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H I G H L I G H T S   A B S T R A C T  
• Simulating nanoscale systems is challenging 

due to the lack of real optical images. 
• AI can enhance simulation quality and 

simplify analysis. 
• Machine-aided design is essential for 

synthetic molecular design at the nanoscale. 
• Renewable energy is vital for global 

sustainability and energy security. 
• AI shows promise in developing efficient 

materials for power conversion and supply. 

 Artificial intelligence (AI) is emerging as a prominent technological 
advancement. It is the act of replicating human intelligence for many purposes. 
In contrast to conventional methodologies, artificial intelligence (AI) is 
undergoing tremendous advancements. The present state of artificial intelligence 
(AI) technology enables them to effectively address numerous intricate 
difficulties with proficiency comparable to a human's. The significance of 
advancements in AI is particularly evident in machine learning, where the 
techniques and algorithms are effectively applied to address many problems, 
including those in nanotechnology. In contemporary nanotechnology, it is crucial 
to expedite the search for the most favorable synthesis parameters while 
developing novel nanomaterials. The convergence of machine learning and 
nanotechnology necessitates a comprehensive examination of existing data on 
the application of artificial intelligence (AI) in addressing challenges in the 
nanomaterials science field. This review should encompass various stages, 
including computer design, chemical synthesis, and diagnostics of the resultant 
nanomaterials. Significant emphasis is placed on employing machine-learning 
technologies to investigate the thermal and dynamic characteristics of nanofluids, 
the sorption processes of nanocomposites, the catalytic activity of nanoparticles, 
and the toxicity of nanoparticles. Additionally, these technologies are utilized to 
address nanosensor issues and process experimental data acquired during the 
diagnostics of different nanomaterial properties. 
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1. Introduction 
Multidisciplinary research integration is still underway. AI has used biological inspiration to construct neural networks and 

evolutionary algorithms, while nanotechnology mixes physics, chemistry, and engineering. Integrating present-day artificial 
intelligence with nanosciences can advance both areas of study, ushering in a new era of information and communication 
technology with far-reaching societal effects—possibly even bringing biology and technology together as shown in Figure 1. 
Nanoscience research, both theoretical and applied, has used AI to decipher experimental procedures and create novel 
nanomaterials and gadgets. A few research have examined how nanoscience will boost computing power for present and future 
AI systems. This study tackles these concerns in the context of rapid progress in several fields, how advances in computational 
intelligence could improve nanotechnology, and how it could be utilized to build new paradigms for artificial intelligence, 
thereby increasing their application and combining them with biotechnology. There are several applications of AI paradigms in 
nano research. When applied to the working size of nanotechnology, physics has limitations distinct from macroscopic physics. 
Therefore, nanotechnology must deal with the proper interpretation of outcomes from any system or instrument at this scale 
[1], which makes the situation worse because multiple elements often strongly influence the signal. Numerical simulations are 
commonly utilized to accurately interpret experimental results because analytical approximations are challenging to construct; 
this is where AI techniques like machine learning paradigms can help provide scientific results and develop nano applications. 
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Figure 1: Nanotechnology and artificial intelligence 

