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Introduction

Let Z(t), t>=0, be a stochastic process where M=(0,1,2,3,4,..., 1), i>1, is the finite set of states on which Z(t) is defined.
Let zero be an absorbing state and let 1,2,3,4,...., 1 be transient states. State zero could represent retirement in an
employment example or death in a clinical example. Suppose that a random sample (L) of realizations z,(t) representing
(H) independent individuals is selected, (0€L). Ideally, to infer properties of Z(t), each z,(t) should be observed
continuously. However, this is likely to be impossible or too expensive. Commonly, z,(t) is observed at discrete times
<t<tz<...... <t,, not necessarily identical for a time all (o), so that the transition between observations is missed and the
length of time spent in the states occupied at ty, t,, t;__t, are not known precisely. Thus various standard nonparametric
and semi-parametric analyses of the data cannot be performed (Daoud et al. (2022), Aalen et al., 1980), to follow a fully
parametric approach, it is necessary to specify the conditional probability of a state being occupied at time t;, given the
state occupied at t;.1, j=2,3,4,....n. these are found by solving the forward Kolmogorov equations associated with the model
chosen to represent the underlying processes. For simplicity time homogenous makove model are often selected at least as
a first approximation (Emily et al.,2020), Alamu et al., 2022).

Two test stats are presented to examine the adequacy of this class of models. The first assesses the overall quality goodness
of fit, while the second tests local departures toward time in- homogeneity. If the time intervals between adjacent
observations are the same for all individuals and are constant, the adequacy of these models can be assessed by comparing
the transition frequencies observed at each observation time. However, in many applications, follow-up occurs depending

113


http://www.stats.mosuljournals.com/
mailto:mahdi.raza@epu.edu.iq
https://stats.mosuljournals.com/article_181217.html
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-7760-4043
https://orcid.org/0000-0002-7760-4043
https://orcid.org/0000-0002-7760-4043

Iragi Journal of Statistical Sciences, Vol. 20, No. 2, 2023, Pp (113-121)

on availability, for example, at times of medical examinations or a survey interview. The tests proposed in this paper do not
need fixed intervals of time between observations. The second test does not require the same periods for each individual.
Hence the presented procedure is useful when the structure of basic continuous temporal processes is inferred from these
data (NHS Choices 2011), Othman et al., 2011)

1-Methodology:

Believe the realizations zo(t), (0€eL) and (t> 0) of the stochastic process Z(t). Denote by

Prs(tj-1, tj )=Pr[zo(tj )=s]| zo(tj-1 )=r 1)
The provisional probability of state (s) being engaged at time( ¢; )given that state (r) was occupied at time tj-1, for j= 2,
3, N

For continuous time processes,

let
. b[zo(t+p)=s|zo(t)=7]
Dy (t) — llmﬁ—»o- problzo ; s|zo r (2)

denote the transition rate from state (R) to state s at time (t) (Lawless, J.F 2003), Bedford, T. and Cook, R.2009). A
stochastic process defined on the state space (S) is fully specified when all p,(t) are defined. For a time-homogeneous
Markov process the transition rates do not vary with time, i.e. p(t)=Hs, say, and the conditional probabilities p,.s(t;_4, t;)
are functions of x;= tj-t;.1, say, and not of t;; or t; (Cox and Miller (1965). Denote such time-homogeneous conditional
probabilities by g,-s(x;). For the special case S = (0, 1, 2),

qro (xj) =1-qn (XJ) — Ay (XJ) (3)
qr1 (xj) = Z?n:l amexp (_Amxj) (4)
qr2 (xj) = Z?n:l bmexp (_Amxj) (5)

Where r=1,2 and , for m, 1=1,2; I#m,

Hm = {=(Am — 121 — Wx)}prob [r = 1] + py prob[r = 2]
/11' - Am
Hi2
h, =—— 2
" Am — Ha1 — Hao Hm

The parameters in the exponential function, —1, < —A,, are the roots of the quadratic equation
s% + 5(a10 + a1z + z1 + az0) + (A12a20 + A10az1 + A1005) = 0 (69)

