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 الملخص

تطبيا  تتااا ذ ذا تسات    T : A ⟶B، اذا كاا   على انوالمسألة المفتوحة التالية تنص 
 تسااااتم ق تل ا يااااا    ن اااا  Tشاااابو  ساااايطة، ىااااذ ا   B حياااا  ا   Bو A ثياااان جاااايا ابااااو   انااااا  

 [1] ) 
 -كالآتي: هاعطي حلا از يا للمسألة اعلا [3]في 

تسااتم   rBشاابو  ساايطة، نلاان ال طاا  الطيفااي  Bابااو  ف يجيااي  حياا  ا   Bو A الااي 
تطبيا  تتااا ذ ذا  T : A ⟶Bتساتم  عناا اللاف ذ اذا كاا   rAونلن ال طا  الطيفاي  Bعلى 

 تستم ق تل ا ياذ T، عنا ذ  تست   كثين
 في ىذا البح  ج ىنا النتيجة التالية:

T : Aاذا كا        
+
 ⟶ B

Aااو ن   اناا   –تطبي  تتاا ذ ذا تست   كثيان جايا اباو  +
 و +

B
B حياا  ا   +

Bتسااتم  علااى  +rB، نلاان ال طاا  الطيفااي  شاابو  ساايطة  +
ونلاان ال طاا   +

 ذتستم ق تل ا يا   Tتستم  عنا اللف ، عنا ذ  +rAالطيفي 
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ABSTRACT 

The following open problem stated that, if T: A⟶B is a dense range 

homomorphism between Banach algebras A and B such that B is semi-

simple. Is T automatically continuous? (see [1]). 

In [3] given a partial solution of the above problem as follows: 

Let A and B be Fréchet algebras such that B is semi simple, the 

spectral radius rB is continuous on B and the spectral radius rA is 

continuous at zero. If T : A ⟶ B is a dense range homomorphism, then 

T is automatically continuous. 

In this paper, we prove the following result : 

If T : A
+
 ⟶ B

+
 is a dense range homomorphism between Jordan – 

Banach algebras A
+
 and B

+
 such that B

+
 is semi simple, the spectral  

radius rB+ is continuous on B
+
 and the spectral rA+ is continuous  

at zero, then T is automatically continuous. 

 

1. Introduction : 

If A and B are Banach algebras, B is semi simple and  

T: A ⟶ B is a dense range homomorphism, then the continuity of T is a  

long – standing open problem. 

This is perhaps the most interesting open problem remains in  

automatic continuity theory for Banach algebras. (see [1]). 

We recall that from [2], the radical of an algebra A, denoted by  

rad  A, is the intersection of all maximal left (right) ideals in A. The  

algebra A is called semi simple if rad A= {0}. In [3], for the algebra A  

the spectrum of an element x ∈  A is the set of all   ∈   such that  

 1- x is not invertible in A and is  denoted by Sp (x) (or by SpA (x) ). 

Thus 

Sp (x) = {    ∈   :   1 – x ∉ Inv (A) }. 

Also let A be Banach algebra, then the spectral radius of x (with  

respect to A ) is denoted by r (x) (or rA (x) ) and is defined by the  

formula  

r (x) = Sup {     :   ∈ Sp (x) }. 

     It is known that for any algebra A we have 

rad A = { x ∈ A : rA (x y) = 0  for every y ∈ A  }. 

From [6], for X, Y normed spaces and T a linear mapping from X  

into Y, then the separating subspace S (T) of T is defined as follows : 

S (T) = { y ∈ Y : ∃ {xn} ⊆ X, xn ⟶ 0, Txn ⟶ y,    n ∈ N }. 

We recall that a complex Jordan algebra A is a non – associative and  

the product satisfies the identities a b = b a and (a b) a
2
 = a(b a

2
), for  

all a, b in A. A unital Jordan – Banach algebra is a Jordan algebra with  

a complete norm satisfying ||x y||    ||x|| ||y||, for x, y ∈ A, and  

||1|| = 1. (see [4] ). The well – known example of Jordan – Banach  
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algebra is that if we take any Banach algebra A, then A
+
 is a Jordan –  

Banach algebra with a product defined as follows : 

a.b = 
 

 
 (ab+ba)          a,b ∈ A 

So (A
+
,.) is Jordan – Banach algebra over a field F of characteri - 

stic   2. (see [5]). 