Nanotechnology and artificial intelligence are anticipated to have an impact on various fields, including bioengineering, 
cutting-edge information sciences based on innovative computer architectures and data depictions, hybrid technologies that 
combine biological entities with nanotechnological machines, as well as studies into cognitive systems and neuroscience as 
shown in Figure 1  [1,3,5]. With machine learning techniques, complicated or unknown functions or data can be described and 
generalized, and numerous interacting parameters can be treated quickly [2,3]. Artificial neural networks (ANNs) are used to 
learn input-output functions using supervised or unsupervised algorithms to calculate their connection weights. Different bio-
inspired AI paradigms use genetic or evolutionary algorithms for optimization and search problems. For categorization, 
grouping, association, prediction, data mining, and control, support vector machines, decision trees, Bayesian networks, and 
various similar techniques can be utilized to solve complex problems in nanotechnology research. Machine Learning (ML) has 
identified compounds and materials with excellent conductivity, aqueous solubility, bioavailability, and toxicity. This makes it 
feasible to search millions of molecules, discard dangerous candidates, and pick compounds with desired features for 
pharmacological, medicinal, and environmental chemistry [4]. This is safe, cost-effective, and sustainable. ML already 
outperforms classic computation. Shindo and Matsumoto [5] Considering the molecule's atomic coordinates, a neural network 
ML algorithm predicted atomization energy, maximal absorption intensity, excitation energy at maximal absorption, HOMO, 
LUMO, initial excitation energy, ionization potential, electron affinity, and polarizability. It learned organic chemicals by the 
bunch. Results were efficient, accurate, and better than DFT quantum-chemical models for all characteristics. Computational 
toxicology uses complex models to identify hazardous interaction variables. To provide relevant findings, the model must 
consider all substance interactions. New toxicity assessment methods were developed as AI and ML evolved Figure 2 and 
Tables 1, 2. The biokinetics, destiny, and dynamics of the substance's biological response after it reaches the target organ are 
all interrelated in nanomaterial computational modeling. An ideal mathematical model for simulating nanotherapeutics and 
engineered nanomaterials (ENMs) in experimental systems is based on biology. ML simulations of nanomaterial biokinetics 
and interaction in different environments have been successful [6]. Mathematical models that are based on the structure of 
nanomaterials, methods such as Markov Chain Monte Carlo, & Bayesian procedures are the methodologies that are most 
commonly utilized in the process of assessing the toxicity that is induced by nanomaterials. Much research is being done on 
quantitative structure-activity relationships (QSAR) at the nanoscale, also called nano-QSAR [7]. QSAR uses physicochemical 
features and theoretical descriptors of molecules to predict biological function. QSARs are the most studied and accurate as 
contemporary DFT-based physicochemical property models. Nanomaterial physicochemical parameters are essential for 
QSAR modeling. One QSAR method relies solely on a theoretical model. The QSAR of a substance can be derived from 
chemical reactivity based on molecular orbital energies. Statistical QSAR modeling uses pattern recognition to correlate 
descriptors with predicted effects [8]. The hybrid QSAR model uses mechanical reasoning and statistical fit to discover 
predictive descriptors using theoretical considerations [9]. Statistical models calibrate molecular descriptor parameters well. 
Surface charge, corona, aggregation, solubility, and other physicochemical parameters can predict nanomaterial biological 
activity. Open-source ML tools can predict a range of nanomaterial qualities using quantitative structure-property relationship 
(QSPR) methodology that is cross-platform and easy to integrate into nano-informatics workflows [10]. 
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Figure 2: Timeline of relevant developments of AI [12] 

Using them independently or feeding them into more advanced physiologically based pharmacokinetic (PBPK) models is 
possible. Biological activities and potential interaction partners that could trigger a harmful reaction can be predicted by 
simulations utilizing QSAR data. Throughout the past few years, numerous computer systems have been created to improve 
simulations and generate findings that can be relied upon. With QSAR, the hypothesis of border molecular orbitals is an extra 
parameter that can be used for prediction. A decrease in stability and an increase in conductivity are the results of increasing 
the difference between the energy levels of the lowest unoccupied molecular orbital (LUMO) and the highest occupied 
molecular orbital (HOMO). This results in an improvement in the rate at which reactions occur [11]. Figure 2 depicts a 
timeline of the key developments that have occurred to construct a combining machine learning (ML) based QSAR-PBPK 
modeling [12,13] for nanomaterial (NM) adsorption, distribution, and metabolism entering the human body through the 
prediction of the properties of the nanomaterial being studied. During the 20th century, numerous statistical methods for 
discriminating [14], clustering or grouping [15], prediction [16], and regression [17] of various sets of data were created and 
extensively utilized in machine learning (ML). In the field of artificial intelligence (AI) and, more specifically, in the field of 
machine learning (ML), neural networks [18] along with support vector machines [19] were all initially presented to forecast, 
evaluate, and optimize these data sets. Models for the forecasting of quantitative structure-activity correlations (QSAR) [20] 
and physiologically basis pharmacokinetic (PBPK) [21] of medications and other chemicals have been introduced 
simultaneously to predict the behavior of these substances. For PBPK models, the most important input parameters are the 
partition coefficient [22], biological activity [23], and the other parameters. QSAR, which depends on the Hammet constant 
[24], can be used to make predictions regarding bioavailability [25]. At the start of the 21st century, QSAR models 
were expanded by incorporating technique confirmation, NMs, and the forecasting of the solubility of substances for the first 
time. The most essential developing stages of the PBPK models are human inhalation [26] oral [27], and lifetime [28] PK 
profiles. Recently developed models describe the absorption, adsorption, and dispersion of NM in rates (after inhalation) [29], 
as well as the transit of NM from the blood supply into cells [30]. 
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Table 1: (AI) Primary machine learning methods and their pros/cons in nanotoxicology and nanomedicines 

Models Application Advantages Disadvantages Ref. 
Regression Forecasts and predictions Its transparency in delivering important 

physicochemical descriptor information 
Restricted to linear relationships, 
susceptible to outliers.  

[31] 

Decision 
tree 

All Categories 
nanomaterials 

Auto-selection of input variables, 
eliminating irrelevant descriptors, and 
finding valuable data in noisy or large 
datasets. 

It is unable to process non-numerical 
data. Training takes longer than other 
types of models. 

[32] 

Support 
vector 
machines 
(SVM) 

Nonlinear connections, 
collinear descriptors, 
small/large datasets, 
overfitted models. 

Handles classification and regression 
issues, nonlinear connections, collinear 
descriptors, restricted datasets, and model 
overfitting with high precision and 
conjecture. 

