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Abstract 
In this study, Four Wave Mixing (FWM) characteristics in photonic crystal fibers are 

investigated. The effect of channel spacing, phase mismatching, and fiber length on FWM 

efficiency have been studied. The variation of idler frequency which obtained by this 

technique with pumping and signal wavelengths has been discussed. The effect of fiber 

dispersion has been taken into account; we obtain that the influence of FWM can be reduced 

by irregular channel spacing. We use three wavelengths in the calculations (580, 780, and 

1040nm) which are the zero dispersion wavelengths, all the results reported in this work are 

simulated using MATLAB 7. 

 الخلاصــــــة:
في هذا البحث, تم دراسة دمج أربع موجات  فاي ايلفاتل الياوافة البةورحاة  مفاث تام دراساة تان فز راد ما  ال ازدد 

الفتصد بف  الموجت ,  عذم تطتبق طور الموجت  و طول الةفف المس خذم عةا  رفات د دماج الموجات   و راذلد تام دراساة 

 قنفة مع رد م  الطول الموجي لمصذر اليخ و لةموجة المن شزد مع ايخذ بنظز ال غفز في تزدد الموجة النتتجة م  هذه ال

(، رد الن تاج المثب ة في 1040nm ,580,780الاع بتر تن فز ال ش ت،تم اس خذام  لا ة اطوال موجفة في الحستبت  و هي )

 ( 7هذا البحث تمت بتس خذام بزنتمج محترتد المتتلاب )

 

 

1. Introduction 
Photonic crystal fibers (PCFs) are fibers in which the light is guided by a periodic array of 

air holes in a glass matrix surrounding the core. While in early work the core was characterized 

by the absence of an air hole, perhaps the most intriguing type of fiber is that for which the 

core consists of an air hole that is larger than the others. In some of the modes of these fibers 

the energy is mostly in the air core, which immediately suggests a number of applications, 

including low-loss propagation, for example at wavelengths where the glass absorbs [1].  

PCFs have two different guiding mechanisms.  The first mechanism uses a defect mode 

in a two-dimensional photonic band gap; the second is analogous to conventional guiding, and 

relies on a form of total internal reflection.   The former utilizes structure which stops 

propagation in any transverse direction, is typically narrowband, but, in principle, allows light 

to propagate in the air core.    The latter achieves a total internal reflection condition because 

the effective index of the cladding is lower that the dielectric core.  This type of PCF, which 

we consider in this paper, does not need the strict periodicity of air holes or the high air filling 

ratio required for the existence of a photonic band gap [2].  

Index-guiding PCFs, also called holey fibers or microstructured optical fibers, possess the 

specially attractive property of great controllability in chromatic dispersion by varying the hole 

diameter and hole-to-hole spacing. Control of chromatic dispersion in PCFs is a very important 

problem for practical applications to optical communication systems, dispersion compensation, 

and nonlinear optics. So far, various PCFs with remarkable dispersion properties as, for 

example, zero dispersion wavelengths shifted to the visible and near-infrared wavelengths, an 

ultra-flattened chromatic dispersion, and a large positive dispersion with a negative slope in the 

1.55 µm wavelength range, have been reported. However, in conventional PCFs, the chromatic 

dispersion is controlled by using air-holes with same diameter in a cladding region. Using a 

conventional design technique, it is difficult to control the dispersion slope in wide wavelength 
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range [3]. Photonic bandgap guiding occurs by surrounding the core of an optical fiber with the 

photonic crystal structure. Wavelengths that fall within the photonic crystal's bandgap cannot 

propagate out and are thus confined to the core. As a result, the core can even have a lower 

index of refraction than the cladding [4]. 

 

 
 

Fig.1: Photonic crystal fiber [2] 

 

2. Four Wave Mixing 
The concept of three electromagnetic fields interacting to produce a fourth field is central 

to the description of all four-wave mixing processes.   

The traditional method of modeling an optical material’s nonlinear response is to expand 

the induced polarization as a power series in the electric field strength 

...... )3()2()1(  EEEEEEP


                                                               (1) 

The expansion coefficients are known as susceptibilities in analogy to classical linear 

electromagnetic theory. The third order nonlinear susceptibility χ
(3)

 is responsible for four-

wave mixing processes. 

When a high-power optical signal is launched into a fiber, the linearity of the optical 

response is lost. One such nonlinear effect, which is due to the third-order electric 

susceptibility, is called the optical Kerr effect. FWM is a type of optical Kerr effect, and occurs 

when light of two or more different wavelengths is launched into a fiber. Generally speaking 

FWM occurs when light of three different wavelengths is launched into a fiber, giving rise to a 

new wave (know as an idler), the wavelength of which does not coincide with any of the 

others. FWM is a kind of optical parametric oscillation [5]. 

Several experimental results on observation of four-wave mixing in photonic crystal 

fibers (PCFs) have been published over the last several years [2]. This new kind of fibers 

represents an ideal system for investigating the optical nonlinearities in fused-silica, because of 

their unique dispersive and nonlinear properties. In particular, the enhanced nonlinearity due to 

the smallness of the effective core area can increase dramatically every nonlinear effect. 

