Volume 14, Issue 4, December 2019, pp. (1-7) ISSN: 1992-0849 (Print), 2616-6801 (Online)

On Supra α – Connectedness in Supra Topological Spaces

Ghufran A. Abbas¹, Taha H. Jasim²

^{1,2}Department of Mathematics, College of Computer Science and Mathematics, Tikrit University, Tikrit, Iraq.

¹ghufranabas@gmail.com, ²tahahameed91@gmail.com

Abstract

The purpose of this paper is to introduce the concept called supra α - connectedness in supra topological spaces and study some of the properties .

Keywords: supra topological space, supra α - open set, supra α - connected.

DOI: http://doi.org/10.32894/kujss.2019.14.4.1

حول الترابط الفوقي من النمط lpha في الفضاءات التبولوجية الفوقية

غفران على عباس ، طه حميد جاسم

^{2.1} قسم الرباضيات، كلية علوم الحاسوب والرباضيات، جامعة تكربت، تكربت، العراق.

¹ghufranabas@gmail.com, ²tahahameed91@gmail.com

الملخص

الغرض من هذا البحث هو تقديم مفهوم الترابط الفوقي من النمط α في الفضاء التبولوجي الفوقي ودرسنا بعض الخصائص.

الكلمات الدالة: الفضاء التبولوجي الوفقي، المجموعة المفتوحة الفوقية من النمط α ، الترابط الفوقي من النمط α .

DOI: http://doi.org/10.32894/kujss.2019.14.4.1

Volume 14, Issue 4, December 2019, pp. (1-7) ISSN: 1992-0849 (Print), 2616-6801 (Online)

1. Introduction:

The concept of supra topology was introduced by Mashhour AS et al. [1] in the year 1983. Also they studied about S- continuous functions and S^* - continuous functions. In 2008, Devi R et al [2] introduced the concept of supra α - open sets and supra α - continuous maps. Ghufran A and Taha H [3] introduced the concept of supra α - compactness in supra topological spaces.

In this paper, we introduces the concept of supra α - connectedness and investigate about their relationships using the concept of continuity.

2. Preliminaries:

The aim of this paper is to study what is called the Supra α - connectedness as well as the effect of some kinds of mapping on its. So we will need the following results and definitions.

Definition 2.1.[1]. Let X be a non-empty set. Let $\mu \subseteq P(X) = \{A : A \subseteq X\}$. Then μ is called a supra topology on X if $\emptyset \in \mu, X \in \mu$. If $Y_{\lambda} \in \mu$ for every $\lambda \in \Lambda$ where Λ is an arbitrary set, then $\bigcup_{\lambda \in \Lambda} Y_{\lambda} \in \mu$. The pair (X, μ) is called a supra topological space. Each element $A \in \mu$ is called a supra open set in (X, μ) . The complement of A is denoted by $A^c = X - A$, which is called a supra closed set in (X, μ) .

Definition 2.2.[1]. Let (X, μ) be a supra topological space. The supra closure of a set A which is defined by supra– $cl(A) = \cap \{B \subseteq X : B \text{ is a supra closed set in } X \text{ such that } A \subseteq B\}.$

The supra interior of a set A is denoted by supra—Int(A) and is defined by supra— $Int(A) = \bigcup \{U \subseteq X : U \text{ is a supra open set in } X \text{ such that } U \subseteq A \}.$

Definition 2.3.[1]. Let (X, \mathcal{T}) be a topological space and μ be a supra topology on X. We call μ a supra topology associated with \mathcal{T} if $\mathcal{T} \subseteq$.

Definition 2.4.[2]. Let (X, μ) be a supra topological space. A subset A of X is called a supra α - open set in X if $A \subseteq \text{supra int} \left(\text{supra int}(A) \right)$ if A is supra open set. The complement of supra α - open set is called a supra α - closed set.

Definition 2.5.[2]. Let (X, μ) be a supra topological space. The supra α - closure of a set A is denoted by supra- α - cl(A), and is defined as follows:

Volume 14, Issue 4, December 2019, pp. (1-7) ISSN: 1992-0849 (Print), 2616-6801 (Online)

Supra− α − $cl(A) = \cap \{B \subseteq X : B \text{ is supra } \alpha$ − closed set in X such that $A \subseteq B\}$.

The supra α - interior of a set A is denoted by supra- α - Int(A), and is defined by supra- α - $Int(A) = \cup \{U \subseteq X : U \text{ is supra } \alpha$ - open set in X such that $U \subseteq A\}$. Clearly it is obvious that supra- α - cl(A) is a supra α - closed set. In the same way, supra- α - Int(A) is supra α - open set.

Throughout this paper, (X, \mathcal{T}) and (Y, \mathcal{T}^*) will denoted topological spaces by the researchers. Where μ and μ^* will be their associated supra topologies with \mathcal{T} and \mathcal{T}^* respectively is that $\mathcal{T} \subseteq \mu$ and $\mathcal{T}^* \subseteq \mu^*$.