Model performance depends on design 
elements like kernel functions, and SVM 
result interpretation is difficult. 

[33] 

Artificial 
neural 
network 
(ANN) 

Massive datasets and 
nonlinear data 
relationships 

Allows handling nonlinear structure-
activity relationships and massive 
descriptor collections, including 
superfluous variables. 

Challenges in choosing optimal 
complexity and overfitting. 
Broad generalization sensitivity to 
parameter and network topology changes   

[34] 

Partial least 
square 
(PLS) 

Reduced variables to 
make them better suited 
for additional analysis 

It works effectively with frequent noise 
sources and associated descriptors. 

Challenges in evaluating independent 
latent variable loading and unknown 
distributional features of estimates. 

[35] 

Principal 
component 
analysis 
(PCA) 

Remove the correlation 
among input variables 
(physicochemical 
descriptors) without 
deleting irrelevant 
datasets. 

Reduces dataset features,  
Minimise overfitting, 
Reduces high-dimensional data to two 
dimensions for easy visualization. 

The interpretability of independent 
variables decreases.  
The total number of Principal 
Components may overlook some 
information relative to the original list of 
features if not carefully selected. 

[36] 

Table 2: Artificial intelligence (AI) Modelling and algorithms for nanotoxicology & nanomedicine 

Models Nanomaterial Algorithm In vitro/in vivo/in silico Ref. 
PBPK CeO2 nanoparticles as small as 

5 and 30 nanometers 
Using linear regression and the Gear 
method vs. the Berkeley Madonna 

In vivo rat model [37] 

Carbon nanotube The proportion of particles deposited 
in human alveoli using particle 
dosimetry 

In silico [38] 

MPPD Aerosols and particles (nano-to 
microparticles) containing 
copper 

Sprague-Dawley rats, male rhesus 
monkeys, lambs, pigs, and mice 
(Balb/c and B6C3F1) with an 
algorithm that deciphers variability. 

In silico [39] 

aerosol/airborne nanoparticles Evaluation of computational fluid 
dynamics (CFD) and mass transfer 
over a single path 

In vivo [40] 

Nano-QSAR/QSPR Modification of iron oxide 
nanoparticles 

Using linear regression In silico [40] 

classifies NPs Artificial neural networks (ANN) In silico [41] 
Metal oxide NPs Logistic linear regression with 

expectation minimization algorithm 
In silico [42] 

ADMET classifies NPs Neighbor-to-neighbor (k-NN) In silico vnn web server [43] 
All classifies of NPs with a 
single QSPR model 

Machine learning, decision tree, 
artificial neural network, regression 

In silico [44] 

All classifies of NPs Integrated algorithm In silico [45] 
i-TASSER Compact nanoflowers encased 

in peptide gold 
Iterative threading and refinement In vitro and silico [46] 

Distinct SnO2 Nanoparticles Iterative threading and refinement In vitro and silico [47] 
Quantitative feature–
activity relationships 
(QFAR) 

ZnO, CuO, Co3O4, and TiO2 
nanoparticles 

CORAL In silico [48] 

2. Artificial intelligence applied to scanning probe microscopy 
Scanning probe microscopy is a popular nanoworld imaging method. This broad idea includes any technique that captures 

images from probe-sample interactions. Many methods have been created depending on the interaction, even though 
topographers [49]. The scanning tunneling microscope, created in 1981, is widely acknowledged as the pioneering technology 
in scanning electron microscopy (SPM), encompassing numerous fundamental components. Despite recent advances in 
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resolution [50] and atomic manipulation capabilities [51], deciphering microscopy signals remains a formidable obstacle [52]. 
The primary problem is that most interactions between tips and samples are complex and parameter-dependent. Artificial 
intelligence methods work well for these problems. Multi-modal SPM imaging, which uses numerous channels to offer 
complementary picture information, has come a long way in recent years. Several examples include SPM with dual excitation 
frequencies, multiple harmonic imaging [53], 3D modes [54], banded excitation SPM [55], and quick digital lock-ins [56]. 
This massive amount of data exponentially increases the challenge of deciphering certain material qualities. Nikiforov et al. 
[57]. Functional recognition imaging, also known as FR-SPM, was created to overcome this issue. Utilizing neural 
networks trained on expert examples, this technique can immediately recognize local behaviors based on the spectroscopic 
responses that have been seen. 

Through cleaning and beautifying the data sent to the neural network, artificial neural networks (ANNs) are utilized in 
conjunction with principal component analysis (PCA) to minimize the number of distinct variables. Without this treatment, 
well-designed ANNs could still gather appropriate data from duplicate datasets. Using PCA, ANN completes the work more 
quickly and accurately. Micrococcus lysodeikticus and Pseudomonas fluorescens were detected by FR-SPM on a mica 
substrate coated with poly-L-lysine (PLL). A multilayer perceptron that has been trained using back-propagation is utilized in 
this investigation [58]. They used three hidden layer neurons, six inputs, and three outputs. Transfer functions for the sigmoid 
hidden layer and the purlin output layer were present at each node.  

