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Abstract 

Digital watermarking, a technique being 

used in the copyright protection recently, 

can be applied to images for the purpose 

of authentication. The only difference 

between these two uses of digital 

watermarking is that the watermarks 

embedded to an image for the purpose of 

copyright protection should be very 

robust to resist any manipulation, while 

they should be sensitive to malicious 

manipulations and robust to 

compressions for the purpose of image 

authentication.  

In this paper a new  robust image 

authentication method, which provides 

an approach to produce such kind of 

digital watermarks techniques using 

adaptive compression related 

applications is presented. The adaptive 

2D decomposition selects 2D wavelet 

functions based on the compression of 

the coefficients. 

  

1. Introduction 

Image authentication techniques use 

either external signatures or embedded 

watermarks to verify the originality of an 

image. An external authentication 

signature generated from the original  

 

image is usually an encrypted form of 

some kind of its hash values. The 

authentication process of a pending 

image depends on whether the hash  

 

 

values decrypted from the signature 

match its hash values [1] or whether the 

constraints set by the hash values of the 

original image can be satisfied by this 

pending image [2]. The second form of 

authentication method is based on the 

embedded watermarks. This technique 

embeds symbols to an image. Because 

the embedded symbol (watermark) will 

be modified only if the image is 

manipulated, the authentication process 

of this method is based on the detection 

of the watermark. A robust watermark 

should be still detectable even if the 

image is lossy compressed, and is 

sensitive t omalicious manipulations, 

such as cloning and replacing. There is a 

common drawback to any watermark 

technique, the possible quality 

descending of the image in the process 

of symbol embedding, However, the 

benefit of this technique is its efficiency, 

while all protection of images is within 

the images themselves such that no 

additional signature is needed for 

authentication. The watermark-based 

authentication is shown in Fig. 1. 
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Fig. 1: Watermark-based Image Authentication 

Method 

 

2. Wavelet Principal  

      Wavelets and wavelet 

transformations have a wide variety of 

different applications in computer 

graphics including radiosity, 

multiresolution painting, curve design, 

mesh optimization, volume visualization, 

image searching, animation control [3], 

BRDF representation [2], and, one of the 

first applications in computer graphics, 

image compression [3], wavelets and 

wavelet transforms can become as 

important and ubiquitous in computer 

graphics as spline based techniques are 

now. 

 

3. Orthonormal Wavelets in 1D 

     This short introduction deals only 

with a subset of wavelets. A more 

detailed overview of the different kinds 

of wavelet transforms including 

continuous wavelet transform, frames, 

and biorthogonal wavelets can be found 

in [4] and [5].  

      The orthonormal wavelet transform 

is based on two functions (x) and (x), 

which have the properties: 
 

     (1)                0dx)x(   ;1dx)x(

 

These functions with their translations 

and dilatations j,k(x) and j,k(x) build an 

orthonormal basis and therefore any 

function in L2(R) can be reconstructed 

with these basis functions. (x) is called 

scaling- or smooth-function, and (x) 

wavelet or detail function. j,k(x) and 

j,k(x) can be constructed from their 

mother functions (x) and (x) in the 

following manner: 
 

 (2)  Zkj,  ),kx2(2)x(    ),kx2(2)x( jj

k,j

jj

k,j   

{j,k | k Z} form an orthonormal basis 

of functions in vector space Vj. These 

vector spaces are nested, that is, 

V0V1V2V3... . Given a function 

f(x) over [0,1], this function can be 

aproximated in Vj with 2j
 scaling 

coefficients sk
j : 

 (3)   dx)x(),x(f(s  with )x(s)x(f k,j
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Also the detail functions {j,k | k Z} 

form an orthonormal basis of functions 

in the detail vector space Wj, which is 

the orthogonal complement of Vj in Vj+1. 

Wj can be thought of as containing the 

detail in Vj+1, which can not be 

represented in Vj. The vector space Vj+1 

can be decomposed in the following 

manner: 

Vj+1= Vj Wj = Vj-1 Wj-1 Wj = ... 