As o (X;) tends to 1 as x;—oo, the process is absorbed in state (0). The extension of results to more than two transition
states is straightforward (Cox and Miller Heterogeneity among the zo(t) may be taken into account by defining the
transition

rates (1) as functions of some explanatory variables, for example, by writing (Cox et al.,. 1984)

Hrs (Vo) = ﬂrsexp(ezsyw) (6b)

where 3, = 0 and Yy, is the vector of explanatory variables. If part of this individual heterogeneity is not recognised, and
therefore omitted in the specification of equation (6b), the transition rates will appear to be negatively correlated with time
even if the process is truly time homogeneous (Tony Lancaster and Stephen Nickell, 1980; Clayton and Cuzick, 1985).

2-Markove Chain Model for tests for Departures from Time Homogeneous

2.1 Goodness of Fit

Let( H,; )be the number of the realizations zo(t), ©€L, in state (r) at time t, and let Q(x;) be the number of realisations
which have had in state r at time t; and in state s at tj,; = t+x;. For( H,; ) and Q,.(X;) to be observed all realisations zo(t)
must be observed at t; and t;,;. Assuming that a time homogeneous Markov process is suitable, the conditional predictable
value of Q,s(x;) is

Ers(%;) = Hrjrs(%)-
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Denote by grs(xj) the maximum likelihood estimate of o(x;) which is obtained, as in equations (3,4 and 5), by considering
all spaced by( xj) Then E,.¢(Xj) is efficiently estimated by

Ers(x;) = Hyjqrs(x)). )
A goodness-of-fit statistic for the time-homogeneous Markov specification of the process has been defined as the sum of
the chi-squared goodness-of-fit statistics defined on each of the n-1 disjoint intervals (t1, t2), (2, t3),..., (tn-1 ,t,,),

Qrs(xj)_ﬁrs(xj)]AZ} ) (8)

Chi — Squ. (x*) = ¥; {Zns[ Brs(x))

Expression (8) would had have to obtain if all possible transitions among the states in (S) were treated as outcomes of a
multinomial distribution. The limiting chi-square distribution of( *2 )is degrees of freedom equal to the number of
independent cells in the multinomial distribution, namely K2(n-1), minus the number of parameters in q,¢(xj). While, the
transition rates were the same for all the realisations zo(t), as in equations (3,4 and 5), the parameters were K2 and the
number of degrees of freedom is therefore K2(n-2)

2.2. Inhomogeneity of time

Let u = {u,} r, SE S, is the vector of transition rates specified a time-homogeneous Markov model. Departures from this
model in the direction of time-inhomogeneity will imply that at least one of the elements in( p )varies with time, where
time has measured from the origin of the process. For simplicity, consider the case of just one transition rate being weakly
time dependent. Let p,,(t) be such a rate and p,, its value at the origin of the process t = 0. Assuming that it was linear
sable over the time interval of interest we can write for small(e),

p12()= piot et )

A local test for time-inhomogeneity of the transition rate from state 1 to state 2 is then equivalent to a test for €= 0 in
equation (9).

As before, the conditional probabilities associated with this new specification of the Markov model can be found by

solving the forward Kolmogorov equations. An approximate solution is, for r, s€ M (see Appendix A for the explicit
solutions when i=2),

pm(tf—l' tj) = qTS(xi) + Sum(ti—l' tj) +0(e?) (10)

where u,s(tj_q,t;) is the first derivative of p,s(t;_y,t;) with respect to & evaluated at e = 0. The contribution to the
likelihood function of the n observations on yw(t) is

Goprob[z,(t,) = iy 11, prob [z,(t;) = ijlz,(tj—1) = ij-1] (11)
where i, i,, ... i,, are the states occupied by z, () at the times t;, t,, ts, ..., t,. Denoting by G, the contribution associated a

time-homogeneous specification of the model, we find, under regularity conditions (Crowder, M. 2012), Crowder.and
Sweeting, 1991),

et .uij_l(tj—l’tj)
G, = Gy [1 +e); —qi,-_l,i,- &) (12)
The score function associated with the right-hand side of equation (12) is
Uj. i .(t]'_l,t]':(u)
- o Y il R
U.(0) [Z] Aij_y,i;(%j5w) ] (13)
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Where o is included in the notation to identify the contribution of each realization zo(t). This is valid only under the
assumption that equation (9) is a proper approximation for P12(t) and e is close to 0. A local test statistic for e=0 in
equation (9) can be defined as