3. Simulations of artificial intelligence at the nanoscale 
Simulating the system under study is a significant challenge for nanoscale scientists. Real optical pictures are not possible 

at the nanoscale. This size of images requires interpretation, and numerical simulations are sometimes best. Many programs 
and applications accurately imitate atomic-effect systems today [59]. When appropriately used, these approaches can give a 
precise image characterization. However, they are still complex and require numerous parameters to depict the system 
accurately. Artificial intelligence can increase simulation quality and make them easier to get and analyze. ANNs have shown 
many benefits in nanoscale numerical simulations. The program can be manually modified to balance numerical precision and 
physical meaning [60]. The usual least-squares minimization (LSM) method is used in these models to reduce the electrostatic 
potential inaccuracy at the surface of the tip. Changing the tip point weights is one of the reduction routines that is sometimes 
used [61]. 

4. The merging of artificial intelligence with nanocomputing 
Artificial intelligence and nanoscience can tackle nanoscale microscopy, nanomaterial science, and simulation challenges. 

Numerous applications may result from combining AI with nanocomputing, encompassing current and future technologies 
[62]. Since the early attempts at building nanocomputers [63]. Various stages of nanocomputing device modeling, design, and 
prototype construction have used artificial intelligence paradigms [62, 64]. Using machine learning techniques, nano hardware 
can replace semiconductor-based hardware, ushering in a new era of smaller, more affordable, and powerful computer 
technology for processing and controlling sensory data. Recent developments in nanotechnology have shifted the emphasis to 
the fabrication and analysis of discrete parts, such as nanowires for connections or molecules for switches [64]. Quantum 
computing and memory provided by nanotechnology [65] have the most significant potential to address complicated NP-
complete optimization problems. Big data applications that demand computational intelligence are especially prone to these 
issues. This definition of natural computing encompasses at least three ways [66]: (1) individuals who find solutions in nature 
and use that knowledge to create new methods of tackling problems, (2) systems that rely on the computational synthesis of 
natural events and (3) systems that use nanoscale computation enabled by natural materials. Within this final notion are 
methods currently the subject of extensive research, such as DNA computing [67] and quantum computing [68]. 

5. Machine learning for chemistry 
Chemistry has a unique opportunity to enhance molecular technologies beyond synthetic efforts. Machine learning 

algorithms use error minimization in various ways to detect patterns in enormous amounts of data. Google search results, 
Apple Voice assistant, and Facebook personalized site feeds use ML reduction techniques. Academic research in almost every 
scientific discipline uses machine learning. 

Figure 3 shows that artificial intelligence (AI) refers to any software with human-like intelligence. Machine learning AI 
can adjust its parameters with more data. ML programs can self-construct adjustments, making them less dependent on 
humans. Machine learning algorithms discover how a data set affects a property. The neural network (s)' complexity 
determines the relationship's quality. The neural network's hidden algorithm and inputs provide predictions. Deep learning is a 
neural network with several hidden layers as shown in Figure 4. The complexity of hidden layers determines the mathematical 
sophistication of the input and output layers. These hidden layers allow the neural network to process inputs sequentially. 
Making facial identification more accessible, the first hidden layer detects lines in a photo, while the second layer identifies the 
eyes, mouth, and nose. The final layer uses those attributes to establish the person's identity and output an answer. 
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Figure 3: Diagram of AI terms 

 
Figure 4: Neural networks and Deep learning 

Two types of neural networks, superficial and deep, are shown in Figure 4. The hidden layer [red] receives the inputs 
[orange]. The input is fed into the hidden layer, producing the blue output. The result of deep learning is achieved by applying 
many hidden layers (alphabold) [69]. There will be practical applications of machine learning to various chemical challenges 
shortly, as the area is still in its early stages of development. The following applications of ML are being explored: reaction 
mechanism determination, molecular dynamic simulations, optimal condition prediction, chemical optimization, protein 
folding structure prediction, analytical tools, quantum sensing, and approximations of density functional theory (DFT) 
functionals, Cova and Pais, Wang , Senior, Evans, and Jumper, [70-72]. Four ML applications are interesting: quantum 
molecular simulations, molecular property prediction, screening, developing new compound synthesis techniques, and genetic 
programming-based molecular design. The entire procedure produces stable molecular patterns with desirable features. 