Theorem 2.6.[2]. Let (X, μ) be a supra topological space. Then every supra open set in X is supra α - open set in X.

The converse of the theorem (2.6) need not be true as shown by the following example.

Example 2.7.[2]. Suppose $X = \{a, b, c\}$ and have the supra topology $\mu = \{\varphi, X, \{a\}\}$. The set $\{a, b\} \notin \mu$, so the set $\{a, b\}$ is not supra open set in (X, μ) . Now since it clearly follows that supra- $Int[supra-cl[supra-Int(\{a,b\})]] =$ supra- $Int[supra-cl(\{a\})] =$ supra- Int[X] = X Therefore it follows that $\{a, b\}$ is a supra α -open set in $\{X, \mu\}$.

Definition 2.8.[2]. A function $f:(X,\mu) \to (Y,\mu^*)$ is called a supra α - continuous function if the inverse image of each supra open set in Y is a supra α - open set in X.

Definition 2.9 [3] A function $f:(X,\mu) \to (Y,\mu^*)$ is called i- supra α - continuous if $f^{-1}(V)$ of each supra α - open subset of Y is supra α - open subset of X.

Definition 2.10 [3] A function $f:(X,\mu) \to (Y,\mu^*)$ is called strongly supra α - continuous if the inverse image of every supra α - open subset of Y is supra open in X.

Definition 2.11 [3] A function $f:(X,\mu) \to (Y,\mu^*)$ is called perfectly supra α - continuous if the inverse image of every supra α - open subset of Y is both supra open and supra closed in X.

Definition 2.12 [3] A function $f:(X,\mu) \to (Y,\mu^*)$ is called totally supra α - continuous if the inverse image of every supra open set in Y is both supra α - closed and supra α - open in X.

Volume 14, Issue 4, December 2019, pp. (1-7) ISSN: 1992-0849 (Print), 2616-6801 (Online)

3. Supra α - Connected:

Definition 3.1.[4]. A supra topological space (X, μ) is said to be supra connected if X cannot be written as a disjoint union of two non- empty supra open subsets of X. A subset of (X, μ) is supra connected if it supra connected a subspace.

Definition 3.2 A supra topological space (X, μ) is said to be supra α – connected if X cannot be written as disjoint union of two non-empty supra α – open sets. A subset of (X, μ) is supra α – connected if it is supra α – connected as subspace.

Theorem 3.3

Every supra connected is supra α - connected space.

Proof: Let X be supra connected. To show that X is supra α - connected. Since X is supra connected. Then $X \neq A \cup B$ where A and B are disjoint non-empty supra open sets. Then by Theorem (2.6), we have A and B are disjoint non-empty supra α - open sets. Thus X is supra α - connected.

Theorem 3.4

If $f:(X,\mu) \to (Y,\mu^*)$ be a surjective and supra α - continuous mapping. Let X be supra α -connected, then Y is supra connected.

Proof:

Suppose Y is not supra connected.

Let $Y = A \cup B$, where A and B are disjoint non-empty supra open sets in Y. Since f is supra α - continuous surjective map, then $X = f^{-1}(A) \cup f^{-1}(B)$, where $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint non-empty supra α - open sets in X. This contradicts the fact that X is supra α - connected. Hence Y is supra connected.

Theorem 3.5

Let $f:(X,\mu) \to (Y,\mu^*)$ be a surjective and strongly supra α - continuous mapping. Let X be supra connected space. Then Y is supra α - connected space.

Proof: Suppose Y is not supra α -connected. Let $Y = A \cup B$, where A and B are disjoint non-empty supra α -open sets in Y.

Volume 14, Issue 4, December 2019, pp. (1-7) ISSN: 1992-0849 (Print), 2616-6801 (Online)

Since f is strongly supra α - continuous surjective map, then $X = f^{-1}(A) \cup f^{-1}(B)$, where $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint non- empty supra open sets in X. This contradicts the fact that X is supra connected. Hence Y is supra α - connected.

Theorem 3.6

If $f:(X,\mu) \to (Y,\mu^*)$ be a surjective and perfectly supra α - continuous map and X is supra connected, then Y is supra α - connected.

Proof: Suppose Y is not supra α -connected. Let $Y = A \cup B$, where A and B are disjoint non-empty supra α - open sets in Y. Since f is perfectly supra α -continuous surjective map, then $X = f^{-1}(A) \cup f^{-1}(B)$, where $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint non-empty supra open sets and supra closed set in X. This contradicts the fact that X is supra connected. Hence Y is supra α -connected.

Theorem 3.7

If $f:(X,\mu) \to (Y,\mu^*)$ be a surjective and i-supra α -continuous map and X is supra α -connected, then Y is supra α -connected.