= V0 W0 W1 ...Wj                   (4) 

Let dk j  be the detail coefficients, given 

through: 

 
then f j(x) can be calculated from the 

detail coefficients {dk
i | i<j} and the 

scaling coefficient s00 as follows: 

 
The calculation of the coefficients 

{ s00 , dk
i | 0i<j; 0k<2i } from the 

scaling coefficients{ sk
j | 0k<2j } is 

called wavelet transformation. The fast 

wavelet transformation uses a pyramid 

scheme with two subband filters, the 

(5) 
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smoothing or scaling filter (hm), and the 

detail or wavelet filter (gm). In one 

transformation step the 2i
 scaling 

coefficients ski are replaced by 2i
-1 

scaling coefficients sk
i1 and 2i

-1 detail 

coefficients dk
i1 : 

 
This step is repeated on the remaining 

scaling coefficients, until s00 is 

computed. The reconstruction step can 

be performed using the adjoint filtering 

operation: 

 
4. Wavelets in Higher Dimensions 

The definitions in above section deal 

with wavelets in 1D space, but for image 

compression wavelet transformations in 

2D are needed. One way to extend the 

formulas to 2D is to use a dilatation 

matrix D in (2) as described in [6], 

instead of a simple dilatation factor, e.g. 

the quincunx scheme uses the dilatation 

matrix 
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More popular methods extend the one 

dimensional wavelets to higher 

dimensions with tensor products of 1D 

wavelets and scaling functions, i.e. the 

rectangular and the square wavelet basis 

functions. 

 

5. The Rectangular Decomposition 

The rectangular or standard wavelet 

basis functions are generated through the 

Cartesian product of the 1D wavelet 

basis functions in every dimension. In 

the 2D case, the rectangular wavelet 

basis functions are: 

 

      The fast wavelet transformation with 

the rectangular basis wavelets, also 

known as rectangular decomposition, is 

computed by successively applying the 

1D wavelet transformation to the data in 

every dimension. In the 2D case, all the 

rows are transformed first, then a 1D 

wavelet transformation is applied on all 

columns of the intermediate result. 

Fig.2a illustrates the rectangular 

decomposition. The wavelet coefficients 

of the 1D transformation steps are stored 

in the right (row transform) or lower 

(column transform) part, the scaling 

coefficients in the left or upper part, 

respectively. 

 

6 The Square Decomposition 

  The square or nonstandard wavelet 

basis functions are also generated 

through Cartesian product of 1D 

wavelets and 1D scaling functions. In 

contrast to the rectangular basis 

functions, the square basis functions 

always use tensor products of wavelet 

and/or scaling functions of the same 

resolution level. In the 2D case, the 

square wavelet basis functions are: 

 
The square wavelet decomposition can 

be computed with a similar technique as 

the rectangular decomposition: A 1D 

wavelet transformation step is applied in 

every dimension. This generates (2dim
 -1) 

subbands with wavelet coefficients and 

one subband with scaling coefficients. 

This transformation scheme is applied 

recursively on the scaling coefficients 

until the lowest level is reached (Fig. 2b). 

The square decomposition is slightly 

more efficient to compute than the 

(8) 

(7) 
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rectangular decomposition: For an         

mm image only (8/3)(m2-1) 

assignments are needed, compared to 

4(m2-m) in the rectangular 

decomposition. Also the compression 

ratios are usually better for the square 

decomposition, because the support of 

the wavelet functions are square and 

support width of the wavelet basis 

functions are lower or equal than their 

counterparts in the rectangular 

decomposition and therefore they exploit 

more locality. 

8. Adaptive 2D Wavelet 

Decomposition 

Let us take a closer look at the 

difference of the square and the 

rectangular decomposition in the 2D 

case: The first obvious similarity of the 

two schemes is the use of the same 

scaling function (x,y), whose 

coefficient is stored in the upper left 

corner of the transformed images. In one 

decomposition step of the square 

decomposition three wavelet subbands 

and one scaling subband are generated. 

The wavelet subbands are not altered in 

the following decomposition steps. The 

first wavelet subband in the upper right 

part of the transformed image consists of 

the coefficients of the wavelet functions 

h, the second subband in the lower left 

part has the coefficients of v, and the 

third subband in the lower right part 

holds the coefficients of d. All the 

wavelet functions in dare also 

contained in R3of the rectangular 

decomposition, therefore the coefficients 

in this part of the transformed image are 

the same for both decompositions. The 

upper right part of the square 

transformed image contains coefficients 

of the wavelet functions h
L(x,y) = 

L(x)L(y), where L is the maximum 

resolution level. The corresponding 

rectangular decomposition holds the 

coefficients of the wavelet functions 

{R1
L(x,y); R3

L,i(x,y) | 0 i < L } ( as 

shown in figure 3). It can be seen from 

the definition of these wavelet functions 

in (9)(10), that this part of the 

transformed image in the rectangular 

decomposition can be generated from 

the square decomposition with a 1D 

wavelet transformation within every 

column of this part. In analogy, the 

lower left part of the rectangular 

decomposition can be generated from 

the square decomposition with a 1D 

wavelet transformation within every row. 