T, = sign{U. (0)}[U. (0)(i%*|o—o) /%] (14)
where (i%%].-o) is the element of the inverse information matrix corresponding to & which is computed at the maximum
likelihood values (10) when £=0. Thus (i¥¥)~! is the variance of the score function statistic (13) when £=0. Assuming

asymptotic normality of equation (13), the test statistic has asymptotic standard normal distribution. The sign in equation
(14) indicates whether p,,(t) decreases or increases with time (Barlow, R. and Proschan, F 1975).

3. Kidney Disease Data

Table 1 in appendix B, provides information on 40 individuals with kidney illness who received from Rizgari at the Erbil
Hospital. Their capacity or inability to walk unassisted was noted before treatment started as well as at 3 months, 6 months,
one year, and two years. Assume that states 0, 1, and 2 correspond to being dead, incapable of walking, and ambulant,
respectively. Consequently, the information can be seen as discrete time observations of realizations produced by a time
continuous process specified on three states. Also utilized for data analysis are the Statistics Package Social Sciences (spss)
and easy fit. We fitted a time homogeneous Markov model with the identical transition rates (urs) for all patients as a first
approximation to this process.

Table 2 shows the maximum likelihood estimates of these parameters. As p20 has have small compared with its standard
error-as well as in absolute value-the transitions from the ambulatory state to death were be likely to occur indirectly, via
unobserved state in the non-ambulatory state. A model with p20 constrained to be equal to 0 is fitted to test this hypothesis,
showing that there is no significant gain by estimating prs ; the likelihood ratio test statistic is equal to 0.027. Noting that
the reciprocal of ors =1/ urs , represents the expected time spent in state r before a transition to state s occurs, the estimate
was values of the other parameters show the following. On average, transitions out of the non-ambulatory state towards the
ambulatory state occur after a fairly long spell ( = 43 weeks; standard error, 14.5), while transitions out of the ambulatory
state back to the non-ambulatory state occur after a fairly short spent in the non-ambulatory state before death ( =25 weeks;
standard error, 1.1).

Table2 :Using Markov Model by (MLE) of the time homogeneous: full and restricted specification

States Full Specification Restricted Specification
R S rs rs rs rs
1 0 0.173 4.9 0.2 4.9
(0.08) (2.1) (0.040) (1.1)
1 5 0.039 24.2 0.041 24
(0.037) (22.9) (0.029) (17.5)
5 0 0.005 187.9
(0.027) (1022.2)
) 1 0.110 10 0.110 8.9
(0.021) (2.3) (0.019) (1.9
Maximum Likelihood -110.2 -111.54

3—,5 =1/ lzrs equal |83-rs / 6}1,5|

Standard errors are given in parentheses: the standard error of times the standard error of

rs
The overall equation of goodness-of-fit statistic 8, however, shows evidence against this time homogeneous specification
of the model, X2 = 29.04, 12 d.f.; only the observations up to 50 weeks were used in computing the test because of
sparseness of data in the following weeks. Indeed, the transitions from state 2 to state 1 are observed more frequently at the
12 weeks examinations than at the following examinations. The equation (14) computed to test whether the transition rate
from state 2 to state 1 changes as time increases takes a negative, although not significant, value; T = -1.189. This could be
an indication of truly time dependence as well as a consequence of some heterogeneity in the individual transition rates.
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To explore whether this is feasible we use information about the pretreatment status of each patient, treating it as a proxy
for individual frailty (James et al., 1979). Let (z) take value 1 if the patient was in a non-ambulatory status, value 0

otherwise, and

Table3: MLE of the time homogeneous Markov model with transition rates depending on y

State érs érs State occupied before treatment
R s sate1 s O sae2 As O
1 0 (8:828) (03%1102 0.180 5.734 0.089 9.998
1 2 (8:8‘28) (f3351§) 0.028 28.989 0.052 20.021
2 0 (8:8% (;7723{; 0.000 0.000 0.051 20.283
2 1 ((2)%5& (81231) 0.998 10.012 0.060 16.989
MLE 1109.97

Table 4:0bserved and fitted frequencies of transition between states: time homogenous Markov specification.