The phase matching conditions for these fibers are found to be quantitatively different 

with respect to ordinary fibers: phase matching in PCFs can be achieved for a long range of 

pump wavelengths, because the strong waveguide contribution to the overall dispersion 

permits a compensation of the material dispersion for a broad window of frequencies. On the 

other hand, the improved nonlinearity can generate a nonlinear coefficient which can further 

improve the compensation in the phase [3]. 

 

3. Theory 
Figure (2) is a schematic diagram that shows four-wave mixing in the frequency domain. 

As can be seen, the light that was there from before launching, sandwiching the two pumping 

waves in the frequency domain, is called the probe light (or signal light). The idler frequency 

fidler may then be determined by 

fidler = fp1 + fp2 - fprobe                                                                                                         (2) 
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Where:  fp1 and fp2 are the pumping light frequencies, and fprobe is the frequency of the probe 

light.This condition is called the frequency phase-matching condition. When the frequencies of 

the two pumping waves are identical, the more specific term "degenerated four-wave mixing" 

(DFWM) is used, and the equation for this case may be written  

fidler = 2fp - fprobe                                                                                                                 (3) 

where:  fp is the frequency of the degenerated pumping wave. 

 

 
 

Fig. (2) Schematic of four-wave mixing in Frequency domain 

γ is the nonlinear coefficient, and is obtained by  
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Where: n2 is the nonlinear refractive index, Aeff is the effective area of the fiber and c is the 

speed of light in a vacuum. 

The term ∆β in (eq.3) represents the phase mismatch of the propagation constant, and 

may be defined as 
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where: D is the chromatic dispersion coefficient. 

To generate FWM efficiently, it is required that pump wavelength coincides with the 

fiber zero-dispersion wavelength.  

 

4. Four Wave Mixing Efficiency 
To  see  the  origin  of  FWM, we  studied  the case  of a multichannel light wave system  

and write the total  optical field A(z,t)  in  the Nonlinear Schrödinger (NLS) equation as  





M

m
mm titzAtzA

1

)exp(),(),(                                                                   (6) 

where Ωm  =ωm-ω0,  ωm,  is the carrier frequency  of  the m
th

  channel,  and  ω0  is  the reference 

carrier frequency that was used  in deriving the NLS  equation. Now substituting eq.(5) in the 

following equation and collect all terms oscillating at a specific frequency. 
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The resulting equation for the rn
th

 channel takes the form 
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 In the last term that takes into account FWM among various channels,  the triple sum is  

restricted to only those frequency combinations  that satisfy the FWM condition ωm  = ωi+ ωj - 

ωk. Fiber losses have been added to this equation for completeness. 

An exact analysis of the FWM process in optical fibers requires a numerical approach. 

However, considerable physical insight can be gained by considering a single FWM term in the 

triple sum in eq. (7) and focusing on the quasi-CW case so that time-derivative terms can be set 

to zero.  If we neglect the phase shifts induced by SPM and XPM, assume that the three 

channels participating in the FWM process remain nearly undepleted, and eliminate the 

remaining β2 term through the transformation [7] 

)2/2/exp( 2
2 zziBA mmm    

 the amplitude Bm,  of  the FWM component is governed by 

)exp(* kzizBBBi
dz

dB
kji

m                                                                                  (8) 

where the linear phase mismatch depends on the dispersion parameter as 

)( 2222
2 jikmk                                                                                      (9)  

Equation (8) can be easily integrated to obtain Bm(z).  The power transferred to the FWM 

component in a fiber of length L is given by 
L

kjiFWMm ePPPLLA   22
)()(                                                                              (10) 

where Pj =  |Aj(0) 
2
| is the power launched  initially  into the  jth channel and ηFWM  is the FWM 

efficiency defined as 
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The FWM efficiency η FWM depends on the channel spacing through the phase mismatch Δk 

given in eq. (9). Using the FWM condition Ωm =Ωi + Ωj - Ωk, this mismatch can also be written 

as 

))(())(( 22 kjkikjkik                                             (12) 

In the case of degenerate FWM for which both pump photons come from the same channel (Ωi 

= Ωj), the phase mismatch is given by Δk= β2 (2πΔυch)
 2

, where Δυch is the channel spacing. 

Figure 3 shows how η FWM varies with Δυch for several values of dispersion parameter D, 

related to β2 as D = (-2πc/λ0
2
) β2, using α= 0.2 dB/km and λ0 = 1.55 μm for a 25km long fiber. 

The FWM efficiency is relatively large for low dispersion fibers even when channel spacing 

exceeds 100 GHz.  In contrast, it nearly vanishes even for Δυch = 50 GHz when D > 2 ps/ (km-

nm). 



Journal of Kerbala University , Vol. 10 No.1 Scientific . 2012 

 

 428 

 
Fig. (3): FWM efficiency plotted as a function of channel spacing for 25km-long fibers with 

different dispersion characteristics. Fiber loss is assumed to be 0.2 dB/km in all cases [7].  