6. AI for molecular property prediction  
Chemical characteristics are determined by nuclear and electronic structure. The estimated PES can provide structural 

information since stable structures are linked to local or global minima along the potential energy surface. Using chemical 
structure, AI can anticipate hypothetical molecule properties without experimentation. Compounds' beneficial qualities could 
be screened without synthesis. ML program screens millions of chemicals and delivers the most promising medicine and 
material discovery options. Synthesis conditions can be predicted to maximize product yields and reaction rates, Ahneman 
[73]. It is possible to handle reaction prediction and retrosynthesis at the same time. One way to prepare an organic molecule 
for synthesis is through retrosynthesis, which involves cutting it into smaller pieces. Incorporating over a million organic 
reaction datasets, Segler and Waller, [74] turned in reaction predictions with 97% accuracy and retrosynthesis predictions with 
95% accuracy. The work was initially applied to organic molecules with lesser molecular weights and is not yet applicable to 
the bigger scale. Granda, [75, 76] brought an ML algorithm into play through an organic synthesis robot. With its 18 available 
chemicals, the robot could carry out 969 distinct reactions. Protein structure prediction is being enhanced with machine 
learning and deep learning techniques. With this program, we can foretell which proteins will bind to which targets and which 
will catalyze which reactions, Torrisi, Pollastri, and Le, [77]. 

Vectorized representations of molecules, capturing exact information about their atomic structures, are used in molecular 
fingerprinting. Different problems call for varying levels of granularity in fingerprinting. A coarser fingerprint might be 
defined in cases where the precision of the prediction is not paramount, such as when estimating the electrical or mechanical 
strength of materials. It may be related to the material's composition or other general characteristics of the atoms that make it 
up (e.g., band gap). 

 However, if predictions involving total energies and atomic forces are to be accurate, the solid-state space groups that 
fingerprint must be more precise with atomic-level structural information [78]. One possible input for a neural network is a 
reaction fingerprint, often created by joining together a small number of fingerprints of molecules that are reactants and 
reagents [79]. Extended connection fingerprints are a common type of fingerprint [80]. As shown in Figure 5, the featurization 
method involves breaking a molecule down into smaller pieces, or substructures, that have a binary fingerprint of a defined 

https://onlinelibrary.wiley.com/doi/full/10.1002/qua.26870#qua26870-bib-0044
https://onlinelibrary.wiley.com/doi/full/10.1002/qua.26870#qua26870-bib-0024
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length. These pieces are then put into an array where each element is either 1 or 0. Typical applications of fingerprinting 
include grouping, virtual screening, and similarity searches. 

 
Figure 5: A molecular fingerprint's representation encoded whether specific substructures in 

                                    a compound were present (1) or not (0). Twenty binary digits comprise the vector 
                                   representing this molecule [80] 

7. AI for molecular design 
Complex molecular-scale designs in biology demonstrate remarkable skills. Genetically engineered molecular systems and 

macro-scale inventions are more sophisticated than synthetic molecular designs. Unfortunately, the quantum process is 
counterintuitive; humans cannot create molecular structures with hundreds of atoms. Due to the disparity in physical spaces, 
applying macroscale design approaches to nanoscales is inefficient and restricting. Machine-aided design is needed to 
overcome human creativity's limits in synthetic molecular design. Yi [81] offer a tool architecture with seven parts: simulator, 
constraints, requirements, GP, visualizer, evaluator, and control interface. A quantum-chemical simulator is needed to analyze 
physically viable molecules and structures. These simulators have computational limits using traditional approaches, but ML 
could solve this. The AI GP algorithm will iteratively search for designs that meet the parameters and maximize the evaluator 
score. The software would also have a visualizer to track AI progress and a control interface to access modular components, 
Figure 6. 

 
Figure 6: Diagram of steps for one generation done by AI for molecular design 

More parts can be added to the AI. Because of their high computing cost, quantum-mechanical simulations should only be 
undertaken if a more cost-effective method of estimating the design's quality is employed beforehand. Researchers currently 
use inefficient processes that can take years or even decades to alter molecular modifications to find the proper structure to 
attach to such a receptor. Numerous treatments, including those for Alzheimer's, are presently the focus of such research [82]. 
AI molecular design software might efficiently and cheaply do this and subsequent testing and synthesis development tasks. 
Candidates may outperform human-made chemicals since GP can test and develop intelligent molecules. Due to fewer 
chemicals failing, experimental testing and health screenings would considerably reduce synthesis and screening time. Protein-
based enzymes can affect the response rate trillion-fold. AI is important to predict the cancer. AI tools predicted the responses 
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of individual cells to both single drugs and drug combinations which would help in cancer field [83]. Due to our poor 
molecular design skills, such technology is unattainable. Software that uses molecular dynamic modeling could create new 
enzymes for new processes. A designed fitness function related to the pace at which reactants generate products and 
specifications to only amino acid fragments for the planned molecule is needed. The synthesized enzyme might be dismantled 
into its amino acid chain. This script could be used to create an RNA string. Our cells' ribosomes could manufacture the 
enzyme utilizing the specified RNA. 