. ij+1 ij+1
) . Observed (0) Fitted Observed (1) Fitted Observed (2) Fitted
Subset of patents in state 1 before treatment began
1 1 8 4.289 1 0.765 2 5.897
2 0 0.445 3 7.497 5 2.031
5 1 2 3.198 2 0.487 6 3.889
2 0 0.199 2 3.220 1 0.101
3 1 5 3.679 1 0.469 2 1.679
2 1 0.678 2 2.287 1 1.221
4 1 3 2.369 1 0.198 0 0.301
2 2 1.297 3 1.023 0 0.698
Subset of patents in state 2 before treatment began
1 1 0 0 0 0 0 0
2 1 (2.1980) 12 (10.968) 3 (1.789)
5 1 0 0.489 2 0.302 1 2.298
2 1 (1.568) 9 (8.032) 1 (1.301)
3 1 1 0.559 0 0.298 2 1.089
2 6 (3.013) 5 (5.497) 0 (1.601)
4 1 3 0.989 0 0.298 0 0.669
2 2 2.602 2 (1.558) 1 (0.779)

Specify a time homogeneous Markov model with transition rates depending on y as in equation (6). Table 3 reports the
values of the estimated parameters. Significant differences in the transition rates of the two groups of patients surface:
those who were able to walk unaided before treatment began have, on average, state spells in state 2 before a transition to
state 1 and in state 1 before a transition to death, almost twice as long as the others (121 is 16.989 weeks and 10.012 weeks
and /110 is 9.998 weeks and 5.734 weeks. The overall goodness of fit of this specification is satisfactory (Table 4). The test
statistic 8, soft a value of 36.32, however, should not be formally compared with a chi-squared statistic distribution with 24
degrees of freedom since the data in the table are very sparse.
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A key feature of this example is that data are available only at a few separate unequally spaced time points. It illustrates
how the procedure may be useful whenever it is required to recover information about the structure of a continuous time
process from such observations.

Appendix A:

The expressions in equation 10 are derived as follows, for M =(0,1,2), Suppose that at time t state r is occupied, z,(t) =
r. Thus the Kolmogorov forward equations is for T > t,r = 1,2 (Crowder 2012), Lemke. 2016).

pri(t D)= [0 + p12(D]pr1 (6, T) + P21 pr2 (8, T) al

Pr2(tT)=p12(T)pr1 (6, 7) — (Mz0 + H21)pr2 (6, 7). a2

Combining equations 9 and (al and a2), we find

pra(tT)= -[110 + M1z + €Tl (6, T) + Ha1Pr2 (L, T) a3

Pr2(tT)= (12 + €D)pr (€, T) — (Hz0 + H21)Pr2 (6, T). ad
A first — order Taylor expansion of p,¢(t, ) around & = 0 yield
Prs(t,T) = qrs () + Uy (£, 7) + 0(?), a5

rs=1,2, where x=7 — t and u,,(t,7) is the first derivative of p,(t,7) with respect to ¢ evaluated at ¢ = 0 . Combining
equations (a5) and (a3, a4) and equating the coefficients of & we find
Upi (6, 7) = —Tpp1 (%) — (@10 + A12)Ur (L, T) + Ap1 U (8, T) ab

Uy (£, T) = TP (%) + A1 (£, 7) — (Az0 + Az1) U2 (8, 7). ar
This yields solutions

U1 (8,T) = Xz Am (X)eXP(—YmX) a8

Uy (6,T) = Tiz1 b (X)exp(—Amx), a9

Where —1, < —A, are the roots of equation 6a and , for I, m=1,2, | # m,
— 1

pm(x) = i) [(Am = Hz0)c1 — R(X, Ha0)Cml, alo

- 1

bm(x) = i [(An — M0t + h(X, Wyg)Cm], all

cm = {(Am — Ha1-Hpo)pTOb[r = 1] — ppyprob[r = 2]}, al2

hGe ) = [(4 — ) = (= WA = An)x + (A — (A — 1) ?x2/2], al3
Combining equations (a8, a9 and a3) we have