This relation between the square 

decomposition and the rectangular 

decomposition remains also in the 

following decomposition steps of the 

square decomposition with the resolution 

level L reduced by 1 from the above step. 

This observation leads to an alternative 

construction scheme for the rectangular 

decomposition:  

apply a square decomposition step 

for every column in the upper right part: 

apply a 1D wavelet transform in the y-

dimension 

for every row in the lower left part: 

apply a 1D wavelet transform in the x-

dimension 

apply this scheme recursively on the 

upper left part of the transformed image 

The 1D wavelet transformation consists 

of an iteration of transformation steps. 

The idea of the adaptive 2D 

decomposition is to replace the 1D 

transformations in the alternative 

construction scheme of the rectangular 

decomposition with an optimal number 

of transformation steps in respect to the 

compression rate of the coefficients. The 

pseudo-code of the adaptive 2D 

decomposition can be written as: 

apply a square decomposition step 

for every column in the upper right part: 
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apply all 1D wavelet decomposition 

steps in the y-dimension calculate the 

compression rates for all steps select the 

number of steps with optimal 

compression rate  

for every row in the lower left part: 

apply all 1D wavelet decomposition 

steps in the x-dimension calculate the 

compression rates for all steps select the 

number of steps with optimal 

compression rate  

apply this scheme recursively on the 

upper left part of the transformed image 

Note that this adaptive 2D 

decomposition also includes the 

rectangular and the square 

decomposition: If the square 

decomposition has the best compression 

of the coefficients, the adaptive 2D 

decomposition selects the square 

decomposition wavelet functions. The 

same is true for the rectangular 

decomposition. In the general case, the 

adaptive 2D decomposition selects some 

wavelet functions from the square 

decomposition, some from the 

rectangular decomposition and some 

"between" the square and the rectangular 

decomposition. 

There are only 4(m2-m) coefficient 

assignments needed to do the 

transformation for an m x m image, the 

same number as for the rectangular 

decomposition. The invers transform 

even needs less coefficient assignments, 

since the number of transformation steps 

is usually lower than the maximum. 

There is a slight overhead for storing the 

number of 1D transformation steps: For 

an m n image less than m(ld(n)-1)+ 

n(ld(m)-1) bits are needed for storing 

the adaptive decomposition. For 

example, an 1024x768 image with 8 bit 

graylevels needs 768 kBytes for the 

uncompressed image and about 16 

kBytes for the additional data, only 

about 2% of the original. 

9. Wavelets for Lossless Image 

Compression 

Even though there are many papers 

about wavelet based image compressions, 

only few deal with the lossless case [9]. 

Lossless wavelet image compressions 

use a 2D wavelet transform to improve 

the compression rate of conventional 

compression algorithms like Huffman or 

arithmetic coding [17]. Since the pixels 

have to be reconstructed exactly, some 

special properties for the wavelet 

transformations are required. 

Let us first consider graylevel images: 

There is one color channel with a finite 

number of possible values, it usually has 

8 bit depth or 256 shades of gray. For 

lossless compression it must be 

guaranteed, that the inverse 

transformation of the transformation 

does not change the pixels. This can be 

achieved for all compact wavelets, if the 

precision of the transformed image is 

high enough. But for high compression 

of the coefficients, the needed precision 

should be as low as possible. Bekaert et 

al. [7] used unnormalized Haar wavelets 

for lossless image compression. Since 

the least significant bit of the scaling 

coefficient is redundant, all wavelet 

coefficients can be stored in 9 bit, in the 

case of a carthesian product of a 1D 

scaling function with a 1D wavelet. 

 

10. Embedding Watermark 
The proposed procedure of 

watermark embedding is shown in Fig. 3. 

For each image, we have to designate a 

wavelet basis and a Pseudo Noise pattern. 