Proof: Suppose Y is not supra α - connected. Let $Y = A \cup B$, where A and B are disjoint non- empty supra α - open sets in Y. Since f is i- supra α - continuous surjective map, then $X = f^{-1}(A) \cup f^{-1}(B)$, where $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint non-empty supra α - open sets in X. This contradicts the fact that X is supra α - connected. Hence Y is supra α - connected.

Theorem 3.8

If $f: (X, \mu) \to (Y, \mu^*)$ be a surjective and totally supra α - continuous map and X is supra α - connected, then Y is supra connected.

Proof: Suppose Y is not supra connected. Let $Y = A \cup B$, where A and B are disjoint non- empty supra open sets in Y. Since every supra open set is supra α - open set, A and B are disjoint non- empty supra α - open set in Y. Since f is totally supra α - continuous surjective map, $X = f^{-1}(A) \cup f^{-1}(B)$, where $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint non-

Volume 14, Issue 4, December 2019, pp. (1-7) ISSN: 1992-0849 (Print), 2616-6801 (Online)

empty is both supra α - open and supra α - closed in X. This contradicts the fact that X is supra α - connected. Hence Y is supra connected .

Theorem 3.9

Let C and D be subsets of a supra topological space X. Assume that C is supra α -connected and $C \subseteq D$. Further assume that U and V form a separation of D in X. Then either $C \subseteq U$ or $C \subseteq V$.

Proof: Suppose that neither $C \subset U$ nor $C \subset V$. Then $U \cap C \neq \emptyset$ and $V \cap C \neq \emptyset$. It follows that U and V form a separation of C in X, contradicting that C is supra α -connected. Therefore either $C \subset U$ or $C \subset V$.

Theorem 3.10

Let C be a supra α - connected subspace in X, and assume that $C \subseteq A \subseteq \text{supra } \alpha$ - cl(C), then A is also supra α - connected.

Proof: Suppose that A is not supra α — connected in X, and let U and V form a separation of A in X. Then by 3.9, either $C \subset U$ or $C \subset V$. We may assume, without loss of generality, that $C \subset U$. Hence $C \cap V = \varphi$. But, since U and V form a separation of A in X, it follows that $A \cap V \neq \varphi$. Pick $x \in A \cap V$. Now, $x \in A$ and $A \subset \text{supra } \alpha - cl(C)$ imply $x \in \text{supra } \alpha - cl(C)$. But $x \in V$, an open set in X which is disjoint from C. So X cannot be in the supra α — closure of C, yielding a contradiction. Thus, it follows that A is supra α — connected.

References:

- [1] Mashhour A and, Allam A and Mahmoud F and Khedr F," On supra topological spaces", Indian J. pure and Appl. Math, 4(14), 502 (1983).
- [2] Devi R. and Sampathkumar S and Caldas M, "On supra α open sets and $S\alpha$ continuous functions", General Mathematics, 16(2),77 (2008).
- [3] Ghufran A. Abbas and Taha H. Jasim, " On supra a- compactness in supra topological spaces", Tikrit Journal of Pure Sciences, 24(2), 91 (2019).

Volume 14, Issue 4, December 2019, pp. (1-7) ISSN: 1992-0849 (Print), 2616-6801 (Online)

- [4] Latif R, "Supra-I-compactness and supra-I-connectedness", Journal of Mathematics Trends and Technology(IJMTT), 35(7), 525 (2018).
- [5] Taha H. Jasim. "*On supra compactness in supra topological spaces*", Tikrit Journal of Pure Sciences, 14(3), 57 (2009).
- [6] Taha H. Jasim and Zaben R, "*On ideal supra topological space*", Tikrit Journal of Pure Science, 20(4), 152 (2015).
- [7] Taha H. Jasim and Rasheed R and Amen S, "3a\ quasi $M \varphi ii$ -continuous functions in bi- Supra topological spaces", Kirkuk University Journal / Scientific Studies (KUJSS), 12(4), 11 (2017).
- [8] Taha H. Jasim and Abdulqader Z and Mousa H, "On bi- intuitionstic topological space", Tikrit Journal of Pure Science, 20(4), 131 (2015).
- [9] Taha H. Jasim, and Shihab A and Hameed S, "Anew Types of Contra in Bi-Supra Topological Space", Tikrit Journal of Pure Science, 20(4), 170 (2015).
- [10] Taha H. Jasim, Rasheed RO, " On strongly faintly $M \varphi i$ -continuous functions in Bi-Supra Topological Space", Tikrit Journal of Pure Science, 20(4), 161 (2015).
- [11] Taha H. Jasim, "Strongly irresolute precontinuous functions in intuitionistic fuzzy special Topological spaces", Journal of al-anbar university for pure science, 3(1), 126 (2009).