Pri(t,7) = Xie1 (W + €Am) exp(—2Ap,x) ald
Pra(t,T) = Y21 (b + ebm) exp(—Apx), al5
Where p,, and b,, m =1,2, were defined in equation (3,4 and 5). Since
Pro tr)=1- prl(t; T) — Pr2(t,7) alé

The limiting event of the process is, once again, absorbing in state 0. Better approximation to the solution of equation al
and a2 can be obtained by expanding equation a5 to higher orders and equating, in sequence, the coefficient of ¢, €2, €3,....

Appendix B:
Table 1: Kidney Disease data from Rizgari hospital Erbil Between 2020-22
Patient Initial Status at following follow-up times (in weeks)
status 0 12 24 48 96
1 2 2 2 2 2 0
2 2 2 2 2 0
3 1 1 0
4 1 2 1 2 2 0
5 2 2 2 2 2
6 2 2 2 2 0
7 2 2 1 2 2 2
8 1 2 1 0
9 2 2 2 2 2 0
10 1 1 0
11 1 1 0
12 2 2 2 2 0
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State 0 = death; state 1= non-ambulant status; state 2 = ambulant status; Un.k = alive but unknown status.

Conclusion and Recommendation:

Typically, the Markov model is used to examine the homogeneity of time series data. Due to this, we used two statistical
tests to determine whether this model was adequate. The first test evaluates the model's quality of fit, whereas the second
evaluates the homogeneity of the model using maximum likelihood. Utilizing weekly patient data on patients with kidney
disorders gathered from Rizgari Hospital for the years 2020 to 2022, by using social science software packages. The time
continuous process must be specified in terms of three states while representing the study's data as discrete time
observations. As previously mentioned, states 0 and 1 denote death and non-ambulant condition; state 2 respectively. We
fitted a time homogeneous Markov model with the identical transition rates prs for all patients as a first approximation to
this process.

The transitions from the non-ambulatory state to the ambulatory state generally occur after a relatively long period of time
less than or equal to 43 weeks with standard error (14.5), while the transitions from the ambulatory state back to the non-
ambulatory state generally happen after a relatively short period of time less than or equal to 25 weeks with standard error
(1.2).

Even though the goodness-of-fit statistic for 8 weeks, 22 = 29.04 with degree of freedom equal to 12, provides evidence
against this time-homogeneous model specification, only observations up to 50 weeks were used in computing the test due
to the dearth of data in the remaining weeks. In actuality, the changes from state 2 to state 1 are seen more frequently
during the 12-week exams than throughout the subsequent exams. T = -1.189 is the result of the equation (14) that was
used to determine whether the rate of change from state 2 to state 1 varies with time. It's possible that this is both a sign of
true time dependency and the result of some heterogeneity in the individual transition rates.

The calculated parameter values are shown in Table 3. The transition rates between the two groups of patients show
significant differences: those who could walk alone before receiving therapy often spent almost twice as long in state 2

119



Iragi Journal of Statistical Sciences, Vol. 20, No. 2, 2023, Pp (113-121)

before transitioning to state 1 and in state 1 before transitioning to death. p10 are 9.998 and 5.734 weeks, while p21 are
16.989 and 10.012 weeks.

However, the overall equation (8) of goodness-of-fit statistic (2 = 29.04, 12 d.f.), which was used to compute the test,
provides evidence against this time homogenous specification of the model. This is because only observations up to 50
weeks were utilized because there were insufficient data for the remaining weeks to compute the test.

This example's main characteristic is that there are just a few distinct, unevenly spaced time intervals where data are
available. This demonstrates how the method may be helpful if it is necessary to extrapolate structure-related data from
such observations. We advise applying other statistical models, such as the Cox regression model, survival analysis, or
mortality rate to estimate the new model.
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