The Pseudo Noise pattern is used as a 

label for embedding and the wavelet 

basis is for protection. At the first step, 

the image is decomposed into four 

subbands, LL, LH, HL, and HH, 
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using2D adaptive decomposition. Then, 

we can use the Pseudo Noise pattern to 

generate a substitution for HH subband 

and discard the original one. For 

example, a Pseudo Noise pattern of 16 x 

16 pixels that are spatially repeated in 

the vertical and horizontal directions can 

be served as a HH subband substitution. 

At the last step, the watermarked image 

is obtained after applying the inverse 

wavelet transform. 

The wavelet basis and the Pseudo Noise 

pattern are designated by the 

authentication system. They are secret to 

the attacker. An authenticator can use a 

serial number that is included in the 

watermarked image to decide which 

wavelet basis should be used for the 

Wavelet Transform and what kinds of 

Pseudo Noise pattern should be in the 

HH subband. The embedding process 

changes the HH subband of the image. 

Because HH subband information is 

usually insensible to people, this change 

will not introduce too much quality 

degradation to the image. Also, due to 

using the lossless wavelet compression 

the watermark in HH subband will be 

not effected. 
 

11. Authentication Process 

The authentication process is 

based on the detection of the existence 

of embedded Pseudo Noise pattern. At 

the first step of the authenticator, the HH 

subband of a pending watermarked 

image is extracted. It is convolved with 

the Pseudo Noise pattern. Because the 

autocorrelation of a Pseudo Noise 

pattern has a pulse in the origin and 

zeroes everywhere, if the image is not 

manipulated, the convolution result 

should be like a dot matrix. It is shown 

in Fig. 4(a). 

Authentication of the image depends on 

whether the output of authenticator is a 

dot matrix. If the image is manipulated 

by some filtering methods such as 

blurring and edge enhancing, the Pseudo 

Noise result will look like a dot matrix 

as long as the change is not drastic. If the 

image is compressed by JPEG lossy 

compression, the dot matrix should be 

still there. However, if some attacker 

manipulated it by replacing pixel values, 

the embedded Pseudo Noise pattern in 

that manipulated area should have been 

changed. Therefore, the convolution 

result of the corresponding area will be 

dispersed instead of a dot. 

 

12. Experimental Results 
Three experiments are shown in Fig. 

4. Fig. 4(a) is the result of the 

watermarked original image, which 

shows that a uniformly distributed dot 

matrix can be obtained in this case. In 

Fig. 4(b), the watermarked image is 

manipulated at the ribbon area. Those 

area has been removed and replaced by 

the nearby background pixels. From the 

authentication result of it, we can 

observe the convolution values in the 

corresponding area have been dispersed. 

Therefore, we can detect the 

manipulation. 

A JPEG compressed image is shown in 

Fig. 4( c). The compression ratio is 3: 1 

in this case. We can observe that the 

authentication result is still like a dot 

matrix. Therefore, this image is also 

authentic in this case. Some other 

experiments showed that, if the image is 

compressed with a larger JPEG 

compression ratio, the watermarks 

degrade and the dot matrix is no longer 

to be distributed uniformly. It becomes 

harder to authenticate an intensively 

compressed watermarked image. 

 

 

 

 

 



7 

13. Discussion and Further Work 

The watermark-based method is an 

efficient way for image authentication. The 

robust method that we proposed in this 

paper has proved its effectiveness by some 

experiments. Some further research issues 

including the enhancement of watermark 

robustness in the high compression ratio and 

the application of robust watermark-based 

authentication on image/video are being 

conducted. 

The new adaptive 2D 

decomposition scheme offers better 

compression rates than the square and 

the rectangular decomposition, if the 

images are above a threshold size.  

Also, the new adaptive 2D 

decomposition scheme offers a better 

location for hiding the watermark . The 

decomposition will divide the image 

until accept the sub image that have the 

overall image information. It is able to 

detect the statistical properties of local 

sub image that are used into 

decomposition image. 

 Lossless wavelet compression 

will help to passing the watermark 

during the compression.  

The watermark will be added 

with the pseudo noise after detect the 

position to hide it ( by using the 

Adaptive 2D decomposition scheme) 

and during the compression processing 

to avoid the losing by thresholding 

techniques in wavelet compression 

processing.   
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Figure 2 The decomposition types 

 

 

 

 

 
Fig. 3: The watermark embedding process. (The intensity values of the HH subband are 

magnified by 10 for representation.) 
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Figure 4: The authentication process and experimental results. 

 