8. Application of AI in nanomaterials 
As AI develops the future paradigms in material science, it becomes increasingly crucial for the exploration, examination, 

and design of nanomaterials. Because of AI, data-driven science has replaced the expensive and time-consuming empiric trial-
and-error method in material science. Artificial intelligence is essential for the automated discovery and fabrication of 
functional nanomaterials exhibiting desirable properties. AI can speed up the development of new paradigms, predict material 
properties, synthesize and characterize materials, and explore the vast chemical design space for specific purposes. AI enables 
the intelligent and efficient investigation of suitable synthesis parameters to create materials with better properties. Predicting 
properties, designing inversely, synthesizing, characterizing, and extracting information are all examples of ML applications in 
this area of the detection and advancement of nanomaterials. 

8.1 Property prediction 
ML is often used to forecast properties in material development. The quantitative structure-activity relationship (QSAR) 

among materials' structural information and target attributes can be established and predicted using ML models based on 
previous experimental or computational data. ML has solved these QSAR modeling problems well and promisingly. The ML 
models anticipate target qualities in regions without experimental data, making navigating the vast design space easy. Machine 
learning (ML) boosts the efficiency of first-principle computations by combining it with an examination framework for 
property prediction. Using ML as a replacement model has simplified large-scale material screening procedures while reducing 
computing time and expense for DFT. Previous reviews [84, 85] provide great explanations of the beneficial link between first-
principle calculations and ML, and this method has been applied in various publications. The following sections will discuss 
additional details. ML can make first-principle calculations more precise or tackle complex issues that traditional computing 
approaches cannot handle. A neural network-based functional DM21 from Deep Mind [86] solves DFT's long-standing 
fractional electron difficulties better than conventional functionals. ML offers alternatives to improve material calculation for 
property prediction. 
Many areas of molecular research have succeeded with ML algorithms, providing more accurate and quicker results 
than conventional approaches (such as QM calculations, DFT, MM-based methods, etc.). A molecule structure has 
a predictable link with its properties [87]. Learning the underlying QSPRs of an issue, even from simple chemical 
representations, is made possible by ML models' flexibility (e.g., universal approximation theorem for ANNs) [88, 89].  

Multiple criteria allow for the categorization of ML methods. One way to categorize ML systems is according to whether 
or not they require human oversight. Figure 7 shows the three main categories of ML techniques based on this: supervised, 
unsupervised, and reinforcement learning. This section provides a concise overview of some well-known ML approaches that 
have been applied to address issues in molecular science [90]. 

 
Figure 7: Examples of machine learning approaches and algorithms [90] 
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8.2 Material inverse design 
Machine learning models are utilized for large-scale applications such as high-throughput material screening. This is 

because these models can analyze massive amounts of candidate materials effectively and find materials that possess the 
required properties while maintaining low costs. Unfortunately, the forward design method is quite sensitive to the pool of 
candidate materials; if the pool is too small, the effective search for necessary attributes may be severely hindered. It appears 
that inverse design could be a promising approach to this issue. Inverse design involves inverting the input and output of ML 
models to predict information about the structure of materials with desired attributes directly. Utilizing generative adversarial 
networks and variational autoencoders are two techniques used in inverse design. Kim et al. [91] accomplished the design of 
zeolites by using a generative adversarial network (GAN), which consists of a generator and a discriminator. When a 
discriminator attempts to tell accurate data from fake in an adversarial learning process, the generator fools him, resulting in 
realistic zeolite materials. The next step is to employ GAN to make zeolites with a methane adsorption heat of 4 kJ/mol. 
Generative models can be used in inverse design processes to output the materials of preference and their chemical and 
structural properties for more efficient material design. By leveraging AI, the inverse design framework can efficiently scour 
the vast design space, surpassing the time-consuming and error-prone traditional trial-and-error approach that relies on the 
researcher's expertise. 

8.3 Material synthesis 
 Conditions and pathways during synthesis determine the material's performance. ML can find the best synthesis pathways 

and settings to produce nanomaterials with the desired properties. Automated machinery, such as Ro-bots, can incorporate the 
suggested synthesis protocol for high-throughput experiments, making it easier to scour the enormous material design space for 
conventional inorganic crystals, organic compounds, and bio-mixed materials [92]. Mekki-Berrada et al. [93] Utilized repeated 
active learning on a high-throughput microfluidic chip to discover the ideal conditions for synthesizing silver nanoparticles 
with the specified absorbance spectra. A deep neural network (DNN) was used to forecast the relationship between the 
chemical composition and optical performance after improving nanomaterials production using Gaussian process-based 
Bayesian optimization. Using machine learning according to the expected enhancement decision, Rao et al. [94] Designed 
conditions for synthesizing single-wall carbon nanotubes (SWCNTs) with a limited diameter distribution. Which proved the 
potential advantages of optimizing diameter using machine learning. A more complete summary of machine learning-aided 
nanoparticle production is available in earlier reviews [95]. 

