is θ -g-continuous* and closed

Proof: $1 \leftrightarrow 2$: asumme(1) let g be the inverse mapping of f so that f=g and g^{-1} = f since f is one to one onto, g is one to one onto. let G be t_1 - θ -g- open set .since g is θ -g-continuous* $g^{-1}(H)$ is t_1 - θ -g- Open but $g^{-1}=f$ so that $g^{-1}(G)=f(G)$ is $t_1-\theta-g$ - open It follows that f is an $\theta-g$ open mapping also f is θ -g-continuous* by hypothesis. Hence (1) \rightarrow (2) Conversely, assume (2) that is let f be a bijective θ -g-continuous* and θ -g- open . To prove that $g=f^{-1}$ is θ -g-continuous* . Let G be any $t_1-\theta$ -g- open set, then f(G) is $t_2-\theta$ -g- open by hypothsis, that is, g(G) is t_2 - θ -g- open and so g=f¹ is θ -g-continuous* hence (2) \rightarrow (1) (1) \rightarrow (3) assume (1) let h be any closed set then X-H is θ -g- open since $g=f^{-1}$ is θ -g-continuous* it follows that $g^{-1}(X-H)$ is t_2 - θ -g- open but $g^{-1}(X-H) = Y - g^{-1}(H)$ hence $Y - g^{-1}(H)$ is $t_2 - \theta - g$ - open that is $g^{-1}(H) = f(H)$ is t_2 -closed thus it is shown that H is t_1 -closed implies f(H) is t_2 -closed hence f is closed mapping thus $(1)\rightarrow(3)$ now assume (3) to prove that g=f¹ is θ -g-continuous* let G be any t₁- θ -g- open then X-G is t-closed since f is closed mapping $f(X-G) = g^{-1}(X-G) = Y - g^{-1}(G)$ is y-closed, that is , $g^{-1}(G)$ is t_2 - θ -g- open thus inverse image g of every t_1 - θ -g- open set is θ -g-open hence g= f^{-1} is θ -g-continuous* and so (1)—(3)

Journal of Kerbala University, Vol. 10 No.1 Scientific. 2012

Remark(2-11): for more details about the relations between θ-continuous and ,g-continuous you can see [2],[4],[5],[6] and [7].

References:

- [1] G. B. Navalagi "Definition Bank In General Topology", Topology Atlas Survey Articles Section URL: http://dx.uca/t/a/i/c/32htm ,2000
- [2] j.dontchev and H.Maki, "θ- generalization closed set",tap#127, http//at.yourku.ca/p/a/b/a/08.html
- [3] J. N. Sharma," topology", printed at manjo printers, meerut, 1977.
- [4] K. Balachandran, P. Sundaram and H. Maki," On generalized continuous maps in topological spaces", Mem. Fac. Sci. Kochi. Uni.Ser.A (Math.), 12, pp. 5-13,(1991).
- [5] N. Levine, "Generalized closed sets in topology," Rendiconti del Circolo Matematico di Palermo, vol.19,pp. 89–96, 1970.
- [6] P. E. Long, L. Herrington, "Strongly θ -continuous functions", J. Korean Math. Soc. (8) (1981), 21-28.
- [7] R. M. LATIF, "Characterizations of Mappings in θ-Open Sets" Dhahran 31261 Saudi arabia www.kfupm.edu.sa/math/ E-mail: c-math@kfupm.edu.sa
- [8] Velicko N. V., "H-closed topological spaces", Mat. Sb., 1966, Vol. 70, p: 98–112; English transl., 1968 in Amer. Math. Soc. Transl., Vol. 78, No. 2, p: 102–118.)