 

Four-wave mixing is relevant in a variety of different situations. Some examples are: 

 It can be involved in strong spectral broadening in fiber amplifiers e.g. for nanosecond 

pulses. For some applications, this effect is made very strong and then called 

supercontinuum generation.  

 The parametric amplification by four-wave mixing can be utilized in fiber-based optical 

parametric amplifiers (OPAs) and oscillators (OPOs). Such fiber-based devices have a 

pump frequency between that of signal and idler.  

 Four-wave mixing can have important deleterious effects in optical fiber 

communications, particularly in the context of wavelength division multiplexing, where 

it can cause cross-talk between different wavelength channels, and/or an imbalance of 

channel powers. One way to suppress this is avoiding equidistant channel spacing.  

 Four-wave mixing is applied for spectroscopy, most commonly in the form of coherent 

anti-Stokes Raman spectroscopy (CARS), where two input waves generate a detected 

signal with slightly higher optical frequency.  

 Four-wave mixing can also be applied for phase conjugation, holographic imaging, and 

optical image processing. 

  

5. Simulation Results  
Simulation results are presented here to characterize degenerate FWM in PCF. In this 

section we will study the effect of channel spacing, phase mismatch, pump wavelength, 

pumping power, fiber length, and fiber dispersion on the degenerate FWM efficiency. 

 

5.1 Effect of Channel Spacing on FWM Efficiency 

In this subsection the effect of channel spacing on FWM was studied with three different 

values of fiber dispersion using eq.(11), as shown in Fig. (4). 

From this figure we note that the efficiency of degenerate FWM is inversely proportional to 

channel spacing, and increasing fiber dispersion will decrease this efficiency. So we can say 

that FWM efficiency is relatively large for low dispersion wavelength, even when channel 

spacing exceeds (100 GHz). In this figure the value of fiber losses is (0.1 dB/km), fiber length 

is (25 km), and results obtained are relatively in a good approximation with that in ref. (7) 
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Fig. (4): Variation of FWM efficiency with channel spacing 

5.2 Effect of Fiber Length on FWM Efficiency 

The effect of fiber length on FWM efficiency was studied here, for three different values 

of phase mismatch, as shown in Fig.(5). From this figure we can note that the efficiency 

decreases with increasing the length of fiber, and when the phase mismatch increase the 

efficiency also decreases since it inversely proportional to both fiber length and mismatch 

values as it quite clear from eq.(11). 
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Fig. (5): Variation of FWM efficiency with fiber length. (a) Δk= -0.3875, (b) ) Δk= -0.6131, 

(c) Δk= -0.9774 
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5.3 Effect of Phase-Mismatch on FWM Efficiency 

 

Figure (6) shows the simulation results presented to assess the effect of phase mismatch on 

FWM efficiency by using eq.(11). The results are displayed for D=1,2, and 5 ps/(nm.km), 

respectively, and assuming L=25 km. The main result drawn from this figure is that fiber 

dispersion introduces pulse broadening which is an increasing function of fiber length and fiber 

dispersion, and this will increase the phase mismatch between waves so, the efficiency will 

decrease. 
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Fig. (6): Variation of FWM efficiency with phase mismatch. 

 

5.4 Effect of Channel Spacing on Phase-Mismatch  

In this subsection, the effect of channel spacing on phase mismatch characteristics is 

discussed for three different values of pumping wavelength and dispersion of fiber. The 

calculations are carried out for fiber dispersion of D=1,2, and 5 ps/(nm.km), assuming the zero 

dispersion wavelengths that the pumping wavelength should coincides with it are λ = 580nm, 

780nm, and 1040nm respectively. From Fig.(7) one can reveal that increasing channel spacing 

will increase the value of mismatch coefficient. While increasing pumping wavelengths will 

decrease the phase mismatch. Hence one should balance between these values to obtain the 

best vale of phase mismatch to enhance FWM efficiency. 
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Fig. (7): Variation of phase mismatch with channel spacing. 

 

 

 

5.5 Effect of Pumping Wavelength on Idler Frequency 

In this subsection we will study the variation of idler frequency which obtained by the 

technique of four wave mixing with pumping wavelengths for two different signal wavelengths 

as shown in Fig.(8). From this figure it is clear that the idler frequency decreases with 

increasing the pump wavelength. When signal wavelength increases this frequency will 

increase, the results are obtained using eq.(3).  This is because the pumping frequency should 

be near the zero dispersion wavelengths.  
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Fig. (7): Variation of idler frequency with pumping wavelength. 

 

 

6. Conclusions 

 
From this study we obtain that FWM is dependent on signal power, the effective fiber 

area, phase mismatching, channel spacing, fiber length and fiber type. FWM is therefore an 

issue of system design and type of fiber used. Different wavelengths with the same propagation 

speed – or group velocity – traveling at a constant phase over a long period of time, increase 

the effect of FWM. The effects of FWM are greatest near the zero dispersion point of the fiber, 

a certain amount of chromatic dispersion leads to different group velocities resulting in a 

reduction of FWM. The influence of FWM can be reduced by irregular channel spacing. 
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