8.4 Material characterization 
Fast progress in material characterization approaches has led to an explosion in material data from devices like SEM, 

TEM, and XANES. Due to data growth, manual data analysis procedures are typically excessively laborious. ML gives a more 
efficient and automated way to analyze data that even experts find difficult. Kim et al. [95] used machine vision and ML to 
quantify SEM pictures. These ML algorithms automatically extract morphology and nanoparticle sizes from SEM pictures. 
Based on these algorithms, a user-friendly, adaptable program that may be used for additional SEM/TEM imaging analysis 
tasks was built. Liu et al. [96] constructed structural descriptors by training convolutional neural networks with theoretical 
spectra, which then "inverted" experimental XANES data. While evaluating average cluster sizes on copper oxide clusters, 
transforming reaction conditions, and distinguishing structural motifs, a convolutional neural network (CNN) model functioned 
admirably. Timoshenko et al. [97] created a machine-learning method to reconstruct the three-dimensional geometry of metal 
catalysts using experimental XANES spectroscopy. They determined the median quantity of coordinates for the initial of 
several shells of coordination and utilized neural networks to describe the nanoparticles' size and three-dimensional structure. 
The rapid advancement of high-resolution spatial imaging techniques like scanning probes, optical microscopy, electron and 
ion systems, and multi-scale and multi-modal imaging approaches has made investigating and characterizing material 
structural features all the more important [98]. Such approaches have the potential to unify experimental characterization data 
sets of varying sizes onto a single, essential data application platform. A new KAIST initiative called material and molecular 
modeling, imaging, information systems, and integration (M3I3) employs ML approaches and scientific knowledge to expedite 
materials' discovery, design, and development. For nanoscale systems, our AI-based characterization approaches can high-
throughput and time-dependently extract structural characteristics from material images [99]. 

9. Artificial intelligence aided nanotechnology for renewable energy 
Due to their continuous extraction and exploitation, the accelerated exhaustion of finite resources (such as fossil fuels) 

threatens worldwide energy sustainability and worsens environmental concerns [100]. Therefore, greener renewable energy 
options must be explored. Every recent global agenda has prioritized sustainable energy development due to rising global 
energy consumption due to population growth and a booming economy [101]. The objectives of newly passed energy 
legislation are creating energy sources with zero or low carbon emissions and guaranteeing future energy security. In 2015, 
renewable energy accounted for 23% of power generation; by 2060, that number is projected to rise to 41-60%. With this 
additional contribution from renewables, we should be able to cover almost all the predicted increases in power consumption in 
2060 [102]. There will be a dramatic shift in the future of energy due to the widespread availability of renewable resources and 
the positive social, economic, and environmental impacts of these technologies [103]. To achieve the aim of keeping the 
average surface temperature above 2 °C and to satisfy the growing global energy demand, it is essential to utilize renewable 
energy resources [104]. Improving energy infrastructure to use renewable energy sources better to meet demand is equally 
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critical. Enhanced energy materials with nanostructures are used for this purpose. Researchers are interested in designing and 
manufacturing high-performance energy storage devices for large-scale deployment that integrate pseudocapacitive and 
nanofibrous nanomaterials. These materials have outstanding electrochemical and rate capabilities and a high specific surface 
area [105]. Artificial intelligence (AI) in fields like inverse design, information extraction, and materials property prediction 
has shown promising results in developing more dependable and efficient materials for power conversion and supply. This 
could pave the way for commercial, large-scale green energy systems that rely on these materials [106-112].  

10. AI Models  
The XAI community is likely still in the early stages of development regarding the supervised (regression and 

classification) and unsupervised (clustering) tasks that form the basis of most AI applications. The authors of the selected 
articles used well-established AI/ML models to accomplish their goals. Neural networks (NN), ensemble models (EM), 
Bayesian models (BM), fuzzy models (FM), tree-based models (TM), linear models (LM), nearest neighbor models (NNM), 
support vector machines (SVM), neuro-fuzzy models (NFM), and case-based reasoning (CBR) were the key categories into 
which the methods were grouped. Table 3 displays the grouped works of these models according to their kinds. Furthermore, 
the table contains the overall count of studies, a rundown of all the AI/ML model versions, and citations for the articles that 
showcase the models. Many academics are showing a lot of interest in neural networks and ensemble techniques. It's safe to 
infer that these models were selected with explainability in mind because of how well they function across different domains. 
Table 4. Assessment of machine learning models for energy system comparison. 