In this paper, we prove that : 

Let A
+
 and B

+
 be Jordan – Banach algebras such that B

+
 is semi-  

simple, the spectral radius rB+ is continuous on B
+
 and the spectral  

radius rA+ is continuous at zero. If T: A
+
 ⟶ B

+
 is a dense range 

homomorphism, then T is automatically continuous. 

This is in fact an extension of the open problem from the associative 

case to the more general situation of Jordan – Banach algebras. 

 

2. Fundamental Results : 

In this section we prove our fundamental following results 

 

Theorem 2.1 : 

Let A
+
 and B

+
 be Jordan – Banach algebras and T: A

+⟶ B
+
 a  

dense range homomorphism. Then the separating subspace S (T) is a  

closed ideal of B
+
. 

 

Proof : 

Clearly S (T) is a closed linear subspace of B+. Let y ∈ S (T) and  

z ∈ B
+.

 There exists a sequence {xn} in A
+
 such that xn ⟶ 0 and  

Txn ⟶ y. Moreover, z = Tx for some x ∈ A
+
. Hence if x xn = xn x then  

x. xn ⟶ 0 imply that 
 

 
 (x xn + xn x) ⟶ 0 and this imply that x xn ⟶ 0  

 

and T (x. xn) = 
 

 
  T (x xn + xn x). 

             = 
 

 
  (Tx Txn + Txn Tx). 

             = Tx Txn ⟶ z y and so zy ∈ S (T). 

 

Similarly yz ∈ S (T). Therefore, S (T) is an ideal in B
+
. 

 

Now, B
+
 = T (A

+
), for y ∈ S (T) and z ∈ B+ = T (A

+
), there exist 

sequences {xn} in A
+
 and {zn} in T (A

+
) such that xn ⟶ 0 in A

+
, 

 zn ⟶ z and Txn ⟶ y in B
+
. Since y zn, zn y ∈ S (T) and  

y zn ⟶  y z, zn y ⟶ z y it follows that y z, z y ∈ S (T) = S (T). 

 

Theorem 2.2 : 

Let A
+
 and B

+
 be Jordan – Banach algebras such that B

+
 is semi-  

simple, the spectral radius rB+ is continuous on B+ and the spectral  
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radius rA+ is continuous at zero. If T : A
+
 ⟶ B

+
 is a dense range 

homomorphism, then T is automatically continuous. 

 

Proof : 

If  xy = yx for all x and y in A
+
 then 

T (x. y) = T (y. x) = 
 

 
  T (x y + y x) 

                   = 
 

 
  (Tx Ty + Ty Tx) 

                   = Tx Ty 

                   = Ty Tx 

 

If x is an arbitrary quasi – Invertible element of A
+
, then there exists  

an element y in A
+
 such that xy = yx = x+y. It follows that 

 

TxTy = TyTx = Tx+Ty 

 

That is Ty is Quasi – invertible element of Tx. Hence, T reduces the 

spectrum of elements. so, 

rB+ (Tx) rA+ (x) 

For every y ∈ S ( T ) there exists a sequence { xn } in A
+
 such that  

xn ⟶ 0 in A
+
 and Txn ⟶ y in B

+
. Since rB+ (Tx)   rA+ (x) for every x ∈ A

+
 

and rA+ is continuous by assumption, we have rA+ (xn) ⟶ 0, then  

rB+ (Txn) ⟶ 0. On the other hand, again by continuity of rB+
 
we  

have rB+ (Txn) ⟶ rB+ (y). Hence 

rB+ (y) = 0 ……. (1) 

Since T : A
+
 ⟶ B

+
 is a dense range homomorphism, by Theorem  

(2.1) S (T) is an ideal in B+. Thus for every z ∈ B
+
, y z ∈ S (T). By (1)  

we get rB+ (y z) = 0. 

Since rad B
 +

 = {y ∈ B
+
 : rB+ (y z) = 0 for every z ∈ B

+
}, therefore  

y ∈ rad B
+.

 So S (T) ⊆ rad B
+.

 Since B
+
 is semi-simple, we have  

S (T) = {0} and so T is continuous by the closed graph theorem. 
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