Table 3: Various models are employed to address the main objective of classification or regression 

Model Types Models Ref. 
Bayesian Models 
(BM) 

Gaussian Naive Bayes Classifier/Regressor (GNBC/GNBR), Bayesian Rule List 
(BRL), and Bayesian Network (BN): 

[95-97, 106-107, 113] 

Neuro-Fuzzy 
Models (NFMs) 

The following systems: ANFIS, iChIMP, LeNet with a Fuzzy Classifier, Mamdani, 
Sugeno-Type, and ALMMo-0*—Autonomous Learning Multiple-Model Adaptive 
Networks and Fuzzy Inference Systems 

[103-107, 114-115] 

Linear Models 
(LMs) 

Logistic Regression (LgR), Linear Regression (LnR), and Linear Discriminant 
Analysis (LDA) 

[116,117] 

Support Vector 
Machines (SVMs) 

SVM Kernels with Linear and Radial Basis Function (RBF) [118,119] 

Tree-Based 
Models (TB) 

One-class tree (OCTree), Multi-Operator Temporal Decision Tree (MTDT), 
Conditional Inference Tree (CTree), Decision Tree (DT), Fuzzy Hoeffding Decision 
Tree (FHDT), Fast and Frugal Trees (FFTs), and more. 

[79-80, 120,121] 

Neural Networks 
(NNs) 

VGG19; YOLO; ApparentFlow-net; Temporal Convolutional Netwrok (TCN); 
Convolutional Neural Network (CNN); RestNet; ROINet; Deep Neural Network 
(DNN); Region-Based CNN (RCNN); Recurrent Neural Network (RNN); Deep 
Reinforcement Learning (DRL); Multilayer Perceptrons (MLP); MatConvNet; 
Nilpotent Neural Network (NNN); Explainable Deep Neural Network (xDNN); 
Explainable Neural Network (ExNN); Locally Guided Neural Networks (LGNN); 
Global–Local Capsule Networks (GLCapsNet); Knowledge-Shot Learning (KSL); 
GoogleLeNet; Gramian Angular Summation Field CNN (GASF-CNN); Hopfield 
Neural Networks (HNN); LVRV-net; Knowledge-Aware Path Recurrent Network; 
LeNet-5; Long/Short-Term Memory (LSTM); 

[89-111,112, 122,123] 

Nearest 
Neighbours 
Models (NNMs) 

Distance-weighted k-nearest Neighbours (WkNN) and k-nearest Neighbours (kNN) [124,125] 

 

Table 4: Evaluation of machine learning models for energy system comparison [126] 

Model of ML  User-Friendliness Complexity Speed Accuracy 
ANN Low Reasonably high Reasonable High 
MLP Reasonable Reasonable High Reasonably high 
ELM Reasonably high Reasonable Reasonably high Reasonable 
SVM Low Reasonably high Low High 
DT Low Reasonable Reasonable Reasonable 
DL Reasonable High Reasonable High 
Ensemble Low High High Reasonable 
WNN Low Reasonable Low High 
ANFIS Reasonable Reasonable High Reasonable 
Hybrids High Reasonable High High 
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11. Conclusion 
A sophisticated artificial intelligence system designed for molecular design has the potential to systematically explore 

molecules exhibiting intricate motion patterns, hence facilitating the development of novel molecular design approaches with 
unforeseeable practical implications. The artificial intelligence (AI) system autonomously identifies potential nanomachine 
candidates that can use molecular motion to facilitate the desired task or can be manually prompted to generate mobile 
molecules. The shift from human-theoretical chemistry to AI-developed methodologies will likely be one of the most 
substantial transformations in science thus far. The inference is that human-made molecular designs would require aid beyond 
human capabilities to compete with nanochemistry, which is present in life and has evolved through evolutionary processes. 
Hence, an alternate approach is needed to address these restrictions and facilitate the design of molecules through a process 
distinct from human creativity. The proliferation of computer science, artificial intelligence (AI), and machine learning (ML) 
technologies has controlled the emergence of diverse tools. Utilizing this approach in the field of chemistry will enable us to 
replicate the evolutionary mechanism to generate novel synthetic designs. Implementing this instrument would provide 
significant breakthroughs in synthetic molecule design, leading to notable progress in chemical research.  The popularity of AI 
systems in several domains can be attributed to their capacity to achieve accuracy, precision, and continuous error-free 
operation. Artificial intelligence (AI) has proven effective in various domains, particularly monitoring. AI technologies, 
particularly machine learning, enable the examination of concealed connections between the structure and properties of 
materials at the nanoscale. These computational tools are characterized by their speed, high efficiency, and resource-saving 
nature. They are utilized to research the parameters of nanoparticles and anticipate the potential characteristics of 
nanomaterials before their creation. Machine learning has novel prospects for addressing nanofluids' thermal and dynamic 
characteristics, chemical adsorption, diagnostics of NP imaging outcomes, and nanosensors. Artificial neural networks have 
proven to be effective in classifying extensive datasets about the spectra and pictures of nanoparticles (NPs). The assessment of 
nanomaterial toxicity, forecasting the in vivo behavior of nanoparticles, and identifying the most effective chemical 
compositions of nanoparticle surfaces for their entry into the body are conducted with greater speed and accuracy. The Al2O3–
H2O nanofluid accurately predicts important parameters, including the heat transfer coefficient, thermal conductivity, and 
dynamic-viscosity ratio. 
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